首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Planets orbiting a planetesimal circumstellar disc can migrate inward from their initial positions because of dynamical friction between planets and planetesimals. The migration rate depends on the disc mass and on its time evolution. Planets that are embedded in long-lived planetesimal discs, having total mass of 10−4– 0.01 M , can migrate inward a large distance and can survive only if the inner disc is truncated or as a result of tidal interaction with the star. In this case the semimajor axis, a , of the planetary orbit is less than 0.1 au. Orbits with larger a are obtained for smaller values of the disc mass or for a rapid evolution (depletion) of the disc. This model may explain not only several of the orbital features of the giant planets that have been discovered in recent years orbiting nearby stars, but also the metallicity enhancement found in several stars associated with short-period planets.  相似文献   

2.
Detectable debris discs are thought to require dynamical excitation ('stirring'), so that planetesimal collisions release large quantities of dust. We investigate the effects of the secular perturbations of a planet, which may lie at a significant distance from the planetesimal disc, to see if these perturbations can stir the disc, and if so over what time-scale. The secular perturbations cause orbits at different semimajor axes to precess at different rates, and after some time   t cross  initially non-intersecting orbits begin to cross. We show that   t cross∝ a 9/2disc/( m pl e pl a 3pl)  , where   m pl, e pl  and   a pl  are the mass, eccentricity and semimajor axis of the planet, and   a disc  is the semimajor axis of the disc. This time-scale can be faster than that for the growth of planetesimals to Pluto's size within the outer disc. We also calculate the magnitude of the relative velocities induced among planetesimals and infer that a planet's perturbations can typically cause destructive collisions out to 100 s of au. Recently formed planets can thus have a significant impact on planet formation in the outer disc which may be curtailed by the formation of giant planets much closer to the star. The presence of an observed debris disc does not require the presence of Pluto-sized objects within it, since it can also have been stirred by a planet not in the disc. For the star ε Eridani, we find that the known radial velocity planet can excite the planetesimal belt at 60 au sufficiently to cause destructive collisions of bodies up to 100 km in size, on a time-scale of 40 Myr.  相似文献   

3.
We study the correlations between the distribution of stars on the horizontal branch (HB), the HB morphology, and some other properties of globular clusters (GCs) in a large sample of GCs. We strengthen previous results that a general correlation exists only between HB morphology and metallicity. Correlations with other properties, e.g. central density and core radius, exist only for GCs within a narrow metallicity range. We conjecture that the lack of correlations with present properties of GCs (besides metallicity) is because the variation of the HB morphologies between GCs having similar metallicities is caused by a process, or processes, the effect of which was determined at the formation time of GCs. This process (or processes) is historically termed the 'second parameter', metallicity being the 'first parameter'. We then argue that the 'planet second parameter' model, where the presence of planets and to a lesser degree brown dwarfs and low-mass main-sequence stars is the 'second parameter', fits this conjecture. This is because the processes that determine the presence of planets and their properties occur during the formation epoch of the star and its circumstellar disc.  相似文献   

4.
Debris disks are optically thin, almost gas-free dusty disks observed arounda significant fraction of main-sequence stars older than about 10 Myr. Since the circumstellar dust is short-lived, the very existence of these disks is considered as evi-dence that dust-producing planetesimals are still present in mature systems, in whichplanets have formed – or failed to form – a long time ago. It is inferred that theseplanetesimals orbit their host stars at asteroid to Kuiper-belt distances and continuallysupply ...  相似文献   

5.
There is evidence for the existence of massive planets at orbital radii of several hundred au from their parent stars where the time-scale for planet formation by core accretion is longer than the disc lifetime. These planets could have formed close to their star and then migrated outwards. We consider how the transfer of angular momentum by viscous disc interactions from a massive inner planet could cause significant outward migration of a smaller outer planet. We find that it is in principle possible for planets to migrate to large radii. We note, however, a number of effects which may render the process somewhat problematic.  相似文献   

6.
Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time-scale that is short compared with the orbital period. We use a combination of hydrodynamic simulations and N -body orbit integrations to study the long-term evolution of a fragmenting disc with an initial mass ratio to the star of   M disc/ M *= 0.1  . For a disc that is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar-mass star) up to  ≈0.01 M  . Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 – in which the companions are close to or beyond the deuterium burning limit – appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ∼1 au should differ from that of stars with lower mass planetary companions.  相似文献   

7.
To date, two planetary systems have been discovered with close-in, terrestrial-mass planets     . Many more such discoveries are anticipated in the coming years with radial velocity and transit searches. Here we investigate the different mechanisms that could form 'hot Earths' and their observable predictions. Models include: (1) in situ accretion; (2) formation at larger orbital distance followed by inward 'type 1' migration; (3) formation from material being 'shepherded' inward by a migrating gas giant planet; (4) formation from material being shepherded by moving secular resonances during dispersal of the protoplanetary disc; (5) tidal circularization of eccentric terrestrial planets with close-in perihelion distances and (6) photoevaporative mass-loss of a close-in giant planet. Models 1–4 have been validated in previous work. We show that tidal circularization can form hot Earths, but only for relatively massive planets     with very close-in perihelion distances (≲0.025 au), and even then the net inward movement in orbital distance is at most only 0.1–0.15 au. For planets of less than     , photoevaporation can remove the planet's envelope and leave behind the solid core on a Gyr time-scale, but only for planets inside 0.025–0.05 au. Using two quantities that are observable by current and upcoming missions, we show that these models each produce unique signatures, and can be observationally distinguished. These observables are the planetary system architecture (detectable with radial velocities, transits and transit timing) and the bulk composition of transiting close-in terrestrial planets (measured by transits via the planet's radius).  相似文献   

8.
We have performed N -body numerical simulations of the exchange of angular momentum between a massive planet and a 3D Keplerian disc of planetesimals. Our interest is directed at the study of the classical analytical expressions of the lineal theory of density waves, as representative of the dynamical friction in discs 'dominated by the planet' and the orbital migration of the planets with regard to this effect. By means of a numerical integration of the equations of motion, we have carried out a set of numerical experiments with a large number of particles  ( N ≥10 000)  , and planets with the mass of Jupiter, Saturn and one core mass of the giant planets in the Solar system  ( M c=10 M)  . The torque, measured in a phase in which a 'steady forcing' is clearly measurable, yields inward migration in a minimum-mass solar disc  (Σ∼10 g cm-2  ), with a characteristic drift time of ∼ a few 106 yr. The planets predate the disc, but the orbital decay rate is not sufficient to allow accretion in a time-scale relevant to the formation of giant planets. We found reductions of the measured torque on the planet, with respect to the linear theory, by a factor of 0.38 for M c, 0.04 for Saturn and 0.01 for Jupiter, due to the increase in the perturbation on the disc. The behaviour of planets whose mass is larger than M c is similar to the one of type II migrators in gaseous discs. Our results suggest that, in a minimum mass, solar planetesimals disc, type I migrations occur for masses smaller than M c, whereas for this mass value it could be a transition zone between the two types of migration.  相似文献   

9.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

10.
The chemical-dynamical properties of stars with giant planets are compared to those of a nearby star sample within the framework of a stellar orbital diffusion model. The stars-with-planets sample includes recently discovered extrasolar planets and the Sun. We find that the planet-bearing stars, 14 Her, ρ 1 Cnc and τ Boo, are much more metal-rich than stars of similar age and this cannot be easily explained by orbital diffusion. We also confirm previous claims that the motion of the Sun relative to the local standard of rest is very small compared to other G dwarfs of similar age, and we offer a possible explanation for this apparent anomaly.  相似文献   

11.
We investigate the migration of massive extrasolar planets caused by gravitational interaction with a viscous protoplanetary disc. We show that a model in which planets form at 5 au at a constant rate, before migrating, leads to a predicted distribution of planets that is a steeply rising function of log( a ), where a is the orbital radius. Between 1 and 3 au, the expected number of planets per logarithmic interval in a roughly doubles. We demonstrate that, once selection effects are accounted for, this is consistent with current data, and then extrapolate the observed planet fraction to masses and radii that are inaccessible to current observations. In total, approximately 15 per cent of stars targeted by existing radial velocity searches are predicted to possess planets with masses  0.3< M p sin( i )<10 M J  and radii  0.1< a <5 au  . A third of these planets (around 5 per cent of the target stars) lie at the radii most amenable to detection via microlensing. A further  5–10  per cent of stars could have planets at radii of  5< a <8 au  that have migrated outwards. We discuss the probability of forming a system (akin to the Solar system) in which significant radial migration of the most massive planet does not occur. Approximately  10–15  per cent of systems with a surviving massive planet are estimated to fall into this class. Finally, we note that a smaller fraction of low-mass planets than high-mass planets is expected to survive without being consumed by the star. The initial mass function for planets is thus predicted to rise more steeply towards small masses than the observed mass function.  相似文献   

12.
Most transiting planets orbit very close to their parent star, causing strong tidal forces between the two bodies. Tidal interaction can modify the dynamics of the system through orbital alignment, circularization, synchronization and orbital decay by exchange of angular moment. Evidence for tidal circularization in close-in giant planet is well known. Here, we review the evidence for excess rotation of the parent stars due to the pull of tidal forces towards spin-orbit synchronization. We find suggestive empirical evidence for such a process in the present sample of transiting planetary systems. The corresponding angular momentum exchange would imply that some planets have spiralled towards their star by substantial amounts since the dissipation of the protoplanetary disc. We suggest that this could quantitatively account for the observed mass–period relation of close-in gas giants. We discuss how this scenario can be further tested and point out some consequences for theoretical studies of tidal interactions and for the detection and confirmation of transiting planets from radial velocity and photometric surveys.  相似文献   

13.
In this paper, we extend our numerical method for simulating terrestrial planet formation to include dynamical friction from the unresolved debris component. In the previous work, we implemented a rubble pile planetesimal collision model into direct N -body simulations of terrestrial planet formation. The new collision model treated both accretion and erosion of planetesimals but did not include dynamical friction from debris particles smaller than the resolution limit for the simulation. By extending our numerical model to include dynamical friction from the unresolved debris, we can simulate the dynamical effect of debris produced during collisions and can also investigate the effect of initial debris mass on terrestrial planet formation. We find that significant initial debris mass, 10 per cent or more of the total disc mass, changes the mode of planetesimal growth. Specifically, planetesimals in this situation do not go through a runaway growth phase. Instead, they grow concurrently, similar to oligarchic growth. The dynamical friction from the unresolved debris damps the eccentricities of the planetesimals, reducing the mean impact speeds and causing all collisions to result in merging with no mass loss. As a result, there is no debris production. The mass in debris slowly decreases with time. In addition to including the dynamical friction from the unresolved debris, we have implemented particle tracking as a proxy for monitoring compositional mixing. Although there is much less mixing due to collisions and gravitational scattering when dynamical friction of the background debris is included, there is significant inward migration of the largest protoplanets in the most extreme initial conditions (for which the initial mass in unresolved debris is at least equal to the mass in resolved planetesimals).  相似文献   

14.
We present a new analysis of the expected magnetospheric radio emission from extrasolar giant planets (EGPs) for a distance limited sample of the nearest known extrasolar planets. Using recent results on the correlation between stellar X-ray flux and mass-loss rates from nearby stars, we estimate the expected mass-loss rates of the host stars of extrasolar planets that lie within 20 pc of the Earth. We find that some of the host stars have mass-loss rates that are more than 100 times that of the Sun and, given the expected dependence of the planetary magnetospheric radio flux on stellar wind properties, this has a very substantial effect. Using these results and extrapolations of the likely magnetic properties of the extrasolar planets, we infer their likely radio properties.
We compile a list of the most promising radio targets and conclude that the planets orbiting Tau Bootes, Gliese 86, Upsilon Andromeda and HD 1237 (as well as HD 179949) are the most promising candidates, with expected flux levels that should be detectable in the near future with upcoming telescope arrays. The expected emission peak from these candidate radio emitting planets is typically ∼40–50 MHz. We also discuss a range of observational considerations for detecting EGPs.  相似文献   

15.
In this paper we develop further the model for the migration of planets introduced in Del Popolo et al. We first model the protoplanetary nebula as a time-dependent accretion disc, and find self-similar solutions to the equations of the accretion disc that give us explicit formulae for the spatial structure and the temporal evolution of the nebula. These equations are then used to obtain the migration rate of the planet in the planetesimal disc, and to study how the migration rate depends on the disc mass, on its time evolution and on some values of the dimensionless viscosity parameter α . We find that planets that are embedded in planetesimal discs, having total mass of  10-4-0.1 M  , can migrate inward a large distance for low values of α (e.g.,   α ≃10-3-10-2)  and/or large disc mass, and can survive only if the inner disc is truncated or because of tidal interaction with the star. Orbits with larger a are obtained for smaller values of the disc mass and/or for larger values of α . This model may explain several orbital features of the recently discovered giant planets orbiting nearby stars.  相似文献   

16.
We use numerical simulations to model the migration of massive planets at small radii and compare the results with the known properties of 'hot Jupiters' (extrasolar planets with semimajor axes   a < 0.1  au). For planet masses   M pl sin  i > 0.5 M J  , the evidence for any 'pile-up' at small radii is weak (statistically insignificant), and although the mass function of hot Jupiters is deficient in high-mass planets as compared to a reference sample located further out, the small sample size precludes definitive conclusions. We suggest that these properties are consistent with disc migration followed by entry into a magnetospheric cavity close to the star. Entry into the cavity results in a slowing of migration, accompanied by a growth in orbital eccentricity. For planet masses in excess of 1 Jupiter mass we find eccentricity growth time-scales of a few ×105 yr, suggesting that these planets may often be rapidly destroyed. Eccentricity growth appears to be faster for more massive planets which may explain changes in the planetary mass function at small radii and may also predict a pile-up of lower mass planets, the sample of which is still incomplete.  相似文献   

17.
The Nice model of Gomes et al. suggests that the migration of the giant planets caused a planetesimal clearing event, which led to the late heavy bombardment (LHB) at 880 Myr. Here, we investigate the infrared emission from the Kuiper belt during the history of the Solar system as described by the Nice model. We describe a method for easily converting the results of N -body planetesimal simulations into observational properties (assuming blackbody grains and a single size distribution) and further modify this method to improve its realism (using realistic grain properties and a three-phase size distribution). We compare our results with observed debris discs and evaluate the plausibility of detecting an LHB-like process in extrasolar systems. Recent surveys have shown that 4 per cent of stars exhibit 24 μm excess and 16 per cent exhibit 70 μm excess. We show that the Solar system would have been amongst the brightest of these systems before the LHB at both 24 and 70 μm. We find a significant increase in 24 μm emission during the LHB, which rapidly drops off and becomes undetectable within 30 Myr, whereas the 70 μm emission remains detectable until 360 Myr after the LHB. Comparison with the statistics of debris disc evolution shows that such depletion events must be rare occurring around less than 12 per cent of Sun-like stars and with this level of incidence we would expect approximately one of the 413 Sun-like field stars so far detected to have a 24 μm excess to be currently going through an LHB. We also find that collisional processes are important in the Solar system before the LHB and that parameters for weak Kuiper belt objects are inconsistent with the Nice model interpretation of the LHB.  相似文献   

18.
Since the discovery of companions to B1257+12, it has been known that planets can exist around pulsars. Such planets may be formed in discs analogous to those around young stars, so we have searched for dust grain emission towards a sample of nine nearby millisecond pulsars. No emission is detected down to typical 2 σ limits of 5 mJy, at a wavelength of 850 μm. Using a model in which grains are heated by the pulsar spin-down luminosity, these dust flux limits correspond to disc masses of typically 10 Earth masses. The low dust limits show that nearby pulsar planets must already exist, rather than be in the process of forming, but only B1257+12 is known to have such planets. Planetary systems appear to occur around only a few per cent of pulsars and main-sequence stars, and are thus a rare phenomenon irrespective of circumstellar environment.  相似文献   

19.
I examine the implications of the recently found extrasolar planets on the planet-induced axisymmetric mass-loss model for the formation of elliptical planetary nebulae (PNe). This model attributes the low departure from spherical mass-loss of upper asymptotic giant branch (AGB) stars to envelope rotation which results from deposition of orbital angular momentum of the planets. Since about half of all PNe are elliptical, i.e., have low equatorial to polar density contrast, it was predicted that about 50 per cent of all Sun-like stars have Jupiter-like planets around them, i.e., a mass about equal to that of Jupiter, M J, or more massive. In the light of the new findings that only 5 per cent of Sun-like stars have such planets, and a newly proposed mechanism for axisymmetric mass-loss, the cool magnetic spots model, I revise this prediction. I predict that indeed ∼50 per cent of PN progenitors do have close planets around them, but the planets can have much lower masses, as low as ∼0.01 M J, in order to spin-up the envelopes of AGB stars efficiently. To support this claim, I follow the angular momentum evolution of single stars with main-sequence mass in the range of 1.3–2.4 M , as they evolve to the post-AGB phase. I find that single stars rotate much too slowly to possess any significant non-spherical mass-loss as they reach the upper AGB. It seems, therefore, that planets, in some cases even Earth-like planets, are sufficient to spin-up the envelope of these AGB stars for them to form elliptical PNe. The prediction that on average several such planets orbit each star, as in the Solar system, still holds.  相似文献   

20.
We analyse the angular momentum evolution from the red giant branch (RGB) to the horizontal branch (HB) and along the HB. Using rotation velocities for stars in the globular cluster M13, we find that the required angular momentum for the fast rotators is up to 1–3 orders of magnitude (depending on some assumptions) larger than that of the Sun. Planets of masses up to 5 times Jupiter's mass and up to an initial orbital separation of ~2 au are sufficient to spin-up the RGB progenitors of most of these fast rotators. Other stars have been spun-up by brown dwarfs or low-mass main-sequence stars. Our results show that the fast rotating HB stars have been probably spun-up by planets, brown dwarfs or low-mass main-sequence stars while they evolved on the RGB. We argue that the angular momentum considerations presented in this paper further support the 'planet second parameter' model. In this model, the 'second parameter' process, which determines the distribution of stars on the HB, is interaction with low-mass companions, in most cases with gas-giant planets, and in a minority of cases with brown dwarfs or low-mass main-sequence stars. The masses and initial orbital separations of the planets (or brown dwarfs or low-mass main-sequence stars) form a rich spectrum of different physical parameters, which manifests itself in the rich varieties of HB morphologies observed in the different globular clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号