首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
New U-Pb zircon ages for the Lamarck Granodiorite, associated synplutonic gabbro and diorite plutons, and two large mafic intrusive complexes that underlie them in the Sierra Nevada batholith are 92±1 Ma. These ages establish the Late Cretaceous as a period of extensive mafic-felsic magmatism in the central part of the batholith, and confirm the significance of mafic magmatism in the evolution of the voluminous silicic plutions in the Sierran arc. The lack of significant zircon inheritance in any of the units analyzed supports isotopic evidence that the Lamarck and other Late Cretaceous Sierran plutons were derived predominantly from young crust. Recognition of an extensive mafic-felsic magma system in the Sierra Nevada batholith emphasizes the importance of basaltic liquids in the evolution of continental crust in arc settings.  相似文献   

2.
The lower crust of the Mesozoic Sierra Nevada batholith was made up of high MgO, garnet-poor and low MgO, garnet-rich pyroxenites. Both groups are genetically linked and are collectively complementary to the mafic to intermediate Sierran plutons. High MgO pyroxenites represent high pressure cumulates from a mantle-derived hydrous basalt or basaltic andesite, resulting in derivative magmas having unusually low MgO for a given SiO2 as represented by the numerous mafic enclaves found in many Sierran plutons. The low MgO pyroxenites are either (1) shallow pressure cumulates from these derivative magmas or (2) partial melting residues (restites) of these derivative magmas after they were emplaced and solidified at lower crustal levels. In both cases, the complementary melt to the low MgO pyroxenites is driven to higher SiO2 contents, generating diorites and granodiorites. However, this simple two-stage scenario for the origin of Sierran granitoids cannot explain the observation that the Mg# of Sierran intermediate magmas remains roughly constant at ∼0.45–0.50 with increasing SiO2. Basaltic recharge/mixing with the lower crust is suggested as one means of buffering Mg#s and re-melting the lower crust to generate granitic melts, the latter of which mix with more juvenile magmas to complete the Sierran differentiation series.  相似文献   

3.
 The steep crest of the Sierra Nevada, California, near Onion Valley, exposes natural cross sections through a mafic intrusive complex that formed as part of the Mesozoic Sierra Nevada batholith. Sheeted sills of hornblende gabbro to hornblende diorite, individually as thick as 1.5 m, form the upper 200 to 300 m of the complex. Thicker, multiply-injected sills, as well as mafic stocks, lie underneath at elevations below 3600 m. Lens-shaped cumulate bodies, as thick as 200 m and more than 700 m broad, lie near the base of the sheeted sill suite. Cumulates are flat-lying, modally layered hornblende gabbro with subsidiary ultramafic olivine hornblendite, plagioclase hornblendite, and late-mobile hornblende-plagioclase pegmatite. Fine grain size, scarce phenocrysts and xenocrysts, and quench mineral textures are evidence that hornblende gabbro sills injected in a largely liquid state and preserve basaltic melt compositions. Most sills reached volatile saturation, as shown by tiny miarolitic cavities that are also widespread in cumulates. Although some sills chilled directly against others, most chilled against septa, millimeters to a few centimeters thick, of medium-grained diorite to granodiorite. Mutually crosscutting relations, as well as chilling, show that the septa were partly molten at the time the sills injected and likely formed the lower portions of an overlying more silicic magma chamber that has since been removed by erosion. Sill compositions range from evolved high-alumina basalt to aluminous andesite with major and trace element abundances similar to those of modern arc magmas. Experimental phase equilibria indicate dissolved water contents near 6 wt% (Sisson and Grove 1993a). The sills show unequivocally that hydrous arc basaltic magmas reached shallow levels in the crust during formation of the largely granodioritic Sierra Nevada batholith. The basaltic magmas appear to have been produced from an enriched mantle source with 87Sr/86Sr ∼0.7065, ɛNd ∼−4.3, 206Pb/204Pb ∼18.6, 207Pb/204Pb ∼15.6, 208Pb/204Pb ∼38.6. Although crystal fractionation contributed to forming the sill suite and the associated cumulates, nearly constant concentrations of Na2O, P2O5, Nb, Zr, and light rare earth elements in the sills indicate that mixing between sill basaltic and more evolved septa magmas was important for producing sills with andesitic compositions. Average Sierran granodiorite major and trace element concentrations are readily reproduced by a simple mixture of average basaltic sill from Onion Valley and average Sierran low-silica granite. This result supports the inference that Sierran granitoids formed chiefly by mixing between crustal and mantle-derived magmas, although in some cases these crustal melts may have been derived by refusion of earlier mafic intrusions near the base of the crust. The common mafic inclusions (enclaves) in Sierran granodiorites bear a superficial resemblance to Onion Valley mafic sills; however, high concentrations of lithophile elements in the inclusions point to extensive chemical exchange between inclusions and their host magmas. The prevalence of hornblende-rich mafic intrusive rocks at Onion Valley, elsewhere in the Sierra Nevada, and in other shallow subduction batholiths stems from two effects of high melt water concentrations (∼4–6 wt% H2O). The hydrous parent basaltic and basaltic andesite magmas had low liquidus temperatures, compared to nearly dry basaltic melts, and thus were chilled less during ascent through the crust and were more capable of ascent as liquids. More importantly, their high water concentrations led to low melt densities, higher than granitoid liquids, but comparable to or less dense than partly solidified granitoid magmas. Thus, the hydrous basaltic and basaltic andesite magmas were neutrally or positively buoyant and were capable of penetrating and rising through partly crystallized granitoids and their partly molten source regions to reach upper crustal emplacement levels. Drier basaltic magmas were probably abundant at depth and contributed heat and mass to granite generation, but were insufficiently buoyant to ascend to shallow levels. Received: 2 August 1995 / Accepted: 26 June 1996  相似文献   

4.
《地学前缘(英文版)》2020,11(3):895-914
A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at~139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.  相似文献   

5.
Geobarometric studies have documented that most of the metasedimentary wall rocks and plutons presently exposed in the southernmost Sierra Nevada batholith south of the Lake Isabella area were metamorphosed and emplaced at crustal levels significantly deeper (~15 to 30 km) than the batholithic rocks exposed to the north (depths of ~3 to 15 km). Field and geophysical studies have suggested that much of the southernmost part of the batholith is underlain along low-angle faults by the Rand Schist. The schist is composed mostly of metagraywacke that has been metamorphosed at relatively high pressures and moderate temperatures. NNW-trending compositional, age, and isotopic boundaries in the plutonic rocks of the central Sierra Nevada appear to be deflected westward in the southernmost part of the batholith. Based on these observations, in conjunction with the implicit assumption that the Sierra Nevada batholith formerly continued unbroken south of the Garlock fault, previous studies have inferred that the batholith was tectonically disrupted following its emplacement during the Cretaceous. Hypotheses to account for this disruption include intraplate oroctinal bending, W-vergent overthrusting, and gravitational collapse of overthickened crust. In this paper, new geologic data from the eastern Tehachapi Mountains, located adjacent to and north of the Garlock fault in the southernmost Sierra Nevada, are integrated with data from previous geologic studies in the region into a new view of the Late Cretaceous-Paleocene tectonic evolution of the region. The thesis of this paper is that part of the southernmost Sierra Nevada batholith was unroofed by extensional faulting in Late Cretaceous-Paleocene time. Unroofing occurred along a regional system of low-angle detachment faults. Remnants of the upper-plate rocks today are scattered across the southern Sierra Nevada region, from the Rand Mountains west to the San Emigdio Mountains, and across the San Andreas fault to the northern Salinian block.

Batholithic rocks in the upper plates of the Blackburn Canyon fault of the eastern Tehachapi Mountains, low-angle faults in the Rand Mountains and southeastern Sierra Nevada, and the Pastoria fault of the western Tehachapi Mountains are inferred to have been removed from a position structurally above rocks exposed in the southeastern Sierra Nevada and transported to their present locations along low-angle detachment faults. Some of the granitic and metamorphic rocks in the northern part of the Salinian block are suggested to have originated from a position structurally above deep-level rocks of the southwestern Sierra Nevada. The Paleocene-lower Eocene Goler Formation of the El Paso Mountains and the post-Late Cretaceous to pre-lower Miocene Witnet Formation in the southernmost Sierra Nevada are hypothesized to have been deposited in supradetachment basins that formed adjacent to some of the detachment faults.

Regional age constraints for this inferred tectonic unroofing and disaggregation of the southern Sierra Nevada batholith suggest that it occurred between ~90 to 85 Ma and ~55 to 50 Ma. Upper-plate rocks of the detachment system appear to have been rotated clockwise by as much as 90° based on differences in the orientation of foliation and contacts between inferred correlative hanging-wall and footwall rocks. Transport of the upper-plate rocks is proposed to have occurred in two stages. First, the upper crust in the southern Sierra Nevada extended in a south to southeast direction, and second, the allochthonous rocks were carried westward at the latitude of the Mojave Desert by a mechanism that may include W-vergent faulting and/or oroclinal bending. The Late Cretaceous NNW extension of the upper crust in the southernmost Sierra Nevada postulated in this study is similar to Late Cretaceous, generally NW-directed, crustal extension that has been recognized to the northeast in the Funeral, Panamint, and Inyo mountains by others. Extensional collapse of the upper crust in the southern Sierra Nevada batholith may be closely linked to the emplacement of Rand Schist beneath the batholith during Late Cretaceous time, as has been suggested in previous studies.  相似文献   

6.
The Cretaceous gabbroic to granitic intrusive rocks of the Tehachapi Mountains were emplaced at depths of 25–30 km and thus afford a view of deep processes in the Sierra Nevada batholith. They consist of the 115 Ma Tehachapi suite and the 100 Ma Bear Valley suite; new zircon U-Pb age data reveal the presence of the latter as far west as Grapevine Canyon. The Nd, Sr, Pb, and O isotopic whole-rock data and zircon Pb inheritance patterns for the bulk of the suites suggest an origin by mixing between depleted mantlederived magmas and metasedimentary material with a substantial component of old continental material. However, this mixing is not evident in variations between isotopic ratios and chemical and lithologic parameters. This implies that isotopic hybridization of magmas took place deeper than 30 km, and that fractionation processes are likely responsible for the bulk of the chemical variation in this part of the Sierra Nevada batholith. Consideration of the isotopic data in the context of the Sierra Nevada batholith as a whole suggests that the well-known east-to-west isotopic gradients in the batholith may reflect a change in the average isotopic character of the preintrusive frame-work rather than a change in amount of crustal component. On the other hand, the lack of areal gradients in Sr and Nd isotopic ratios in the main study area may indicate a lack of pronounced gradation at deep levels, at least within the western batholith.  相似文献   

7.
Mafic complexes in the central Sierra Nevada batholith record valuable geochemical information regarding the role mafic magmas play in arc magmatism and the generation of continental crust. In the intrusive suite of Yosemite Valley, major and trace element compositions of the hornblende-bearing gabbroic rocks from the Rockslides mafic complex and of the mafic dikes in the North America Wall are compositionally similar to high-alumina basalt. Of these rocks, two samples have higher Ni and Cr abundances as well as higher εNd values than previously recognized for the intrusive suite. Plagioclase crystals in rocks from the North America Wall and the Rockslides have prominent calcic cores and sharply defined sodic rims, a texture commonly associated with mixing of mafic and felsic magmas. In situ analyses of 87Sr/86Sr in plagioclase show no significant isotopic difference from the cores to the rims of these grains. We propose that the high 87Sr/86Sr (~0.7067) and low εNd (~?3.4) of bulk rocks, the homogeneity of 87Sr/86Sr in plagioclase, and the high δ18O values of bulk rocks (6.6–7.3 ‰) and zircon (Lackey et al. in J Petrol 49:1397–1426, 2008) demonstrate that continental crust was assimilated into the sublithospheric mantle-derived basaltic precursors of the mafic rocks in Yosemite Valley. Contamination (20–40 %) likely occurred in the lower crust as the magma differentiated to high-alumina basalt prior to plagioclase (and zircon) crystallization. As a consequence, the isotopic signatures recorded by whole rocks, plagioclase, and zircon do not represent the composition of the underlying lithospheric mantle. We conclude that the mafic and associated felsic members of the intrusive suite of Yosemite Valley represent 60–80 % new additions to the crust and include significant quantities of recycled ancient crust.  相似文献   

8.
The Southern Alps host volcano-sedimentary basins that formed during post-Variscan extension and strike-slip in the Early Permian. We present U–Pb ages and initial Hf isotopic compositions of magmatic zircons from silicic tuffs and pyroclastic flows within these basins, from caldera fillings and from shallow intrusions from a 250 km long E–W transect (Bozen–Lugano–Lago Maggiore) and compare these with previously published data. Basin formation and magmatism are closely related to each other and occurred during a short time span between 285 and 275 Ma. The silicic magmatism is coeval with mafic intrusions of the Ivrea-Verbano Zone and within Austroalpine units. We conclude that deep magma generation, hybridisation and upper crustal emplacement occurred contemporaneously along the entire transect of the Southern Alps. The heat advection in the lower crust by injected mantle melts was sufficient to produce crustal partial melts in lower crustal levels. The resulting granitoid melts intruded into the upper crust or rose to the surface forming large caldera complexes. The compilation of Sr and Nd isotopic data of these rocks demonstrates that the mantle mixing endmember in the melts may not be geochemically enriched but has a depleted composition, comparable to the Adriatic subcontinental mantle exhumed to form the Tethyan sea floor during Mesozoic continental breakup and seafloor spreading. Magmatism and clastic sedimentation in the intracontinental basins was interrupted at 275 Ma for some 10–15 million years, forming a Middle Permian unconformity. This unconformity may have originated during large-scale strike-slip tectonics and erosion that was associated with crustal thinning, upwelling and partial melting of mantle, and advection of melts and heat into the crust. The unconformity indeed corresponds in time to the transition from a Pangea-B plate reconstruction for the Early Permian to the Late Permian Pangea-A plate assembly (Muttoni et al. in Earth Planet Sci Lett 215:379–394, 2003). The magmatic activity would therefore indicate the onset of >2,000 km of strike-slip movement along a continental-scale mega-shear, as their model suggests.  相似文献   

9.
青山群火山岩是华北克拉通破坏期间最具代表性的地幔或地壳熔融产物,记录了华北深部地质演化的重要信息。本文对胶东青山群基性火山岩进行了40Ar/39Ar定年和岩石地球化学分析,结合前人报道的胶东青山群酸性火山岩资料,发现:(1)基性火山岩喷发年龄为122~113Ma,早于青山群酸性火山岩(110~98Ma);(2)基性和酸性火山岩显示了不同的元素和同位素地球化学特征。岩石成因分析表明,基性火山岩为交代富集地幔部分熔融作用的产物,而酸性火山岩为古老下地壳和中生代底侵岩浆的熔融产物(Ling et al.,2009)。因此,胶东地区青山群火山岩记录了岩浆熔融源区从地幔向下地壳的转变。这与长时间尺度的岩石圈减薄过程中热能由地幔向地壳传递过程相吻合,而不同于地壳拆沉作用所预测的岩浆演化趋势。  相似文献   

10.
西藏中部拉萨地块大规模早白垩世花岗岩类的岩浆源区和岩石成因迄今尚未得到很好约束,对这些问题的深入理解将有助于揭示拉萨地块白垩纪时期的岩浆作用过程及成矿背景。本文报道了中部拉萨地块代表性花岗岩基——措勤麦嘎岩基的锆石U-Pb年代学、全岩元素地球化学、Sr-Nd同位素和锆石Hf同位素数据。本文锆石U-Pb定年结果表明,麦嘎岩基花岗质岩主要侵位于122±1Ma和113±2Ma,闪长质包体与后者同期(113±2Ma)。122±1Ma花岗质岩属I型弱过铝质高钾钙碱性系列,(87Sr/86Sr)i值高(0.7147),全岩εNd(t)(-12.0)和锆石εHf(t)(-15.7~-11.1)为较大的负值,表明其很可能来源于古老下地壳物质的重熔。113±2Ma寄主花岗质岩为I型偏铝质-弱过铝质高钾钙碱性系列,相对于122±1Ma花岗质岩石,其(87Sr/86Sr)i比值偏低(0.7094~0.7156)、全岩εNd(t)值(-12.1~-7.3)和锆石εHf(t)值(-11.1~0.1)较高,很可能来源于古老下地壳物质的部分熔融,并含有更多幔源物质。闪长质包体(113±2Ma)为偏铝质中-高钾钙碱性系列,以变化范围大的(87Sr/86Sr)i(0.7058~0.7105)、负的全岩εNd(t)值(-10.7~-9.8)及负的锆石εHf(t)值(-14.0~-5.6)为特征,可能是古老富集岩石圈地幔物质部分熔融的产物或亏损地幔物质经历强烈地壳混染作用的结果。在目前已有资料条件下(缺乏同期基性岩石的相关数据),本文暂将麦嘎岩基113±2Ma寄主花岗质岩及同期闪长质包体解释为镁铁质岩浆与长英质岩浆发生不同程度岩浆混合作用的产物,这一解释可能对中部拉萨地块同期花岗类的岩石成因具普遍意义。麦嘎岩基及中部拉萨地块同期岩浆岩约113Ma幔源物质增加现象,可能是南向俯冲的班公湖-怒江洋壳岩石圈板片断离的结果。  相似文献   

11.
We present evidence for a thick (∼100 km) sequence of cogenetic rocks which make up the root of the Sierra Nevada batholith of California. The Sierran magmatism produced tonalitic and granodioritic magmas which reside in the Sierra Nevada upper- to mid-crust, as well as deep eclogite facies crust/upper mantle mafic–ultramafic cumulates. Samples of the mafic–ultramafic sequence are preserved as xenoliths in Miocene volcanic rocks which erupted through the central part of the batholith. We have performed Rb-Sr and Sm-Nd mineral geochronologic analyses on seven fresh, cumulate textured, olivine-free mafic–ultramafic xenoliths with large grainsize, one garnet peridotite, and one high pressure metasedimentary rock. The garnet peridotite, which equilibrated at ∼130 km beneath the batholith, yields a Miocene (10 Ma) Nd age, indicating that in this sample, the Nd isotopes were maintained in equilibrium up to the time of entrainment. All other samples equilibrated between ∼35 and 100 km beneath the batholith and yield Sm-Nd mineral ages between 80 and 120 Ma, broadly coincident with the previously established period of most voluminous batholithic magmatism in the Sierra Nevada. The Rb-Sr ages are generally consistent with the Sm-Nd ages, but are more scattered. The 87Sr/86Sr and 143Nd/144Nd intercepts of the igneous-textured xenoliths are similar to the ratios published for rocks outcroping in the central Sierra Nevada. We interpret the mafic/ultramafic xenoliths to be magmatically related to the upper- and mid-crustal granitoids as cumulates and/or restites. This more complete view of the vertical dimension in a batholith indicates that there is a large mass of mafic–ultramafic rocks at depth which complement the granitic batholiths, as predicted by mass balance calculations and experimental studies. The Sierran magmatism was a large scale process responsible for segregating a column of ∼30 km thick granitoids from at least ∼70 km of mainly olivine free mafic–ultramafic residues/cumulates. These rocks have resided under the batholith as granulite and eclogite facies rocks for at least 70 million years. The presence of this thick mafic–ultramafic keel also calls into question the existence of a “flat” (i.e., shallowly subducted) slab at Central California latitudes during Late Cretaceous–Early Cenozoic, in contrast to the southernmost Sierra Nevada and Mojave regions. Received: 27 December 1997 / Accepted: 11 June 1998  相似文献   

12.
Emplacement ages, geochemical characteristics and analysis of continental dynamics on gabbroic intrusions in Luodian County, Guizhou Province, have been discussed based on studies of isotopic chronology (the whole-rock Sm-Nd and Rb-Sr isochron methods), major elements, trace elements and PGE. Intrusive activities of the gabbroic intrusions in the study area took place during the Late Yanshanian Orogenic Movement (the Cretaceous Period), as indicated by the Sm-Nd isochron ages (t)=(99.6±4.5) (2σ) Ma and by the Rb-Sr isochron ages t=(97±1.6) (2σ) Ma. The gabbroic intrusions are attached to mafic rocks in cal-alkaline basaltic series. They occurred as dikes and might be formed under an extensional background of the continent. Differentiation of their magmatic crystallization resulted in obvious zonation of petrography. In the gabbroic intrusions of this study, large ion lithophile elements and LREE are enriched, and the chondrite-normalized REE distribution pattern is leftward inclined without anomalies of JCe or JEu, and there are high concentrations of PGE and ratios of Pd/Ir (averaging 4.21). All of these imply that their source areas may be basaltic magma in the upper mantle with high-level partial melting, derived from EMl-type enriched mantle. It is different from Emeishan basalt, which may be related to the upper mantle at low-grade partial melting. Emplacement mechanism of the gabbroic intrusions in this study may suppose to be asthenosphere upheaving as an isolated hot wave in the presence of mantle fluid, resulting in basaltic magma intruded into the continental crust as a diapiric intrusion. Therefore, uplifting of faulting-block and extensional deformation could take place in the shallow part of the continental crust while vertical amassing and accretion of magmatic materials in the deep part of the continental crust. These special processes could supposed to be a special background of continental dynamics for this large-scale epithermal metallogenic domain, such as Au  相似文献   

13.
The Late Cretaceous was a period of extremely voluminous magmatism and rapid crustal growth in the western United States. From approximately 98 to 86 Ma, greater than 4000 km2 of exposed granodioritic to granitic crust, including the largest composite intrusive suites in the Sierra Nevada batholith, were emplaced in eastern California. Plutons intruded during this period include the highest peaks in the Sierra; we informally refer to this as the Sierra Crest magmatic event. Field, petrologic, geochemical, and geochronologic data indicate that, although they comprise an insignificant volume of exposed rocks (less than 100 km2), mafic magmas were intruded contemporaneously with each episode of intermediate and high-silica magmatism in the event. This observation attests to the fundamental importance of high-alumina basaltic magmas during crustal-growth episodes in continental arcs. Geochemical data for suites of coeval plutonic rocks of the Sierra Crest magmatic event, ranging in composition from basalt to high-silica rhyolite, demonstrate that recycling of pre-existing crust locally played a minor role in the growth of new crust. Thus, major chemical and isotopic characteristics of Sierra Crest plutons, such as variable isotopic compositions, were inherited from the mantle source of the high-alumina basalts and are not necessarily the result of interaction with the overlying crust. Consequently, we interpret isotopic boundaries in the western United States, such as the 87Sr/86Sr = 0.706 isopleth, to be largely features of the continental lithospheric mantle. Furthermore, isotopic data demonstrate that enrichment of the lithospheric mantle in the western United States probably occurred in the Precambrian during assembly of the North American craton. Geophysical and xenolith investigations by other workers support the hypothesis presented here that Cretaceous magmatism in the Sierra Nevada may have locally restructured most, if not all, of the crustal column. The timing of Sierra Crest magmatism correlates with voluminous magmatism elsewhere in the Cordilleran arc. We speculate that this intense episode of magmatism may have played a role in the global marine geochemical excursions and extinctions at the Cenomanian-Turonian boundary.  相似文献   

14.
Lower Crustal Xenoliths, Chinese Peak Lava Flow, Central Sierra Nevada   总被引:1,自引:0,他引:1  
An assemblage of pyroxenite, peridotite, and mafic granulitexenoliths contained in the toe of a 10 Ma trachybasalt flowremnant overlying Late Cretaceous granitoids indicates the presenceof a mafic-ultramafic complex beneath the Sierra Nevada batholith.Olivine-free pyroxenites that include orthopyroxenites, websterites,and clinopyroxenites are dominant. Primary igneous texturesare displayed by some pyroxenites, but commonly are masked byrecrystallization. Fe-rich harzburgites and lherzolites arerare. A few of the ultramafic xenoliths contain ovoid opaquepatches that are apparently pseudomorphs after garnet and havepyralspite garnet compositions. A pressure corresponding toa lower crustal depth of approximately 40 km has been determinedfrom two of these xenoliths using a garnet-orthopyroxene geobarometer.Abundant mafic granulites can be subdivided into those containing12 per cent or less A12O3 and chemically gradational with pyroxenitesand others containing more than 15 per cent A12O3 and showingconsiderable scatter on oxide variation diagrams. The high-aluminagranulite xenoliths have relatively low 87Rb/86Sr but high 87Sr/86Sr,whereas low-alumina and ultramafic xenoliths have a wide rangeof 87Rb/86Sr, but lower 87Sr/86Sr; the isotopic data indicatean age for the complex roughly the same as that of overlyinggranitoid plutons. However, the granitoids have initial 87Sr/86Srratios intermediate between the high-alumina and ultramaficxenoliths, suggesting that they may have resulted from mixingof basaltic magma, represented by the ultramafics, and crustalmaterials, with subsequent crystal fractionation. The trachybasaltmay represent a partial melt of the ultramafic rocks.Rocks analogousto the Chinese Peak xenoliths are exposed in the Giles complexof central Australia, a series of several deformed layered maficand ultramafic intrusions, emplaced in a granulite facies terrain.Contemporaneous development of mafic-ultramafic complexes andthe Sierra Nevada batholith may explain the present day thick({small tilde} 50 km) crust in this region  相似文献   

15.
以美国内华达山脉复合岩基为例,系统评述了与大型花岗岩基的形成、演化相关的深部地球动力学过程及构造地貌学响应.在大陆岛弧环境下,基性岩浆的底侵作用促使下地壳发生角闪岩脱水部分熔融,在岩基根部形成高密度的石榴辉石岩,岩基根部最终发生重力失稳,形成滴水构造;在地貌上反映为滴水构造对应区域的沉降和相应的张性构造,在岩浆作用上则表现为软流圈地幔上涌和残余富集岩石圈地幔的低程度部分熔融,形成钾质火山岩.这种高度动态的深部动力学过程是维持大型花岗岩基地区较高高程或促使这些区域高程骤然增加的重要因素.  相似文献   

16.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   

17.
Abundant ferroan, metaluminous granitoids (970–950 Ma) emplaced at the end of the Sveconorwegian collisional orogeny (1130–900 Ma) are dominated by intermediate to silicic compositions with rare mafic facies. Both 73% fractional crystallization of an amphibole-bearing gabbroic cumulate substracted from the parent mafic composition and 30% non-modal batch melting of an amphibolitic source equivalent in composition to the mafic facies produce a monzodioritic liquid with appropriate trace element composition. A better fit is obtained for the partial melting process. Both processes could have occurred simultaneously to produce mafic cumulates and restites. As there is no evidence for large volumes of dense mafic rocks in the Sveconorwegian upper crust, these dense mafic rocks were probably produced in the lower crust. Formation of these granitoids, thus, contributed to the vertical stratification of the Proterozoic continental crust and also to the transfer of water from the lower crust to the surface.  相似文献   

18.
Reconnaissance studies of early island-arc intrusions in the Cordillera Central of the Dominican Republic demonstrate that these rocks are mainly hornblende tonalite with lesser amounts of hornblende diorite, quartz diorite, granodiorite and quartz monzonite. Two plutons (El Bao, Medina) are petrographically and chemically homogeneous, whereas two others (El Rio and Loma de Cabrera) are compositionally heterogeneous. Samples from these intrusions range in SiO2 from 49 to 70% with most rocks in the 59 to 62% range. K2O ranges from 0.24 to 3% and averages 1.2%. Cu, Zn, Co, Ni, V and possibly Cr decrease with increasing SiO2. Rb/Sr values for the intrusions are low but variable. Present-day 87Sr/86Sr values range from 0.7031 to 0.7045 for the El Bao and Loma de Cabrera batholiths and 0.7033 to 0.7091 for the Medina stock. These data do not generate isochrons. The Cordillera Central tonalite intrusions are the most abundant plutonic rock type in the Greater Antilles, although small, younger granodiorite and quartz monzonite stocks are present. The Cordillera Central intrusions are lower in SiO2, K2O, Rb, and Sr than the average composition of the Sierra Nevada batholith, but they are similar to the tonalites and trondjhemites from the western margin of the Sierra Nevada batholith. The low Rb/Sr ratios and low initital Sr87/Sr86 ratios for the Cordillera Central intrusions combined with the high liquidus temperatures required for the generation of tonalite magmas strongly favor a subcrustal source for these magmas in an island-arc setting.  相似文献   

19.
Adakites have a distinct chemistry that links them to melting of a mafic source at high pressure. They have been attributed to melting of subducted oceanic crust or melting of the mafic crustal roots of thick continental arcs, and are an important contrast to mantle wedge melting as a means of generating continental crust. We report the first direct evidence for the generation of adakitic melts in mafic lower continental crust, in an exhumed Cretaceous arc in the South Island of New Zealand. The lower crustal Pembroke Granulite has the bulk chemistry and partial melting textures involving peritectic garnet appropriate for a source region for an adakitic melt. The melt migrated from the area through a fracture network now filled with trondhjemitic veins. Emplacement of the melt was in the upper crust of the Cretaceous section, illustrated by the presence of coeval adakites in the upper crustal Nelson-Westland region.  相似文献   

20.
The Sesia magmatic system of northwest Italy allows direct study of the links between silicic plutonism and volcanism in the upper crust and the coeval interaction of mafic intrusions with the deep crust. In this paper, we focus on the chemical stratigraphy of the pre-intrusion crust, which can be inferred from the compositions of crustal-contaminated mafic plutonic rocks, restitic crustal material incorporated by the complex, and granitic rocks crystallized from anatectic melts. These data sources independently indicate that the crust was compositionally stratified prior to the intrusion of an 8-km-thick gabbroic to dioritic body known as the Mafic Complex, with mica and K-feldspar abundance decreasing with depth and increasing metamorphic grade. Reconsideration of published zircon age data suggest that the igneous evolution initiated with sporadic pulses at around 295 Ma, when mafic sills intruded deep granulites which provided a minor amount of depleted crustal contaminant, very poor in LIL elements. With accelerated rates of the intrusion, between 292 and 286 m.y, mafic magmas invaded significantly more fertile, amphibolite-facies paragneisses, resulting in increased contamination and generating hybrid rocks with distinct chemistry. At this point, increased anatexis produced a large amount of silicic hybrid melts that fed the incremental growth of upper-crustal plutons and volcanic activity, while the disaggregated restite was largely assimilated once ingested by the growing Mafic Complex. This “igneous climax” was coincident with an increasing rate of intrusion, when the upper Mafic Complex began growing according to the “gabbro glacier” model and, at about the same time, volcanic activity initiated. Cooling lasted millions of years. In the coupled magmatic evolution of the deep and upper crust, the Mafic Complex should be considered more as a large reservoir of heat rather than a source of upper-crustal magma, while the fertility of “under/intra-plated” crust plays a crucial role in governing the generation of large volumes of continental silicic magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号