首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37–25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins of the lake and dilution of detrital material by biogenic silica and other organic matter.  相似文献   

2.
We propose a model that explains variations in magnetic parameters of lake sediments as a record of Holocene climate change. Our model is based on records from 4 lakes and incorporates the effects of erosion, dust deposition, and the authigenesis and diagenesis of the magnetic component of the sediment. Once checked against high resolution multi proxy climate records, which are currently being established for some of our study sites, it will allow us to use magnetic proxies to establish high-resolution climate reconstructions on a regional scale.Our model utilizes a combination of concentration-dependent parameters (magnetic susceptibility, IRM) and grain-size-dependent parameters (ARM/IRM, hysteresis parameters). Magnetic mineralogy is characterized by a combination of low-temperature measurements and S-ratios, and our magnetic measurements are complemented by XRD, LOI and smearslide analyses.During periods of forest growth within the watershed, deposition of terrigenous material is low and the sediment magnetic properties are characterized by low concentrations of mainly authigenic minerals (low values of IRM, high ratios of ARM/IRM). During the early to mid-Holocene dry period, deposition of terrigenous material increased due to intensified dust deposition and the erosion of lake margins caused by lowered water levels. Concentration of magnetic minerals increases (high IRM, ) and so does the grain-size of the magnetic fraction (low ARM/IRM). During the late-Holocene, sediment magnetic properties depend on the varied position of the site with respect to the prairie–forest ecotone.  相似文献   

3.
The modern geomagnetic field is usually expressed as a spherical harmonic expansion. Although the palaeomagnetic record is very incomplete in both space and time, sufficient data are available from a span of ages to generate time-averaged spherical harmonic field models with many degrees of freedom. Here three data sets are considered: directional measurements from lavas, inclination measurements from ocean sediments, and intensity measurements from lavas. Individual data are analysed, as well as site-averages, using the same methods that have been developed for the modern field, to give models for the past 5 Myr. The normal-polarity field model has an axial-dipole intensity similar to that of the modern-day field, whilst the equatorial-dipole component is very much smaller. The field is not axisymmetric, but shows flux concentrations at the core's surface under Canada and Siberia similar to those observed in the field over historical timescales. Tests on synthetic data show that it is unlikely that these similarities result from the overprinting of the palaeomagnetic field due to inadequate cleaning of the samples. The reverse-polarity field model does not show such obvious features, but this may be due to the sparsity of the data.
The patterns observed in the normal-polarity field, with persistent features in the northern hemisphere and a smooth southern hemisphere, could be explained if the present pattern of secular variation is typical of the past several million years. This would reveal itself as large variations over time in the direction of the magnetic vector in regions of high secular variation, with relatively little change over quieter regions. However, we have been unable to find any evidence for a geographical pattern of secular variation in the data.  相似文献   

4.
Pollen and spores with resistant exines are preferentially preserved in soils, and during periods of soil erosion they can become incorporated into lake sediments. As a result, the contemporary vegetation may be poorly represented by the palynomorphs in the lake sediments because of the reworked component of inwashed pollen and spores. We record the proportion of palynomorphs with corroded exines in sediment cores from four lakes in the eastern North Island of New Zealand to document changing sources of palynomorphs over the last 2000 years. During this period, the catchments experienced major vegetation disturbances, both natural (from volcanism and fire) and anthropogenic including deforestation ca. 600 years ago, and the European conversion of fern-scrubland to pasture in the 19th century. Corroded palynomorphs are more abundant in inwashed sediments than authigenic sediments. Catchment soil disturbance was minor during the forested period, and characterised by small, inwashed, sediment pulses after storms, and a relatively low percentage of corroded palynomorphs. Although initial Maori forest clearance by fire led to a temporary increase in erosion in one lake catchment, rapid replacement of forest by a dense bracken fern cover helped to minimise soil erosion and reworking of palynomorphs in this period. European pastoralists replaced the bracken fern with shallow-rooted pasture grasses about 150 years ago. In erosion prone lake catchments, this led to a rapid increase of inwashed eroded soils and littoral sediments, and their component of resistant palynomorphs, reaching the lake sediments. As a result, the palynological records from these catchments during the European period are distorted by reworking. By contrast, over the same period, the palynological record from a lake with no inflowing streams and stable catchment soils more faithfully represented the contemporary vegetation cover. Exine corrosion has been used to help identify periods of reworking in the lake sediments and to allow for a correction of distortion caused by reworking.  相似文献   

5.
The geomagnetic power spectrum   总被引:1,自引:0,他引:1  
Combining CHAMP satellite magnetic measurements with aeromagnetic and marine magnetic data, the global geomagnetic field has now been modelled to spherical harmonic degree 720. An important tool in field modelling is the geomagnetic power spectrum. It allows the comparison of field models estimated from different data sets and can be used to identify noise levels and systematic errors. A correctly defined geomagnetic power spectrum is flat (white) for an uncorrelated field, such as the Earth's crustal magnetic field at long wavelengths. It can be inferred from global spherical harmonic models as well as from regional grids. Marine and aeromagnetic grids usually represent the anomaly of the total intensity of the magnetic field. Appropriate corrections have to be applied in estimating the geomagnetic power spectrum from such data. The comparison of global and regional spectra using a consistently defined azimuthally averaged geomagnetic power spectrum facilitates quality control in field modelling and should provide new insights in magnetic anomaly interpretation.  相似文献   

6.
This study presents the age control and environmental magnetism components of a new, late Pleistocene paleoclimate record for the Great Basin of western North America. Two new cores from the Summer Lake sub-basin of pluvial Lake Chewaucan, Oregon, USA are correlated to basin margin outcrops on the basis of tephrochronology, lithostratigraphy, sediment magnetism and paleomagnetic secular variation. Eleven tephra layers were found in the cores that correlate to tephra identified previously in the outcrop. The Olema ash was also found in one of the cores; its stratigraphic position, relative to 3 dated tephra layers, indicates that its age is 50-55 ka, somewhat younger than has been previously reported. The Summer Lake sediments are divided into deep and shallow lake lithosomes based on sedimentary features. The stratigraphic position of these lithosomes support the tephra-based correlations between the outcrop and the cores. These sediments contain a well resolved record of the Mono Lake Excursion (MLE) and an earlier paleomagnetic excursion as well as a high quality replication of the paleosecular variation immediately above the MLE.Relative sedimentation rates increased dramatically toward the depocenter during intervals of low-lake level. In contrast, during intervals of high-lake level, relative sedimentation rates were comparable along the basin axis from the basin margin to the depocenter. The magnetic mineralogy of the Summer Lake sediments is dominated by pseudo-single domain (titano)magnetite and intervals of high/low magnetite concentration coincide with lithosomes that indicate high/low lake levels. Magnetic grain size also varies in accord with bulk sediment grain size as indicated by the silt/clay ratio. To a first order, variations in magnetic parameters, especially those attributable to the concentration of magnetic minerals, correlate well with global glacial/interglacial oscillations as indicated by marine oxygen isotope stages. This relationship can be explained by increased dissolution of (titano)magnetite minerals as lake level dropped and the lake became more productive biologically. This inference is supported by a correspondence between lower concentrations of magnetite with higher levels of total organic carbon and vice-versa.  相似文献   

7.
In the pseudo-Thellier method for relative palaeointensity determinations (Tauxe et al. 1995) the slope of the NRM intensity left after AF demagnetization versus ARM intensity gained at the same peak field is used as a palaeointensity measure. We tested this method on a marine core from the Azores, spanning the last 276  kyr. We compared the pseudo-Thellier palaeointensity record with the conventional record obtained earlier by Lehman et al . (1996 ), who normalized NRM by SIRM. The two records show similar features: intensity lows with deviating palaeomagnetic directions at 40–45  ka and at 180–190  ka. The first interval is associated with the Laschamps excursion, while the 180–190  ka low represents the Iceland Basin excursion (Channell et al. 1997). The pseudo-Thellier method, in combination with a jackknife resampling scheme, provides error estimates on the palaeointensity.
  Spectral analysis of the rock magnetic parameters and the palaeointensity estimates shows orbitally forced periods, particularly 23  kyr for climatic precession. This suggests that palaeointensity is still slightly contaminated by climate. Fuzzy c -means cluster analysis of rock magnetic and geochemical parameters yields a seven-cluster model of predominantly calcareous clusters and detrital clusters. The clusters show a strong correlation with climate, for example samples from detrital clusters predominantly appear during rapid warming. Although both the pseudo-Thellier palaeointensity m a and fuzzy clusters show climatic influences, we have not been able to find an unambiguous connection between the clusters and m a .  相似文献   

8.
11 million years of Oligocene geomagnetic field behaviour   总被引:2,自引:0,他引:2  
An 11 million year long record of the Oligocene geomagnetic field has been obtained from pelagic sediments of DSDP Hole 522 An average sample spacing of 4 cm yielded approximately one specimen per 4 to 8 kyr. The rock magnetics are remarkabh consistent across the entire interval. Previous work demonstrated a magnetic mineralogy dominated by magnetically stable magnetite. The natural remanent magnetism (NRM) carries an Oligocene polarity timescale that is in excellent agreement with the Oligocene reversal record as determined from marine magnetic anomalies (MMAs), including many of the so-called 'crypto-chrons'. Normalized NRM intensities from the undisturbed portions of the record yield a time series of variations with features consistent with a number of other palaeointensity time series derived from both sedimentary and lava sequences. These features include consistent, major decreases in palaeointensity (DIPs) at reversal boundaries, and occasional DIPs between reversal boundaries that could correspond to lineated 'tiny wiggles' in the MMA records. The data set suggests that the overall field strength was 40 per cent higher in the first half of the Oligocene when the average reversal frequency was 1.6 Myr-1 than in the second half when the reversal frequency was 4 Myr-1. There is also a weak dependence of average field strength on length of polarity interval. Finally, in the three cores suited to spectral analysis (of coherent polarity and relative intensity independent of lithological contamination), there is a persistent ca. 30–50ka periodicity in the variations of the relative intensity, suggesting that the geomagnetic field 'pulses' at about this frequency, not only during the Brunhes (as demonstrated by Tauxe & Shackleton 1994), but in the Oligocene as well.  相似文献   

9.
The subsiding Upper Klamath Lake Basin contains sediments that were continuously deposited in a shallow, freshwater lake for more than 40 000 years. Well dated by radiometric methods and containing volcanic ashes of known age, these sediments constitute a valuable paleoclimate record. Sediment constituents and properties that reflect past climatic conditions in the area include pollen, diatoms, sediment geochemistry, and sediment magnetic properties. Many of these proxy measurements are also useful for comparing natural conditions in the lake to conditions following human settlement. Because of its location, the paleoclimate record from Upper Klamath Lake is valuable for comparisons to offshore marine records and as part of latitudinal transects of paleoclimate records along the west coast of the Americas.  相似文献   

10.
科尔沁沙地风沙沉积物磁学特征及其古环境意义初探   总被引:1,自引:0,他引:1  
选取位于科尔沁沙地东北缘的六户屯剖面风沙沉积物为研究对象,进行系统的磁学特征和粒度分析。结果表明:六户屯剖面磁性矿物含量较少,磁学性质主要受亚铁磁性磁铁矿控制,并含有少量赤铁矿和针铁矿,磁性矿物粒度较细,以稳定单畴和超顺磁颗粒为主。沉积物中磁性矿物的粒度分布受风力大小与成壤强度的影响,单畴颗粒相对含量随风力的增强而增加,随土壤发育程度的增强而减少,χARM/χlf和χARM/SIRM可以指示冬夏季风的相对强弱。六户屯剖面磁性矿物粒度主要受冬季风强度及其动力分选作用的控制,磁性矿物粒度与沉积物总体粒度呈反相关;但在某些层位,夏季风影响下的成土过程对其改造作用不容忽视。成壤过程中形成的超顺磁颗粒是磁化率增强的主要因素,单畴颗粒对土壤发育适宜期磁化率的增加贡献相对较弱。  相似文献   

11.
Summary. Palaeomagnetic studies require a theory of magnetization mechanism of sediments and a method of estimating magnetic field intensity from their remanences. This paper establishes a physical basis for the generation of the remanence in deep-sea and lake sediments experimentally.
Redeposition experiments have been carried out under centrifugal force in weak magnetic fields. The centrifuging method produces post-depositional remanent magnetization (post-DRM) in the compacted sediment, and its remanence and susceptibility are compatible with those of natural sediments and reconstituted materials of other redepositional experiments. Three properties of the post-DRM have been deduced from the experiments: (1) the efficiency of acquisition of post-DRM decreases with increase in density during the compaction process, (2) the total post-DRM is equal to the sum of the partial post-DRM (addition law), and (3) time is not a substantial factor for alignment of the magnetic particles. These results lead to the conclusions that the magnetic particles do not rotate steadily but in a series of steps, and that the density change is the crucial factor giving rise to the post-DRM.
A mathematical formula representing the remanence record in sediments is proposed on the basis of the experimental results and the model. The principal equation is expressed as an integral of the product of three parameters over time when sediments have been compacted; the field intensity variation, characteristic function of the sediment and the time derivative of the density change.  相似文献   

12.
Results of the first detailed study of the climate proxy record in the loess-palaeosol sequence at Xining-one of the few palaeoclimate sites in the currently arid western Loess Plateau of China-illustrate the importance of making many types of rock-magnetic measurements other than susceptibility. A multiparameter approach yielded confirmation that here, as elsewhere in the Loess Plateau, the susceptibility enhancement in palaeosols was caused primarily by ultrafine magnetite and maghaemite. Nevertheless, magnetic enhancement was caused not exclusively by changes in relative grain size, but also by variations in concentration and mineralogy of the magnetic fraction.
The effects of concentration variations were removed through normalization of susceptibility and anhysteretic remanence with saturation magnetization and saturation remanence, respectively. the resulting signal was ascribed more confidently to variation in magnetic grain size, which in turn was interpreted as a better proxy of pedogenesis than simple susceptibility. Variations in magnetic mineralogy were also determined to constrain interpretations further. the data were then used to discuss climate history at Xining. Finally, results from Xining were compared with other western sites and contrasted with eastern sites.
In summary: (1) data is presented from a new Loess Plateau site which also appears to yield a global climate signal; (2) a demonstration is made of a more rock-magnetically robust way to separate concentration, composition and grain-size controls on susceptibility and other magnetic parameters; and (3) models are provided for inter-regional comparisons of palaeoclimate proxy records.  相似文献   

13.
Quantitative palaeotemperature estimates for the earlier part of Oxygen Isotope Stage (OIS-) 3 are inferred from subfossil chironomid remains. The high-latitudinal study site of Sokli, northeast Finland, provides for a unique lacustrine deposit covering the earlier part of OIS-3, and the chironomid remains found in the sediments show that a shallow lake with a diverse fauna was present at the study site throughout the record. Using a Norwegian calibration data set as a modern analogue, mean July air temperatures are reconstructed. The chironomid-inferred July air temperatures are surprisingly high, reaching values similar to the current temperature at the study site. Other proxies that were applied to the sediments included the analysis of botanical and zoological macro-remains, and our results concur with temperature estimates derived from climate indicator taxa. Summer temperatures for interstadial conditions, reconstructed with climate models, are as high as our proxy-based palaeotemperatures.  相似文献   

14.
Low-temperature rock magnetic measurements have distinct diagnostic value. However, in most bulk marine sediments the concentration of ferrimagnetic and antiferromagnetic minerals is extremely low, so even sensitive instrumentation often responds to the paramagnetic contribution of the silicate matrix in the residual field of the magnetometer. Analysis of magnetic extracts is usually performed to solve the problems raised by low magnetic concentrations. Additionally magnetic extracts can be used for several other analyses, for example electron microscopy or X-ray diffraction. The magnetic extraction technique is generally sufficient for sediments dominated by magnetite. In this study however, we show that high-coercivity components are rather underrepresented in magnetic extracts of sediments with a more complex magnetic mineralogy. We test heavy liquid separation, using hydrophilic sodium polytungstenate solution Na6[H2W12O40], to demonstrate the efficiencies of both concentration techniques. Low-temperature cycling of zero-field-cooled, field-cooled and saturation isothermal remanent magnetization acquired at room temperature was performed on dry bulk sediments, magnetic extracts, and heavy liquid separates of clay-rich pelagic sediments originating from the Equatorial Atlantic. The results of the thermomagnetic measurements clarify that magnetic extraction favours components with high spontaneous magnetization, such as magnetite and titanomagnetite. The heavy liquid separation is unbiased with respect to high- and low-coercive minerals, thus it represents the entire magnetic assemblage.  相似文献   

15.
Rock magnetic properties of the maar lake sediments of Lac St Front (Massif Central, France) reflect environmental changes during the last climatic cycle. High magnetic concentrations are measured in the sediments deposited under glacial climatic conditions, while lower concentrations correspond with more temperate climatic periods. Low- and high-temperature measurements indicate that the remanence is carried by (titanium-poor) magnetite. However, some maghemite and haematite is present in sediments deposited under temperate conditions.
Normalized intensities and coercivities of the anhysteretic remanent magnetization (ARM) are clearly higher for the sediments deposited during the temperate climatic periods of the Eemian, St Germain I, II and Mid-glacial than for glacial sediments, but other magnetic parameters hardly differ between these groups. Due to slight differences in magnetic composition and possible effects of grain interactions, it is not straightforward to relate this different ARM behaviour to magnetic grain-size variations. For the Holocene sediments, rock magnetic parameters indicate a larger grain size. This trend is also suggested by granulometric experiments with an optical laser granulometer. Dissolution of smaller grains is the most likely explanation for this larger grain size.
Changes in magnetic composition and grain size are extremely limited for the glacial sediments, but magnetic concentration varies considerably. Magnetic concentration maxima in the glacial sediments of Lac St Front correlate with those of the nearby Lac du Bouchet (Thouveny et al. 1994). Correlating the susceptibility records of these sequences with the δ18O record of the GRIP ice cores (Thouveny et al. 1994) suggests that magnetic concentration maxima may correspond with short cold climatic episodes, associated with Heinrich events.  相似文献   

16.
Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.  相似文献   

17.
A combined mineral magnetic and scaled chrysophyte study of lake sediments from Lake Lacawac and Lake Giles in northeastern Pennsylvania was conducted to determine the effects of land-use and sediment source changes on the variation of pH, conductivity, and alkalinity inferred from biotic changes. Ten 30–40 cm long gravity cores were collected from Lake Lacawac and three from Lake Giles. Isothermal remanent magnetizations (IRMs) were given to the lake sediments in a 1.3 T magnetic field to measure magnetic mineral concentration variations. IRM acquisition experiments were conducted to identify magnetic mineralogy. The bedrock, soils and a peat bog on the shores of Lake Lacawac were also sampled for magnetic analysis to determine possible lake sediment sources. The top 10 cm of sediment collected from Lakes Lacawac and Giles was two to four times more magnetic than deeper sediment. 210Pb dating suggests that this intensity increase commenced circa 1900. SEM images of magnetic extracts from the highly magnetic sediments indicates the presence of magnetic fly ash microspheres from fossil fuel burning electric power generation plants. The similarity in magnetic coercivity in the top 8 cm lake sediments and in the peat bog supports an atmospheric source for some of the magnetic minerals in the youngest lake sediments. The highly magnetic sediments also contain an antiferromagnetic mineral in two cores closest to Lake Lacawacs southeastern shore. This magnetic mineral is only present deep in the soil profile and would suggest erosion and significant land-use changes in the Lacawac watershed as another cause for the high magnetic intensities (concentrations) in the top 10 cm of the lake sediments. The most significant changes in the scaled chrysophyte flora occurred immediately above the 10 cm level and were used to infer a doubling of the specific conductivity between circa 1910 and 1929. These variations also support land-use changes in the Lacawac catchment at this time. A similar shift in the scaled chrysophte flora was not observed in the top of Lake Giles, however, distinct changes were found in the deeper sections of the core coupled with a smaller peak in magnetic concentration. Fourier analysis of the 210Pb-dated lake sediment magnetics indicates the presence of a 50 year period, low amplitude variation in the Lake Lacawac, Lake Giles, and Lake Waynewood (Lott et al., 1994) magnetic concentration records. After removal of the land-use/fly ash magnetic concentration peak by Gaussian filtering, the 50 year variation correlates strongly from lake to lake even though the lakes are in different watersheds separated by up to 30 km. When this magnetic variation is compared with Gaussian-filtered rainfall variations observed in New York City and Philadelphia over the past 120–250 years there is a strong correlation suggesting that magnetic concentration variations can record regional rainfall variations with an approximately 50 year period. This result indicates that magnetics could be used to document regional variations in climatic change.  相似文献   

18.
The Holocene magnetic signature due to environmental change has been investigated in sediments from Sägistalsee, a small alpine lake in the Bernese Alps, Switzerland. The environmental signal in the mineral magnetic parameters of the sediments was compared with palynological and geochemical data. The types of magnetic minerals and their grain size reflect changes in the lake catchment, vegetation, and degree of erosional input. The concentration of the magnetic minerals, as expressed by isothermal and anhysteretic remanent magnetizations also reflect changes in vegetation, but may also be related to redox conditions during sedimentation. Climate influence on the mineral magnetic record has been recognized and interpreted as a consequence of the production of an authigenic mineral with particularly uniform magnetic properties during warmer stages and the influx of heterogeneous detrital magnetic mineral during cooler stages and under increased human activity.  相似文献   

19.
High resolution sediment physical properties, measured on gravity and piston cores collected during cruises to Lake Winnipeg, include bulk density, acoustic velocity, magnetic susceptibility, shear strength and colour reflectance. The high resolution data are used here to construct complete stratigraphic (composite) sections of Lake Winnipeg sediments from a series of individual, discontinuous cores for the North and South Basins. These composite sections are used to evaluate basin-wide glacial and post-glacial depositional histories and to compare the northern and southern basin histories. In addition, these sections provide a baseline depth reference for interpretation of the biostratigraphy, paleomagnetic record and rock magnetic stratigraphy. Some of the data (density and shear strength) are also be used to estimate sediment stress history for the two major lithostratigraphic units and their variations across the basin.  相似文献   

20.
Decay times inferred from relative sea‐level (RSL) histories of previously glaciated regions provide a potentially important constraint on mantle rheology. We present a new compilation of RSL data from Richmond Gulf and James Bay, Canada. This recompilation reveals errors in previous compilations that led to inaccurate estimates for the Richmond Gulf decay time in a series of recently published articles. We derive updated estimates for the decay time at Richmond Gulf and James Bay using a methodology that incorporates errors in both the age and the height of the sea‐level markers. This exercise is guided by a series of synthetic RSL calculations that show that decay time estimates in the region can be significantly biased if the RSL time‐series are not corrected for global eustatic sea‐level trends, or if the estimates are based on composite RSL histories derived by combining data from both the Richmond Gulf and the James Bay regions. Our decay time analysis for Richmond Gulf applies the pioneering approach of Walcott (1980) to a large database and we derive a value of 4.0–6.6 kyr, where the range is defined by a misfit tolerance 10 per cent higher than the minimum. Our analysis for James Bay is based on the uplift curve derived by Hardy (1976) , and we estimate a decay time of about 2.0–2.8 kyr. The difference between our estimates for Richmond Gulf and James Bay may be due to errors in the observational record from these regions, but could also be influenced by lateral variations in lithospheric structure associated with the assembly of Laurentia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号