首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Ozone profiles on a global scale can be derived from GOME satellite data by minimizing the difference between the measured and the corresponding simulated spectra as a function of the vertical distribution of 03. For this purpose the FUll Retrieval Method (FURM) was developed, which is based on the optimal estimation approach and contains the radiative transfer code GOMETRAN as an essential component. The quality of the GOME ozone profiles is assessed by comparing them with 197 coincident ozonesonde measurements at five selected European stations. The comparison results show that the seasonal ozone variations are very well reproduced by the GOME profiles. The agreement between the GOME and the sonde measurements is best above 18 km altitude where the mean relative difference is below 10% and the root mean square of the relative differences is of the order of 10%. Larger differences occur in the tropopause region and lowermost stratosphere where the natural ozone variability is largest.  相似文献   

2.
3.
A tentative comparison is made between the various instruments operated at Gap and at the Observatoire de Haute-Provence to measure the ozone vertical distribution up to 25 km during the Intercomparison Ozone Campaign. This includes comparison of the three ozonosondes carried on the same payload during the stratospheric open air balloon flights on 19 June and 25/26 June 1981, comparison between Brewer Mast sondes and electrochemical concentration cells on 19 and 26 June. A specific comparison has been made between a ground-based lidar and ECC sondes launched at the same location on 20/21 June 1981. Also compared are the ozone distributions as monitored between 12 June and 20 June 1981 by two ground-based instruments : lidar (active sounding) or Dobson spectrometer using the Umkehr method. Analysis of the various data set are performed in terms of relative variations observed and potential causes of discrepancies.  相似文献   

4.
The examination of the role of the lower stratospheric circulation to the vertical ozone distribution, is attempted by using the vertical ozone profiles collected by balloon-borne sondes released at Athens, Greece (38°N, 24°E), throughout the period 1989–1997. The most pronounced special features of the ozone structure, such as lamination phenomenon, minimum of ozone partial pressure at the height region of 14–17 km and ozone minima at the height region of 20–25 km, have been used in order to create groups of relevant profiles. The occurrence of the above mentioned features, correlated with the circulation pattern, leads to the following preliminary results: a) Laminated features are associated with the north-northwest circulation in the lower stratosphere; b) The lower stratosphere's characteristic ozone minimum is related to the influence of the subtropical jet stream circulation; and c) The observed ozone depletion at the height region of 20–25 km, is characterized by the movement of the polar vortex to the mid-latitudes, resulting more intense north-western circulation above our experimental site.  相似文献   

5.
The Stratospheric Aerosol and Gas Experiments (SAGE) I and II measure Mie, Rayleigh, and gaseous extinction profiles using the solar occultation technique. These global measurements yield ozone profiles with a vertical resolution of 1 km which have been routinely obtained for the periods from February 1979 to November 1981 (SAGE I) and October 1984 to the present (SAGE II). The long-term periodic behavior of the measured ozone is presented as well as case studies of the observed short-term spatial and temporal variability.

A linear regression shows annual, semi-annual, and quasi-biennial oscillation (QBO) features at various altitudes and latitudes which, in general, agree with past work. Also, ozone, aerosol, and water vapor data are described for the Antarctic springtime showing large variation relative to the vortex. Cross-sections in latitude and altitude and polar plots at various altitudes clearly delineate the ozone hole vertically and areally. Comparisons of vertical profiles are made from 1979 to 1988.

Although there is a three-year gap between the SAGE I and II measurements, the two data sets have been used to determine long-term changes in ozone. The intercomparison generally shows decreases in the upper stratosphere (25–50 km) of 4% or less from 1980 to 1986.  相似文献   


6.
We present absolute abundances and latitudinal variations of ozone and water in the atmosphere of Mars during its late northern spring (Ls=67.3°) shortly before aphelion. Long-slit maps of the a1Δg state of molecular oxygen (O2) and HDO, an isotopic form of water, were acquired on UT January 21.6 1997 using a high-resolution infrared spectrometer (CSHELL) at the NASA Infrared Telescope Facility. O2(a1Δg) is produced by ozone photolysis, and the ensuing dayglow emission at 1.27 μm is used as a tracer for ozone. Retrieved vertical column densities for ozone above ∼20 km ranged between 1.5 and 2.8 μm-atm at mid- to low latitudes (30°S-60°N) and decreased outside that region. A significant decrease in ozone density is seen near 30°N (close to the subsolar latitude of 23.5°N). The rotational temperatures retrieved from O2(a-X) emissions show a mean of 172±2.5 K, confirming that the sensed ozone lies in the middle atmosphere (∼24 km). The ν1 fundamental band of HDO near 3.67 μm was used as a proxy for H2O. The retrieved vertical column abundance of water varies from 3 precipitable microns (pr-μm) at ∼30°S to 24 pr-μm at ∼60°N. We compare these results with current photochemical models and with measurements obtained by other methods.  相似文献   

7.
Stellar ultraviolet light near 2500 Å is attenuated in the Earth's upper atmosphere due to strong absorption in the Hartley continuum of ozone. The intensity of stars in the Hartley continuum region has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the Earth's atmosphere. These data have been used to determine the ozone number density profile at the occultation tangent point. The results of approximately 12 stellar occultations, obtained in low latitudes, are presented, giving the nighttime vertical number density profile of ozone in the 60- to 100-km region. The nighttime ozone number density has a bulge in its vertical profile with a peak of 1 to 2×108 cm?3 at approximately 83 km and a minimum near 75 km. The shape of the bulge in the ozone number density profile shows considerable variability with no apparent seasonal or solar cycle change. The ozone profiles obtained during a geomagnetic storm showed little variation at low latitudes.  相似文献   

8.
The calculation of number densities of CO2, H2O and N2 photolysis products was carried out for the Martian atmosphere at heights up to 60 km. The ozone distributed in the atmosphere as a layer of 10 km width with [O3] max = 2.5 × 109 cm3 at height of 35 km which agree well with the results of u.v. observations on the evening terminator from the Mars-5 satellite. The calculated densities of O2, CO and H2O are also in good agreement with the measured data. The eddy diffusion coefficient is equal to 3 × 106 in the troposphere (h ? 30 km) and 108 cm2 s?1 above 40 km. The dependence of the total ozone content on water vapour amount in the atmosphere is considered; the hypothesis about the influence of water ice aerosol on the ozone formation is proposed to explain the high concentrations of ozone in the morning.  相似文献   

9.
The u.v. spectrometer polarimeter on the Solar Maximum Mission has been utilized to measure mesospheric ozone vs altitude profiles by the technique of solar occultation. Sunset data are presented for 1980, during the fall equinoctal period within ± 20° of the geographic equator. Mean O3, concentrations are 4.0 × 1010 cm?3at 50 km, 1.6 × 1010 cm?3 at 55 km. 5.5 × 109 cm?3 at 60 km and 1.5 × 109 cm?3 at 65 km. Som profiles exhibit altitude structure which is wavelike. The mean ozone profile is fit best with the results of a time-dependent model if the assumed water vapor mixing ratio employed varies from 6 ppm at 50 km to 2–4 ppm at 65 km.  相似文献   

10.
The LIDAR instrument operating from the surface of Mars on the Phoenix Mission measured vertical profiles of atmospheric dust and water ice clouds at temperatures around −65 °C. An equivalent lidar system was utilized for measurements in the atmosphere of Earth where dust and cloud conditions are similar to Mars. Coordinated aircraft in situ sampling provided a verification of lidar measurement and analysis methods and also insight for interpretation of lidar derived optical parameters in terms of the dust and cloud microphysical properties. It was found that the vertical distribution of airborne dust above the Australian desert is quite similar to what is observed in the planetary boundary layer above Mars. Comparison with the in situ sampling is used to demonstrate how the lidar derived optical extinction coefficient is related to the dust particle size distribution. The lidar measurement placed a constraint on the model size distribution that has been used for Mars. Airborne lidar measurements were also conducted to study cirrus clouds that form in the Earth’s atmosphere at a similar temperature and humidity as the clouds observed with the lidar on Mars. Comparison with the in situ sampling provides a method to derive the cloud ice water content (IWC) from the Mars lidar measurements.  相似文献   

11.
The infrared AOTF spectrometer is a part of the SPICAM experiment onboard the Mars-Express ESA mission. The instrument has a capability of solar occultations and operates in the spectral range of 1-1.7 μm with a spectral resolution of ∼3.5 cm−1. We report results from 24 orbits obtained during MY28 at Ls 130°-160°, and the latitude range of 40°-55° N. For these orbits the atmospheric density from 1.43 μm CO2 band, water vapor mixing ratio based on 1.38 μm absorption, and aerosol opacities were retrieved simultaneously. The vertical resolution of measurements is better than 3.5 km. Aerosol vertical extinction profiles were obtained at 10 wavelengths in the altitude range from 10 to 60 km. The interpretation using Mie scattering theory with adopted refraction indices of dust and H2O ice allows to retrieve particle size (reff∼0.5-1 μm) and number density (∼1 cm−3 at 15-30 km) profiles. The haze top is generally below 40 km, except the longitude range of 320°-50° E, where high-altitude clouds at 50-60 km were detected. Optical properties of these clouds are compatible with ice particles (effective radius reff=0.1-0.3 μm, number density N∼10 cm−3) distributed with variance νeff=0.1-0.2 μm. The vertical optical depth of the clouds is below 0.001 at 1 μm. The atmospheric density profiles are retrieved from CO2 band in the altitude range of 10-90 km, and H2O mixing ratio is determined at 15-50 km. Unless a supersaturation of the water vapor occurs in the martian atmosphere, the H2O mixing ratio indicates ∼5 K warmer atmosphere at 25-45 km than predicted by models.  相似文献   

12.
A GSFC Super Loki optical ozonesonde instrument was flown as part of the ozone sensor intercomparison balloon campaign at Gap, France, in June 1981. A primary objective was to confirm biases between external absorption techniques, such as the GSFC sonde, and in situ techniques, which include ECC, Mast-Brewer, and DASIBI sondes. Ozone distributions were obtained with the GSFC sonde on three of the four ascent-descent legs of the first flight on 19 June. Ozone densities were measured redundantly over altitudes from 22 to 32 km using filters centered at 303 and 300 nm. The three profiles obtained by averaging the data from the two channels are in close agreement with an average S.E. of 1.4%. However, small but consistent differences were found between the ozone densities measured at the two wavelengths. The average difference is 5% using Vigroux cross sections and 4% using preliminary Bass cross sections. The integral ozone amount above the first ceiling altitude of 32.85 km was determined by the Langley plot method to be 45 D.U. The total ozone derived by integrating the optical ozonesonde and ECC profiles is within 2% of the Chiran Dobson Spectrophotometer observation based on a pre-campaign calibration but is 9% greater than the amount derived using a post-campaign calibration.  相似文献   

13.
The vertical distribution of stratospheric ozone has been simultaneously measured by means of five different instruments carried on the same balloon payload. The launches were performed from Gap during the intercomparison campaign conducted in June 1981 in southern France. Data obtained between altitudes of 20 and 40 km are compared and discussed. Vertical profiles deduced from Electrochemical Concentration Cell sondes launched from the same location by small balloons and from short Umkehr measurements made at Mt Chiran (France) are also included in this comparison. Systematic differences of the order of 20% between ozone profiles deduced from solar u.v. absorption and in situ techniques are found.  相似文献   

14.
Two vertical ozone profiles have been obtained above Gap (France), with an instrument using a gas phase chemiluminescence technique. Data are given for each 0.5 km. The absolute uncertainty on the measurements increase with altitude from 8% of mixing ratio at 16 km to, at most, 15% at 38 km. Uncertainty analysis leads to an incompressible 6%. The integrated column content between 16 km and flight ceiling is also given.  相似文献   

15.
Limb spectra recorded by the Composite InfraRed Spectrometer (CIRS) on Cassini provide information on abundance vertical profiles of C2H2, C2H4, C2H6, CH3C2H, C3H8, C4H2, C6H6 and HCN, along with the temperature profiles in Titan's atmosphere. We analyzed two sets of spectra, one at 15° S (Tb flyby) and the other one at 80° N (T3 flyby). The spectral range 600-1400 cm−1, recorded at a resolution of 0.5 cm−1, was used to determine molecular abundances and temperatures in the stratosphere in the altitude range 100-460 km for Tb and 170-495 km for T3. Both temperature profiles show a well defined stratopause, at around 310 km (0.07 mbar) and 183 K at 13° S, and 380 km (0.01 mbar) with 207 K at 80° N. Near the north pole, stratospheric temperatures are colder and mesospheric temperatures are warmer than near the equator. C2H2, C2H6, C3H8 and HCN display vertical mixing ratio profiles that increase with height at 15° S and 80° N, consistent with their formation in the upper atmosphere, diffusion downwards and condensation in the lower stratosphere, as expected from photochemical models. The CH3C2H and C4H2 mixing ratios also increase with height at 15° S. But near the north pole, their profiles present an unexpected minimum around 300 km, observed for the first time thanks to the high vertical resolution of the CIRS limb data. C2H4 is the only molecule having a vertical abundance profile that decreases with height at 15° S. At 80° N, it also displays a minimum of its mixing ratio around the 0.1-mbar level. For C6H6, an upper limit of 1.1 ppb (in the 0.3-10 mbar range) is derived at 15° S, whereas a constant mixing ratio profile of is inferred near the north pole. At 15° S, the vertical profile of HCN exhibits a steeper gradient than other molecules, which suggests that a sink for this molecule exists in the stratosphere, possibly due to haze formation. All molecules display a more or less pronounced enrichment towards the north pole, probably due, in part, to subsidence of air at the north (winter) pole that brings air enriched in photochemical compounds from the upper atmosphere to lower levels.  相似文献   

16.
High sensitivity observations were performed at 1.2- and 3-mm wavelengths with the IRAM 30-m telescope (Spain) between April 1996 and December 1999 to investigate the nitrile composition of Titan's stratosphere. A part of our dataset consists of high resolution spectra of HC14N taken at 88.6 GHz as well as spectra of HC15N recorded at 258.16 GHz. From a thorough analysis of both lines and with the help of appropriate radiative transfer calculations we show that the isotopic ratio 15N/14N is strongly enhanced compared to the terrestrial value. We propose that the range 3.9-4.5 should be considered as a basis for the enrichment factor. Five individual lines of HC3N were measured at 39-kHz resolution using a frequency-switched technique. Several CH3CN features were recorded at 78-kHz resolution in two transitions around 147.6 and 220.7 GHz. The high spectral resolution and the good signal-to-noise ratio affecting the spectra permit us to retrieve disk-averaged vertical profiles for HCN up to 450 km and for HC3N and CH3CN up to 500 km. Comparison of our inferred vertical profiles with relevant results of presently published photochemical models is presented. We show that the profiles of HCN and HC3N predicted by various authors below 450-km altitude appear inconsistent with our new observations. We find that the three distributions present very different gradients of abundance below 200-km altitude down to the condensation levels around 80 km. In the upper stratosphere HC3N and CH3CN have approximately the same mixing ratio of about 4×10−8 at 450 km, at least one order of magnitude lower than that of HCN. In the same time, another nitrile HC5N has been searched for by observing four transitions located between 109 and 221 GHz. As no spectral features could be detected after several hours of integration time, we propose an upper limit for the mixing ratio equal to 4×10−10 assuming a uniform distribution of this compound in the lower stratosphere.  相似文献   

17.
The vertical profile of H2SO4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H2O and H2SO4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H2SO4 vapor mixing ratio is ∼10−12 at 70 and 110 km with a deep minimum of 3 × 10−18 at 88 km. The H2O-H2SO4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H2SO4 is 1.6 × 105 cm−2 s−1 at 70 km and 23 cm−2 s−1 at 90 km. The calculated abundance of H2SO4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 106 and 109, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H2SO4 (impossible for a source of SOX), and cross sections for H2SO4·H2O (impossible above the pure H2SO4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SOX at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SOX on Venus remains unclear and probably does not exist.  相似文献   

18.
Nightglow emissions provide insight into the global thermospheric circulation, specifically in the transition region (~70–120 km). The O2 IR nightglow statistical map created from Venus Express (VEx) Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) observations has been used to deduce a three-dimensional atomic oxygen density map. In this study, the National Center of Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) is utilized to provide a self-consistent global view of the atomic oxygen density distribution. More specifically, the VTGCM reproduces a 2D nightside atomic oxygen density map and vertical profiles across the nightside, which are compared to the VEx atomic oxygen density map. Both the simulated map and vertical profiles are in close agreement with VEx observations within a ~30° contour of the anti-solar point. The quality of agreement decreases past ~30°. This discrepancy implies the employment of Rayleigh friction within the VTGCM may be an over-simplification for representing wave drag effects on the local time variation of global winds. Nevertheless, the simulated atomic oxygen vertical profiles are comparable with the VEx profiles above 90 km, which is consistent with similar O2 (1Δ) IR nightglow intensities. The VTGCM simulations demonstrate the importance of low altitude trace species as a loss for atomic oxygen below 95 km. The agreement between simulations and observations provides confidence in the validity of the simulated mean global thermospheric circulation pattern in the lower thermosphere.  相似文献   

19.
Measurements made by the NASA-JSC ozone instrument during the ozone intercomparison campaign from Gap, France during June 1981 are reported. Two flights were made on board the large balloon platform with other instruments using different techniques. The NASA-JSC instrument employs u.v. absorption photometry to obtain in situ results. Concentration (molecules cm?3) and mixing ratio (pp mV) profiles are given for altitudes from 16 km to float altitudes of 32 and 39 km, respectively for the two flights. A measure of the total column content of ozone was obtained by integrating the NASA-JSC results from 16 km to float altitude and combining them with results from other techniques below 16 km and above float altitudes. Comparisons with results from other instruments are reported elsewhere in this publication.  相似文献   

20.
Numerous fluorescent emissions from the Herzberg bands of molecular oxygen lie in the spectral region 242–300 nm. This coincides with the wavelength range used by orbiting spectrometers which observe the Rayleigh backscattered spectrum of the earth for the purpose of monitoring the vertical distribution of stratospheric ozone. Model calculations indicate that Herzberg band emissions in the dayglow could provide significant contamination of the ozone measurements if the quenching rate of O2(A3Σ) is sufficiently small. This is especially true near 255 nm, where the most intense fluorescent emissions relative to the Rayleigh scattered signal are located and where past satellite measurements show a persistent excess radiance above that expected for a pure ozone absorbing and molecular scattering atmosphere. However, very small quenching rates are adequate to reduce the dayglow emission to negligible levels. Available laboratory data have not definitely established the quenching on the rate of O2(A3Σ) as a function of vibrational level, and such information is required before the Herzberg band contributions can be evaluated with confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号