首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
Stochastic energy analysis of seismic isolated bridges   总被引:1,自引:0,他引:1  
In this paper, a parametric stochastic analysis of isolated bridge is proposed with the aim to assess isolation performance and to investigate effects of energetic influence on protection efficiency. The analysis has been carried out in terms of two stochastic parameters of pear-deck maximum displacement and hysteretic energy response, of which a qualitative trend has been observed.Isolated bridge is described by a simple two degree of freedom (TDoF) Bouc–Wen hysteretic model, which has been introduced for its intrinsic ability in reproducing a wide range of real devices behavior. With the aim of taking into consideration intrinsic stochastic nature of seismic events, the ground motion and the structural response have been described by random vibration approach. Results obtained show that protection achieved by shifting structural natural period and reducing input energy by devices dissipation have counteracting effects if related to deck lateral displacement.  相似文献   

2.
大跨铁路钢桁连续梁桥减隔震方案比较研究   总被引:5,自引:2,他引:3       下载免费PDF全文
为研究适用于大跨铁路钢桁连续梁桥的减隔震方案及合理优化参数,以一座全长504 m的三跨铁路钢桁连续梁特大桥为工程背景,使用非线性结构分析软件SAP2000建立有限元模型,采用快速非线性分析方法分析对比摩擦摆、阻尼器、速度锁定器等减隔震方案在各种装置参数下的减震效率。研究表明:由于大跨铁路钢桁连续梁桥墩身自振导致的地震力较大,摩擦摆方案内力减震效率一般,同时墩底内力对滑动面半径变化并不敏感,在选取滑动半径时应更多地考虑行车平顺性和梁端位移值的限制。速度锁定器会极大地增加此类桥梁地震输入能量,不适用于此类桥型。阻尼器方案对活动墩内力减震效果明显,但不能有效降低固定墩内力。摩擦摆支座附加阻尼器组合减震方案能有效控制此类桥梁的内力和位移响应。研究结论可为大跨度钢桁连续梁桥减隔震设计提供参考。  相似文献   

3.
This paper proposes a hybrid control strategy combining passive and semi‐active control systems for seismic protection of cable‐stayed bridges. The efficacy of this control strategy is verified by examining the ASCE first‐generation benchmark problem for a seismically excited cable‐stayed bridge, which employs a three‐dimensional linearized evaluation bridge model as a testbed structure. Herein, conventional lead–rubber bearings are introduced as base isolation devices, and semi‐active dampers (e.g., variable orifice damper, controllable fluid damper, etc.) are considered as supplemental damping devices. For the semi‐active dampers, a clipped‐optimal control algorithm, shown to perform well in previous studies involving controllable dampers, is considered. Because the semi‐active damper is a controllable energy‐dissipation device that cannot add mechanical energy to the structural system, the proposed hybrid control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective in protecting seismically excited cable‐stayed bridges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
碰撞作用直接影响到桥梁不同构件的地震响应,是桥梁抗震研究中一直关注的问题。针对地震作用下曲线梁桥因主梁面内转动而发生主梁与切向桥台和径向挡块碰撞的现象,以1座3跨预应力混凝土连续梁桥为例,采用非线性时程分析方法,对曲线连续梁桥的双向碰撞作用影响进行研究,并分析了不同减撞措施的效果。结果表明:考虑双向碰撞作用后,下部结构响应有明显增加,主梁转动现象变得复杂,曲线梁桥地震响应分析中应通过建立精细化模型来考虑主梁双向碰撞作用的影响;在切向桥台处设置限位拉锁装置能起到较好的减轻双向碰撞作用的影响,以及采用减隔震设计后,减撞效果更明显,桥梁抗震性能明显改善,但合理减撞措施设计参数应结合曲线梁桥约束体系及结构设计参数进行体系分析确定。  相似文献   

5.
This paper concerns the seismic response of structures isolated at the base by means of High Damping Rubber Bearings (HDRB). The analysis is performed by using a stochastic approach, and a Gaussian zero mean filtered non‐stationary stochastic process is used in order to model the seismic acceleration acting at the base of the structure. More precisely, the generalized Kanai–Tajimi model is adopted to describe the non‐stationary amplitude and frequency characteristics of the seismic motion. The hysteretic differential Bouc–Wen model (BWM) is adopted in order to take into account the non‐linear constitutive behaviour both of the base isolation device and of the structure. Moreover, the stochastic linearization method in the time domain is adopted to estimate the statistical moments of the non‐linear system response in the state space. The non‐linear differential equation of the response covariance matrix is then solved by using an iterative procedure which updates the coefficients of the equivalent linear system at each step and searches for the solution of the response covariance matrix equation. After the system response variance is estimated, a sensitivity analysis is carried out. The final aim of the research is to assess the real capacity of base isolation devices in order to protect the structures from seismic actions, by avoiding a non‐linear response, with associated large plastic displacements and, therefore, by limiting related damage phenomena in structural and non‐structural elements. In order to attain this objective the stochastic response of a non‐linear n‐dof shear‐type base‐isolated building is analysed; the constitutive law both of the structure and of the base devices is described, as previously reported, by adopting the BWM and by using appropriate parameters for this model, able to suitably characterize an ordinary building and the base isolators considered in the study. The protection level offered to the structure by the base isolators is then assessed by evaluating the reduction both of the displacement response and the hysteretic dissipated energy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The paper presents a numerical investigation aimed at evaluating the improvements achievable through devices for passive seismic protection of buildings based on the use of shape memory alloys (SMA) in place of conventional steel or rubber devices. To get some generality in the results, different resisting reinforced concrete plane frames were analysed, either protected or not. ‘New’ and ‘existing’ buildings were considered depending on whether seismic provisions are adopted in the building design or not. Base isolation and energy dissipation were equally addressed for both conventional and innovative SMA‐based devices. Fragility analyses were performed using specific damage measures to account for comparisons among different damage types; the results were then used to estimate quantitatively the effectiveness of the various protection systems. More specifically, the assessment involved a direct comparison of the damage reduction provided by each protection system with respect to the severe degradation experienced by the corresponding non‐protected frame. Structural damage, non‐structural damage and damage to contents were used on purpose and included in a subsequent phase of cost analysis to evaluate the expected gains also in terms of economic benefits and life loss prevention. The results indicate that base isolation, when applicable, provides higher degrees of safety than energy dissipation does; moreover, the use of SMA‐based devices generally brings about better performances, also in consideration of the reduced functional and maintenance requirements. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
矮塔斜拉桥有着良好的受力性能与美观性能,因此抗震设计对矮塔斜拉桥至关重要。摩擦摆式减隔震设计能够将桥梁上部结构与下部结构分离,从而延长结构的自振周期和摩擦耗能机理来降低和耗散传递到桥梁上部结构的能力。本文以靖远金滩黄河大桥(100+168+100)m矮塔斜拉桥为分析模型,利用摩擦摆式减隔震支座对矮塔斜拉桥的墩身进行减隔震研究,运用MIDAS有限元软件输入不同的地震波以检验摩擦摆系统的减震效果。分析结果证明了在矮塔斜拉桥中应用摩擦摆减隔震支座系统的有效性。  相似文献   

8.
本文选取1座简支小箱梁桥,采用有限元分析软件SAP2000建立有限元模型,选择与规范反应谱频谱特性一致的实际地震记录作为输入进行时程反应分析,在墩、梁之间分别设置普通板式橡胶支座、铅芯橡胶支座和高阻尼橡胶支座,比较桥梁纵向和横向的地震反应,分析铅芯橡胶支座和高阻尼橡胶支座的减震效果,并从周期延长和能量耗散2方面分析减隔震支座的减震性能。结果表明,2种减隔震支座均可有效起到减隔震的作用,可以显著改善桥梁结构的抗震性能。  相似文献   

9.
斜拉桥结构减震设计优化研究   总被引:3,自引:0,他引:3  
位于中强以上地震烈度区的大跨斜拉桥结构,如果采用传统的抗震设计方法,通常很难满足结构的抗震设计要求,因此采取一定的减震措施显得非常必要。本文以某一总长为2 088m的大跨双塔双索面斜拉桥为分析算例,对斜拉桥结构的减震设计进行了研究。合理的减震结构体系是取得良好减震效果的前提,通过分析对比,该大跨斜拉桥横向采用局部减震体系最为合理,即只在近塔辅助墩处设置横向粘滞阻尼器,其它塔、墩处采用常规的横向约束方案。为使减震结构得到更好的减震效果,还应对减震装置参数进行优化设计。由于采取了合理的减震结构体系、较优的减震装置参数,使该大跨斜拉桥取得了很好的减震设计效果。  相似文献   

10.
This study assesses analytically the effectiveness, feasibility and limitations of elastic and hysteretic damping augmentation devices, such as elastomeric and lead–rubber bearings, with respect to the dynamic and seismic performance of cable-stayed bridges. This type of bridge, which has relatively greater flexibility, is more susceptible to undesirable vibrations due to service and environmental loadings than are conventional bridges. Therefore, damping is a very important property. Supplementary damping devices based on the plastic deformation of lead and steel are proposed at critical zones, such as the deck–abutment and deck–tower connections, to concentrate hysteretic behaviour in these specially designed energy absorbers. Inelastic behaviour in primary structural elements of the bridge can therefore be avoided, assuring the serviceability of these cable-supported bridges. Analytically, three-dimensional modelling is developed for the bridge and the damping devices, including the bridge geometrical large-displacement non-linearity and the local material and geometric non-linearities of the energy dissipation devices. The effects of various modelling and design parameters of the bridge response are also studied, including the properties, modelling accuracy and location of the devices along the bridge superstructure. It is shown that an optimum model of the seismic performance of the bridges with these passive control devices can be obtained by balancing the reduction in forces along the bridge against tolerable displacements. Appropriate locations and hysteretic energy dissipation properties of the devices can achieve a significant reduction in seismic-induced forces, as compared to the case with no dampers added, and relatively better control of displacements. In addition, proper selection of the location of the passive control systems can help redistribute forces along the structure which may provide solutions for retrofitting some existing bridges. However, caution should be exercised in simulating the device response for a reliable bridge structural performance. Moreover, while seismic response of the bridge can be significantly improved with added dampers, their degree of effectiveness also depends on the energy absorption characteristics of the dampers.  相似文献   

11.
减隔震桥梁设计方法及抗震性能研究综述   总被引:1,自引:1,他引:0       下载免费PDF全文
桥梁作为交通系统中的生命线工程,其抗震性能问题尤为重要。桥梁减隔震技术主要通过减隔震装置来降低结构的地震损伤,目前已发展成为提高强震区桥梁抗震能力的重要措施。为促进减隔震技术在中国桥梁工程领域的进一步发展,首先总结减隔震桥梁的设计方法,归纳其地震反应和震害情况,对采用不同减隔震装置桥梁的非线性动力性能、减隔震效果、地震随机响应、易损性及性能优化方法等研究情况进行梳理;其次,概述减隔震技术在斜交桥、曲线桥及铁路桥梁中的应用情况与研究进展,并介绍新型韧性抗震设计理念在桥梁工程领域中的应用情况和发展前景;最后,总结减隔震桥梁的试验研究情况,指出目前减隔震桥梁研究中的不足和发展趋势。  相似文献   

12.
The design of floor isolation systems (FISs) for the protection of acceleration sensitive contents is examined considering multiple objectives, all quantified in terms of the probabilistic system performance. The competing objectives considered correspond to (i) maximization of the level of protection offered to the sensitive content (acceleration reduction) and (ii) minimization of the demand for the isolator displacement capacity and, more importantly, for the appropriate clearance to avoid collisions with surrounding objects (floor displacement reduction). Both of these objectives are probabilistically characterized utilizing a versatile, simulation‐based framework for quantifying seismic risk, addressing all important uncertainties related to the seismic hazard and the structural model. FIS performance is assessed through time‐history analysis, allowing for all important sources of nonlinearity to be directly addressed in the design framework. The seismic hazard is described through a stochastic ground motion model. For efficiently performing the multi‐objective optimization, an augmented surrogate modeling methodology is established, considering development of a single metamodel with respect to both the uncertain model parameters and the design variables for the FIS system. This surrogate model is then utilized to simultaneously support the probabilistic risk assessment and the design optimization to provide the Pareto front of dominant designs. Each of these designs establishes a different compromise between the considered risk‐related objectives offering a variety of potential options to the designer. Within the illustrative example, the efficiency of the established framework is exploited to compare three different FIS implementations, whereas the impact of structural uncertainties on the optimal design is also evaluated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Owing to the fixed design parameters in traditional isolation systems, the optimal isolation performance may not always be achieved when a structure is subjected to a nondesign earthquake. At the same time, even though an active isolation system (AIS) can offer a better reduction for different seismic waves, in practice the control energy required still constrains its application. To solve this problem, a novel semi‐active isolation system called the Leverage‐type Stiffness Controllable Isolation System (LSCIS) is proposed in this paper. By utilizing a simple leverage mechanism, the isolation stiffness and the isolation period of the LSCIS can be easily controlled by adjusting the position of the pivot point of the leverage arm. The theoretical basis and the control law for the proposed system were first explained in this work, and then a shaking table test was conducted to verify the theory and the feasibility of the LSCIS. As shown in the experiment, the seismic behavior of the LSCIS can be successfully simulated by the theoretical model, and the isolation stiffness can be properly adjusted to reduce the seismic energy input in the LSCIS system. A comparison of the LSCIS with the other systems including passive isolation and AISs has demonstrated that based on the same limitation of base displacement, better acceleration reduction can be achieved by the LSCIS than by any of the other isolation systems. In addition, the control energy required by the LSCIS is lower than that for an AIS using the traditional LQR control algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the seismic response reduction performance of magnetorheological (MR) damper is experimentally investigated for a suspension bridge. First, the force–displacement and force–velocity curves under a range of excitation frequencies, amplitudes and currents are obtained by mechanical behavior test of the RD1097 type MR damper. Then a new non-linear hysteretic model is proposed to model the mechanical behavior of the MR damper and the model parameters are identified from test data. An experimental method, as well as a set of testing setups with the MR damper for longitudinal seismic response reduction of a SDOF generalized system representing the fundamental longitudinal mode of suspension bridge, is developed. Finally, the seismic response reduction experiment subject to three kinds of earthquake excitations, including the Pingsheng Bridge earthquake wave, the El-Centro wave and the Taft wave, is carried out, and nine control cases, including uncontrolled, six passive control schemes with different input currents and two semi-active Bang–Bang control schemes, are tested. The results verify that the seismic response reduction experimental method is feasible and the good performance of seismic longitudinal response reduction of the suspension bridge can be achieved by MR damper. It is also shown that the passive control with optimum input current outperforms the semi-active Bang–Bang controls.  相似文献   

15.
基于橡胶支座和滑板支座的水平力学性能,开发了一种新型多级隔震装置并介绍了该装置的组成、运动状态及力学模型。为了验证多级隔震装置在多水准地震作用下具有多级刚度的特性,设计了一幢相似比为1/10的四层混凝土框架结构,并根据结构模型设计了四套多级隔震装置进行了新型多级隔震结构振动台试验。试验与模拟结果表明:新型多级隔震装置隔震性能良好且在不同水准地震作用下能表现出多级抗震性能,相较于普通隔震装置,在大震下能较好的控制隔震层位移。针对不同多级隔震结构给出了多级隔震装置的最优参数的筛选流程,并基于某实际工程通过筛选流程选取了装置的最优参数。  相似文献   

16.
高压断路器隔震体系抗震可靠度分析   总被引:1,自引:0,他引:1  
给出了基于随机地震动模型的高压断路器抗震可靠性分析方法。通过建立高压断路器及其隔震体系的有限元计算模型,分析了在断路器底部瓷套管根部加设叠层橡胶垫后的动力性能,分析中利用随机地震动模型,充分考虑地震动的随机作用,给出了四类场地土条件下结构的地震响应均值和标准差;利用一次二阶矩理论计算得到高压断路器的可靠度,给出了各场地土条件下的震害率曲线。结果表明不同场地土条件下隔震垫的减震效果有所差异。  相似文献   

17.
Seismic vulnerability of historic churches is a well known issue in earthquake engineering. The need of preserving these buildings encourages the development of reliable numerical methods to assess their seismic behavior. In this paper a new approach is presented, based on evaluating damage pattern obtained by non-linear dynamic analysis and the energy dissipated by each macro-element during earthquakes. A “hierarchy of dissipated energy” concept emerges to give a scale of vulnerability of the parts that compose a church. By modifying masonry mechanical parameters or geometric features, the crack pattern and amount of energy dissipation density of each element is varied and calibrated to achieve the desired hierarchy. The structural designer can therefore estimate the effectiveness of strengthening devices by checking reduction and possibly migration of dissipated energy density from weaker structural elements to more resistant ones, together with a preferable damage pattern. The proposed strategy is applied to a single nave church, hit by the Emilia Romagna earthquake (Italy, 2012), first defining a scale of vulnerability of the macro-elements and then proposing a rehabilitation strategy, which improves the seismic response in terms of damages and dissipated energy. The strong vulnerability of the main dome vault is shown, due to the combination of its high dissipated energy density with its intrinsic weakness. Strengthening techniques are aimed to reduce the amount of dissipated energy of vulnerable macro-elements and to attenuate out-of-plane mechanisms.  相似文献   

18.
The seismic events occurred in recent years highlighted the extreme vulnerability of large part of the existing constructed facilities and the need to adopt innovative solutions to improve their seismic performance. With this purpose, the possible exploitation of a seismic early warning system (SEWS) in the framework of semi-active structural control using magnetorheological (MR) dampers is herein investigated. The main idea consists in the use of these time-varying properties devices to control an hosting structure by changing their behaviour according to an anticipate estimate, provided by the SEWS, of the peak ground acceleration (PGA) of the incoming earthquake. In this way, the dampers are able to adapt their mechanical characteristics to the specific earthquake obtaining the optimal seismic response. The present paper describes the application of this protection technique to a case-study problem, a highway bridge located in Southern California. The seismic response of the benchmark bridge is investigated by nonlinear time-history analyses by adopting 16 real earthquake ground excitations. These accelerograms cover a wide variety of magnitudes, distances to fault and soil types. Possible errors on estimation of PGA provided by SEWS and their effects on the proposed control system are also considered. The results obtained confirm that unavoidable errors in the PGA estimates provided by the SEWS do not propagate to the seismic response. Conversely, the proposed strategy turns out to damp these errors, resulting in a robust seismic behaviour of the protected structure.  相似文献   

19.
A bridge structure with a seismic isolation system consisting of rubber bearings and hysteretic dissipators is considered. The non-linear equations of motion are derived for the first mode vibration and the stochastic response to a white noise or a filtered white noise ground acceleration is determined by using the method of equivalent linearization. The sensitivity of the stochastic response to principal pàrameters for the bridge is investigated. Results of optimum design of the isolation system are presented.  相似文献   

20.
根据基础隔震理论,在钢筋沥青隔震礅的基础上,提出一种新型钢结构隔震礅,设计和制作了缩尺房屋模型,并对其进行振动台试验。通过对隔震结构模型的动力特性、地震响应及能量平衡分析,绘制试验过程中的加速度及能量时程曲线,研究钢隔震礅应用于低层框架结构的减震耗能能力。大量工程实例可以看出该隔震礅隔震效果显著,制作简单、价格低廉、耐久性好,适于在广大村镇地区低层框架结构中推广使用。试验表明:隔震结构模型在不同的地震作用下,加速度折减系数处在0.24~0.51之间,且结构的阻尼耗能在振动台试验中占总输入能量的60%~70%,对结构耗能起主导作用,说明该基础隔震装置不仅具有较好的减震耗能特性能,对于控制隔震层的位移也有好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号