首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

2.
Abstract

A high vertical resolution model is used to examine the instability of a baroclinic zonal flow and a finite amplitude topographically forced wave. Two families of unstable modes are found, consisting of zonally propagating most unstable modes, and stationary unstable modes. The former have time scale and spatial structure similar to baroclinic synoptic disturbances, but are localized in space due to interaction with the zonally asymmetric forcing. These modes transport heat efficiently in both the zonal and meridional directions. The second family of stationary unstable modes has characteristics of modes of low frequency variability of the atmosphere. They have time scales of 10 days and longer, and are of planetary scale with an equivalent barotropic vertical structure. The horizontal structure resembles blocking flows. They are maintained by available potential energy of the basic wave, and have large zonal heat fluxes. The results for both families of modes are interpreted in terms of an interaction between forcing and baroclinic instability to create favoured regions for eddy development. Applications to baroclinic planetary waves are also considered.  相似文献   

3.
Abstract

Tidal pressures and currents were measured with self‐contained capsules dropped to the sea floor for one month at distances of 175, 190, and 500 nautical miles from San Diego. These observations, together with a one‐week bottom pressure record by Filloux at 750 n miles, and three half‐week bottom current records by Isaacs et al, at intermediary distances, were analyzed for tidal components by cross‐correlation with a noise‐free reference time series. (For short records this method has some merit over classical tide analysis.) It was found that the tide decays seaward to e‐1 times the coastal amplitude over a distance of order 1000 km for the semidiurnal species, slower for the diurnal species. Tidal currents turn counterclockwise, and are polarized with maximum flow parrallel to shore in the direction of tidal propagation (320°T) at local high tide. The current amplitude is roughly 2 cm/sec for the semidiurnal component, 1 cm/sec for the diurnal component. Superimposed baroclinic tidal currents lead to poor signal: noise ratios (between 1:1 and 10:1) for the barotropic currents. In contrast, the ratio is typically 1000:1 for the bottom pressures and generally exceeds that for coastal tide stations of comparable duration. Published I.H.B. tidal constants for exposed California coastal stations indicate “upshore” (towards 320°T) propagation at 140 m/sec for semidiurnal tides. 214 m/sec for diurnal tides.

To interpret these diverse observations, we have computed the dispersion laws for all possible rotationally‐gravitationally trapped waves against a straight coast with shelf. Trapped solutions are conveniently portrayed in terms of a parameter μ such that ? = sin μ = iu/v and f = ‐ cos μ = η/v define the ellipticity and impedance of the wave motion, η, u and v being off‐shelf dimensionless elevation, normal‐to‐shore and longshore components of velocity, respectively. We then attempt to fit the observations by a superposition of the possible wave classes, all of the same tidal frequency: (a) a free Kelvin‐like edge wave with small μ (mostly trapped by rotation, but somewhat slowed by the shelf); (6) a free Poincare‐like leaky wave; and (c) a forced wave (the distortion of the sea bottom by the tide producing forces plays a significant role). The mod el can account for the main features of the observed tidal heights, and gives relative amplitudes at the coast of 54:16:4 cm for components a:b:c in the case of the semidiurnal tides, 21:24:9 cm for the diurnal tides. The results place a semidiurnal amphidrome about midway between San Diego and Hawaii. Tidal currents are not well fitted by the model, and there are problems associated with the separation of barotropic and baroclinic modes, and with the benthic boundary layer. Coastal energy dissipation is small in the sea under investigation, but a “ capacitive “ phase delay appears to be associated with Northern California harbors and inland waters.  相似文献   

4.
Large-scale zonal flow driven across submarine topography establishes standing Rossby waves. In the presence of stratification, the wave pattern can be represented by barotropic and baroclinic Rossby waves of mixed planetary topographic nature, which are locked to the topography. In the balance of momentum, the wave pattern manifests itself as topographic formstress. This wave-induced formstress has the net effect of braking the flow and reducing the zonal transport. Locally, it may lead to acceleration, and the parts induced by the barotropic and baroclinic waves may have opposing effects. This flow regime occurs in the circumpolar flow around Antarctica. The different roles that the wave-induced formstress plays in homogeneous and stratified flows through a zonal channel are analyzed with the BARBI (BARotropic-Baroclinic-Interaction ocean model, Olbers and Eden, J Phys Oceanogr 33:2719–2737, 2003) model. It is used in complete form and in a low-order version to clarify the different regimes. It is shown that the barotropic formstress arises by topographic locking due to viscous friction and the baroclinic one due to eddy-induced density advection. For the sinusoidal topography used in this study, the transport obeys a law in which friction and wave-induced formstress act as additive resistances, and windstress, the effect of Ekman pumping on the density stratification, and the buoyancy forcing (diapycnal mixing of the stratified water column) of the potential energy stored in the stratification act as additive forcing functions. The dependence of the resistance on the system parameters (lateral viscosity ε, lateral diffusivity κ of eddy density advection, Rossby radius λ, and topography height δ) as well as the dependence of transport on the forcing functions are determined. While the current intensity in a channel with homogeneous density decreases from the viscous flat bottom case in an inverse quadratic law ~δ –2 with increasing topography height and always depends on ε, a stratified system runs into a saturated state in which the transport becomes independent of δ and ε and is determined by the density diffusivity κ rather than the viscosity: κ/λ 2 acts as a vertical eddy viscosity, and the transport is λ 2/κ times the applied forcing. Critical values for the topographic heights in these regimes are identified.  相似文献   

5.
Although the study of topographic effects on the Rossby waves in a stratified ocean has a long history, the wave property over a periodic bottom topography whose lateral scale is comparable to the wavelength is still not clear. The present paper treats this problem in a two-layer ocean with one-dimensional periodic bottom topography by a simple numerical method, in which no restriction on the wavelength and/or the horizontal scale of the topography is required. The dispersion diagram is obtained for a wavenumber range of [?π/L b , π/L b ], where L b is the periodic length of the topography. When the topographic?β?is not negligible compared to the planetary β, the Rossby wave solutions around the wavenumbers which satisfy the resonant condition among the waves and topography disappear and separate into an infinite number of discrete modes. For convenience, each mode is numbered in order of frequency. As topographic height is increased, the high frequency barotropic Rossby wave (mode 1) becomes a topographic mode which can exist even on the f plane, and the highfrequency baroclinic mode (mode 2) becomes a surface intensified mode. Behaviors of low frequency modes are somewhat complicated. When the topographic amplitude is small, the low frequency baroclinic modes tend to be bottom trapped and the low frequency barotropic modes tend to be surface intensified. As topographic amplitude further increases, the relation between the mode number and vertical structure changes. This change can be attributed to the increase of the frequency of the topographic mode with the topographic amplitude.  相似文献   

6.
Abstract

The generation of stationary Rossby waves by sources of potential vorticity in a westerly flow is examined here in the context of a two-layer, quasi-geostrophic, β-plane model. The response in each layer consists of a combination of a barotropic Rossby wave disturbance that extends far downstream of the source, and a baroclinic disturbance which is evanescent or wave-like in character, depending on the shear and degree of stratification. Contributions from each of these modes in each layer are strongly dependent on the basic flows in each layer; the degree of stratification; and the depths of the two layers. The lower layer response is dominated by an evanescent baroclinic mode when the upper layer westerlies are much larger than those in the lower layer. In this case, weak stationary Rossby waves of large wavelengths are confined to the upper layer and the disturbance in the lower layer is confined to the source region.

Increasing the upper layer flow (with the lower layer flow fixed) increases the Rossby wavelength and decreases the amplitude. Decreasing the lower layer flow (with the upper layer flow fixed) decreases the wavelength and increases the amplitude. Stratification increases the contribution from the barotropic wave-like mode and causes the response to be confined to the lower layer.

The finite amplitude response to westerly flow over two sources of potential vorticity is also considered. In this case stationary Rossby waves induced by both sources interact to reinforce or diminish the downstream wave pattern depending on the separation distance of the sources relative to the Rossby wavelength. For fixed separation distance, enhancement of the downstreatm Rossby waves will only occur for a narrow range of flow variables and stratification.  相似文献   

7.
A detailed set of observations are presented of the tidal forcing and basin response of Loch Etive, a jet-type fjordic system on the west coast of Scotland. The characteristics of the tidal jet observed during a spring tide are discussed in detail, and with reference to laboratory studies of Baines and Hoinka (1985). Although the system is categorized as a jet basin during spring tides (when the mode-1 densimetric Froude number exceeds 1) and a wave basin during neap tides (when the Froude number remains below 1), a mode-1 baroclinic wave response is observed throughout the spring/neap cycle. Of the total incident tidal energy, 16% is lost from the barotropic tide. The ratio between loss to bottom friction, barotropic form drag and baroclinic wave drag is estimated to be 1:4:1 (1:4:3.3) at springs (neaps). Despite this, during a spring tide, a 20-m amplitude baroclinic mode-1 wave is observed to propagate along the full length of the basin at a speed of 0.2 m s–1, somewhat slower than the predicted linear mode-1 phase speed. A hydrographic section supports the implication of the dissipation of the baroclinic wave towards the loch head. The stratification of the upper layers is observed to decrease rapidly landward of the 40-m isobath, a possible signature of enhanced diapycnal mixing in the shallower reaches towards the loch head.Responsible Editor: Jens Kappenberg  相似文献   

8.
Linear Rossby wave dispersion relationships suggest that Jupiter’s Great Red Spot (GRS) is a baroclinic structure embedded in a barotropic shearing zonal flow. Quasi-geostrophic (QG) two-layer simulations support the theory, as long as an infinitely deep zonal flow is assumed. However, once a finite depth of the lower layer is assumed, a self-interaction of the baroclinic eddy component produces a barotropic radiating field, so that the GRS-like eddy can no longer remain compact. Compactness is recovered by explicitly introducing a deep dynamics of the interior for the lower layer, instead of the shallow QG formulation. An implication of the result is a strong coupling of the GRS to a convectively active interior.Paper presented to the NP Symposia of the 1991 Wiesbaden EGS Assembly on “Nonlinear processes in Geophysics”  相似文献   

9.
Abstract

The weakly nonlinear evolution of a free baroclinic wave in the presence of slightly supercritical, vertically sheared zonal flow and a forced stationary wave field that consists of a single zonal scale and an arbitrary number of meridional harmonics is examined within the context of the conventional two-layer model. The presence of the (planetary-scale) stationary wave introduces zonal variations in the supercriticality and is shown to alter the growth rate and asymptotic equilibrium of the (synoptic-scale) baroclinic wave via two distinct mechanisms: The first is due to the direct interaction of the stationary wave with the shorter synoptic wave (wave-wave mechanism), and the second is due to the interaction of the synoptic wave with that portion of the mean field that is corrected by the zonally rectified stationary wave fluxes (wave-mean mechanism). These mechanisms can oppose or augment each other depending on the amplitude and spatial structure of the stationary wave field. If the stationary wave field is confined primarily to the upper (lower) layer and consists of only the gravest cross-stream mode, conditions are favorable (unfavorable) for nonzero equilibrium of the free wave.

In addition to the time dependent heat flux generated by baroclinic growth of the free wave, its interaction with a stationary wave field consisting of two or more meridional harmonics generates time dependent heat fluxes that vary with period of the free wave. However, if the stationary wave field contains several meridional harmonics of sufficiently large amplitude, the free baroclinic wave is destroyed.  相似文献   

10.
Abstract

Analysis of a two-layer, flat-bottom, steady-wind driven, eddy-resolving general circulation model reveals a distinct separation in frequency of baroclinic and barotropic motion in the region distant from the model Gulf Stream. The far-field motions at periods less (greater) than about 100 days are predominantly barotropic (baroclinic), unlike the near-field, eddy-generating, free-jet region which contains barotropic and baroclinic energy throughout the modei frequency range. The far-field barotropic energy produces a peak in the model sea-level spectra between 25 and 50 days with a magnitude comparable to energy levels observed in spectra of sea level from oceanic island tide gauges. The far-field barotropic motion is clearly composed of large-scale, resonant, barotropic normal modes drive by mesoscale activity of the turbulent, free-jet region. Oceanic mesoscale turbulence may therefore provide for planetary normal modes an excitation mechanism distinct from atmospheric forcing. The open-ocean, barotropic, model response is very similar to that of a fluctuating-wind driven model, which suggests that atmospheric and intrinsic forcing of mid-ocean eddies may be of comparable importance.  相似文献   

11.
Synoptic scale variability of the Southern Ocean wind field in the high-frequency range of barotropic Rossby waves results in transport variations of the Antarctic Circumpolar Current (ACC), which are highly coherent with the bottom pressure field all around the Antarctic continent. The coherence pattern, in contrast to the steady state ACC, is steered by the geostrophic f/h contours passing through Drake Passage and circling closely around the continent. At lower frequencies, with interannual and decadal periods, the correlation with the bottom pressure continues, but baroclinic processes gain importance. For periods exceeding a few years, variations of the ACC transport are in geostrophic balance with the pressure field associated with the baroclinic potential energy stored in the stratification, whereas bottom pressure plays a minor role. The low-frequency variability of the ACC transport is correlated with the baroclinic state variable in the entire Southern Ocean, mediated by baroclinic topographic–planetary Rossby waves that are not bound to f/h contours. To clarify the processes of wave dynamics and pattern correlation, we apply a circulation model with simplified physics (the barotropic–baroclinic-interaction model BARBI) and use two types of wind forcing: the National Centers for Environmental Prediction (NCEP) wind field with integrations spanning three decades and an artificial wind field constructed from the first three empirical orthogonal functions of NCEP combined with a temporal variability according to an autoregressive process. Experiments with this Southern Annular Mode type forcing have been performed for 1,800 years. We analyze the spin-up, trends, and variability of the model runs. Particular emphasis is placed on coherence and correlation patterns between the ACC transport, the wind forcing, the bottom pressure field and the pressure associated with the baroclinic potential energy. A stochastic dynamical model is developed that describes the dominant barotropic and baroclinic processes and represents the spectral properties for a wide range of frequencies, from monthly periods to hundreds of years.  相似文献   

12.
The energy flux in internal waves generated at the Celtic Sea shelf break was estimated by (i) applying perturbation theory to a week-long dataset from a mooring at 200 m depth, and (ii) using a 2D non-hydrostatic circulation model over the shelf break. The dataset consisted of high resolution time-series of currents and vertical stratification together with two 25-h sets of vertical profiles of the dissipation of turbulent kinetic energy. The observations indicated an average energy flux of 139 W m−1, travelling along the shelf break towards the northwest. The average energy flux across the shelf break at the mooring was only 8 W m−1. However, the waves propagating onshelf transported up to 200 W m−1, but they were only present 51% of the time. A comparison between the divergence of the baroclinic energy flux and observed dissipation within the seasonal thermocline at the mooring showed that the dissipation was at least one order of magnitude larger. Results from a 2D model along a transect perpendicular to the shelf break showed a time-averaged onshelf energy flux of 153–425 W m−1, depending on the magnitude of the barotropic forcing. A divergence zone of the energy flux was found a few kilometre offshore of the location of the observations in the model results, and fluxes on the order of several kW m−1 were present in the deep waters further offshelf from the divergence zone. The modelled fluxes exhibited qualitative agreements with the phase and hourly onshelf magnitudes of the observed energy fluxes. Both the observations and the model results show an intermittent onshelf energy flux of 100–200 W m−1, but these waves could only propagate ∼20–30 km onshore before dissipating. This conclusion was supported by a 25-h dataset sampled some 180 km onto the shelf, where a weak wave energy flux was found going towards the shelf break. We therefore conclude that shelf break generated internal waves are unlikely to be the main source of energy for mixing on the inner part of the shelf.  相似文献   

13.
Numerical model experiments have been performed to analyze the low-latitude baroclinic continental shelf response to a tropical cyclone. The theory of coastally trapped waves suggests that, provided appropriate slope, latitude, stratification and wind stress, bottom-intensified topographic Rossby waves can be generated by the storm. Based on a scale analysis, the Nicaragua Shelf is chosen to study propagating topographic waves excited by a storm, and a model domain is configured with simplified but similar geometry. The model is forced with wind stress representative of a hurricane translating slowly over the region at 6 km h−1. Scale analysis leads to the assumption that baroclinic Kelvin wave modes have minimal effect on the low-frequency wave motions along the slope, and coastal-trapped waves are restricted to topographic Rossby waves. Analysis of the simulated motions suggests that the shallow part of the continental slope is under the influence of barotropic topographic wave motions and at the deeper part of the slope baroclinic topographic Rossby waves dominate the low-frequency motions. Numerical solutions are in a good agreement with theoretical scale analysis. Characteristics of the simulated baroclinic waves are calculated based on linear theory of bottom-intensified topographic Rossby waves. Simulated waves have periods ranging from 153 to 203 h. The length scale of the waves is from 59 to 87 km. Analysis of energy fluxes for a fixed volume on the slope reveals predominantly along-isobath energy propagation in the direction of the group velocity of a topographic Rossby wave. Another model experiment forced with a faster translating hurricane demonstrates that fast moving tropical cyclones do not excite energetic baroclinic topographic Rossby waves. Instead, robust inertial oscillations are identified over the slope.  相似文献   

14.
Long gravity wave height oscillations of up to 60 cm with periods between 12 min and 1 h have been observed on tide gauge recordings from the southern coast of South Africa. Short period (30 min to 1 h), small height (3 mb) air pressure pulses were recorded at stations along the same coastline. Two separate events of contrasting nature are described in detail. The simple model of Snodgrass et al. (1962, Journal of Marine Research, 20, 3–30) is used to explain the sea waves as resonant, coastally trapped, edge waves on the Agulhas Bank forced by the atmospheric pulses.  相似文献   

15.
A cross-sectional model of an idealised constant depth gulf with a sill at its entrance, connected to a deep ocean, is used to examine the barotropic and baroclinic response of the region to wind forcing. The role of the oceanic boundary condition is also considered. Calculations show that in the case of a tall sill, where the pycnocline intersects the sill, the baroclinic response of the gulf is similar to that of a lake, and internal waves cannot radiate energy out of the gulf. The barotropic response shows free surface oscillations, with nodes located close to the centre of the oceanic basin and entrance to the gulf, with associated barotropic resonant periods. As the sill height is reduced, baroclinic wave energy is radiated from the gulf into the ocean, and the form of the baroclinic response changes from a standing wave (tall sill) as in a lake to a progressive wave (no sill). The location of sea surface elevation nodes and resonant periods changes as the sill height is reduced. Calculations of the barotropic resonant periods with and without stratification could not determine if they were influenced by the presence of stratification, although published analytical theory suggests that they should be able to when energy is lost from the gulf by internal wave radiation. This inability to detect changes in barotropic resonant period due to stratification effects is due to the small change in resonant frequency produced by baroclinic effects, as shown by analytical results, and the broad peak nature of the computed resonant frequency. In the case of a closed offshore boundary (an offshore island), there is a stronger and narrower energy peak at the resonant frequency than when a barotropic radiation condition is applied. However, the influence of stratification upon the resonant frequency could not be accurately determined. Although the offshore boundary was well removed from the gulf to such an extent that any baroclinic waves reflected from it could not reach the gulf within the integration period, it did, however, slightly influence the gulf baroclinic response due to its influence on the barotropic response.  相似文献   

16.
Initially the development of shallow sea three-dimensional barotropic tidal models is briefly reviewed with a view to determining what were the key measurements that allowed progress in this field and rigorous model validation. Subsequently this is extended to a brief review of baroclinic tidal models to try to determine a “way forward” for baroclinic model development. The difficulty of high spatial variability, and wind influence are identified as possibly important issues that must be considered in validating baroclinic tidal models. These are examined using a three-dimensional unstructured grid model of the M2 internal tide on the shelf edge region off the west coast of Scotland. The model is used to investigate the spatial variability of the M2 internal tide, and associated turbulence energy and mixing in the region. Initial calculations are performed with tidal forcing only, with subsequent calculations briefly examining how the tidal distribution is modified by down-welling and up-welling favourable winds. Calculations with tidal forcing only, show that there is significant spatial variability in the internal tide and associated mixing in the region. In addition, these are influenced by wind effects which may have to be taken into account in any model validation exercise. The paper ends by discussing the comprehensive nature of data sets that need to be collected to validate internal tidal models to the same level currently attained with three dimensional barotropic tidal models.  相似文献   

17.
18.
Based on an eddy-permitting numerical model, the mesoscale variability in the East-Sakhalin Current is investigated during the winter-spring period. Analysis of necessary conditions for the development of baroclinic instability showed that the nearshore component of the East-Sakhalin Current is potentially baroclinic unstable in the first half-year. The simulated circulation uncovered a generation of anticyclonic eddies on the eastern Sakhalin shelf. It was established that a spatial scale of these eddies and the first baroclinic Rossby radius of deformation are values of the same order; a lifetime of these eddies varies from 4 to 6 weeks, given the Rossby number varies from 0.05 to 0.2. Analysis of the rate of eddy energy conversion on the eastern Sakhalin shelf showed that the generation of the revealed mesoscale eddies results from, mainly, baroclinic instability, whereas barotropic instability can be both favoring and preventing to the generation of these eddies.  相似文献   

19.
Terrain-following ocean models are being used to simulate baroclinic tides and provide estimates of the tidal fields for circulation and mixing studies. These models have successfully reproduced elevations with most of the remaining inaccuracies attributed to topographic errors; however, the replication of barotropic and baroclinic velocity fields has not been as robust. Part of the problem is the lack of an adequate observational dataset in the simulated regions to compare the models. This problem was addressed using a dataset collected during the Flow over Abrupt Topography initiative at Fieberling Guyot. To evaluate the capability of the Regional Ocean Model System (ROMS) to simulate baroclinic tidal velocities, the combined tides for four constituents, M2, S2, K1, and O1, were modeled over Fieberling Guyot. Model inputs, numerical schemes, and parameterizations were varied to improve agreement with observations. These included hydrography, horizontal resolution, and the vertical mixing parameterization. Other factors were evaluated but are not included in this paper. With the best case, semidiurnal baroclinic tides were well replicated with RMS differences between the model estimates and the observations of 1.85 and 0.60 cm s−1 for the major axes of the tidal ellipses for M2 and S2, respectively. However, diurnal K1 baroclinic tides were poorly simulated with RMS differences of 4.49 cm s−1. In the simulations, the K1 baroclinic tides remained bottom-trapped unlike the observed fields, which had free waves due to the contribution of the mean velocity to the potential vorticity. The model did not adequately simulate the mean velocity, and the K1 tides remained trapped. A resolution of 1 km most accurately reproduced the major axes and mean velocities; however, a 4-km resolution was sufficient for a qualitative estimate of where baroclinic tidal generation occurred. Nine vertical mixing parameterizations were compared. The vertical mixing parameterization was found to have minor effects on the velocity fields, with most effects occurring over the crown of guyot and in the lower water column; however, it had dramatic effects on the estimation of vertical diffusivity of temperature. Although there was no definitive best performer for the vertical mixing parameterization, several parameterizations could be eliminated based on comparison of the vertical diffusivity estimates with observations. The best performers were Mellor–Yamada and three generic length scale schemes.  相似文献   

20.
Stratification is incorporated into an unsteady model of shelf currents by splitting the dynamic response of the flow into two parts, each with its own time scale. The barotropic part of the response is independent of depth and varies rapidly on a short time scale, whereas the baroclinic part depends on depth and changes slowly with time on a long time scale.The three-dimensional model has a continental shelf sloping down from an eastern boundary to the deep ocean. The equations for the barotropic component of the pressure field contain forcing by the wind stress and feedback from the baroclinic field. An integral of the heat equation over the long time scale determines the slow changes in the temperature field and hence in the baroclinic component of the velocity distribution.The temperature field is specified at the start of the numerical calculation. Its subsequent development is controlled by the numerical procedure. It is found that significant changes in the temperature field require a long period of upwelling favourable winds, whereas the longshore currents react more quickly to changes in the wind stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号