首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the application of a three-dimensional lattice Boltzmann method (LBM) to Newtonian and non-Newtonian (Bingham fluid in this work) flows with free surfaces. A mass tracking algorithm was incorporated to capture the free surface, whereas Papanastasiou’s modified model was used for Bingham fluids. The lattice Boltzmann method was first validated using two benchmarks: Newtonian flow through a square cross-section tube and Bingham flow through a circular cross-section tube. Afterward, the dam-break problem for the Newtonian fluid and the slump test for Bingham fluid were simulated to validate the free-surface-capturing algorithm. The numerical results were in good agreement with analytical results, as well as other simulations, thereby proving the validity and correctness of the current method. The proposed method is a promising substitute for time-consuming and costly physical experiments to solve problems encountered in geotechnical and geological engineering, such as the surge and debris flow induced by a landslide or earthquake.  相似文献   

2.
Flow slides in municipal solid waste (MSW) dumps have caused serious damage to structures and casualties all over the world. Therefore, much attention should be paid to this type of disaster to elucidate the flow mechanisms and fluidization characteristics of MSW, which are essential for the assessment and prevention of flowlike hazards. To bypass the deficiencies of the traditional analysis methods that use the mesh method and are based on a framework of solid mechanics, the moving particle semi-implicit (MPS) method, which is a purely Lagrangian meshless method and proposed for incompressible flow, is introduced to study flow slides in MSW landfills. Considering the no-physical pressure fluctuation that affects the simulation accuracy in the original MPS, the original MPS is revised in three ways: the kernel function, the source term of the Poisson equation and the search for free surface particles. Two benchmark problems, the dam break problem and the static pressure problem, are computed to illustrate the improvement of the pressure stability of the modified MPS. The Bingham constitutive model combined with the Mohr–Coulomb failure criterion is adopted to depict the dynamic features of MSW flow slides, and the equivalent viscosity is employed to bridge the gap between Bingham fluid models and Newtonian fluid models. This method, ultimately, is applied to simulate real flow slides in the Umraniye–Hekimbashi landfill and the Payatas waste dump. The numerical results show good consistency with the field data, indicating that the modified MPS method is capable of capturing the essential dynamic behavior and reproducing the entire process of complicated flow slides in MSW dumps.  相似文献   

3.
To investigate the movement mechanism of debris flow, a two‐dimensional, two‐phase, depth‐integrated model is introduced. The model uses Mohr‐Coulomb plasticity for the solid rheology, and the fluid stress is modeled as a Newtonian fluid. The interaction between solid and liquid phases, which plays a major role in debris flow movement, is assumed to consist of drag and buoyancy forces. The applicability of drag force formulas is discussed. Considering the complex interaction between debris flow and the bed surface, a combined friction boundary condition is imposed on the bottom, and this is also discussed. To solve the complex model equations, a numerical method with second‐order accuracy based on the finite volume method is proposed. Several numerical experiments are performed to verify the feasibilities of model and numerical schemes. Numerical results demonstrate that different solid volume fractions substantially affect debris flow movement.  相似文献   

4.
5.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this paper is to model numerically concrete flow inside formworks like the Lbox. For this purpose, we use a finite element method with Lagrangian integration points (FEMLIP). We are able to follow in time and space material motion with any type of material behaviour, including non‐linear and time‐dependent ones. We also can deal with free surfaces or material interfaces. Bingham's rheology is used for fresh concrete behaviour. In order to compare with experiments, we have considered three concretes (OC, HPC and SCC) with contrasted rheologies. Their yield stress is identified by experimental slump tests and also compared with the value given by a formulation concrete software. Experimental data are found to be quite close to numerical predictions. We have also made some experimental flow tests in a LBOX. We measured the flow speed and the flow shape in the final stage. The numerical modelling of these experiments is very encouraging and shows the capability of the FEMLIP using the Bingham's law to model concrete flow and filling properties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The volume fraction of the solid and liquid phase of debris flows,which evolves simultaneously across terrains,largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper,we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth,the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress,and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition(Iverson and Ouyang,2015) is presented. In this formula,the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe's Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.  相似文献   

8.
9.
Computational fluid dynamics and discrete element method (CFD–DEM) is extended with the volume of fluid (VOF) method to model free‐surface flows. The fluid is described on coarse CFD grids by solving locally averaged Navier–Stokes equations, and particles are modelled individually in DEM. Fluid–particle interactions are achieved by exchanging information between DEM and CFD. An advection equation is applied to solve the phase fraction of liquid, in the spirit of VOF, to capture the dynamics of free fluid surface. It also allows inter‐phase volume replacements between the fluid and solid particles. Further, as the size ratio (SR) of fluid cell to particle diameter is limited (i.e. no less than 4) in coarse‐grid CFD–DEM, a porous sphere method is adopted to permit a wider range of particle size without sacrificing the resolution of fluid grids. It makes use of more fluid cells to calculate local porosities. The developed solver (cfdemSolverVOF) is validated in different cases. A dam break case validates the CFD‐component and VOF‐component. Particle sedimentation tests validate the CFD–DEM interaction at various Reynolds numbers. Water‐level rising tests validate the volume exchange among phases. The porous sphere model is validated in both static and dynamic situations. Sensitivity analyses show that the SR can be reduced to 1 using the porous sphere approach, with the accuracy of analyses maintained. This allows more details of the fluid phase to be revealed in the analyses and enhances the applicability of the proposed model to geotechnical problems, where a highly dynamic fluid velocity and a wide range of particle sizes are encountered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
We investigate the influence of mantle flow relative to the lithosphere on subduction dynamics. We use 2D thermo‐mechanical models assuming incompressible non‐Newtonian fluid rheology. Different mantle flow velocities consistent with absolute plate motion models are tested, as well as both directions of flow, either sustaining or opposing slab dip. The effects of different inflow/outflow velocity profiles, slab strengths and upper–lower mantle viscosity contrasts are also evaluated. Slab dip deviations between models with opposite mantle flow directions range from 37° for relatively strong slabs (ηmax = 1025 Pa s) to 50° for weaker slabs (ηmax = 1024 Pa s), accounting for a significant amount of natural slab dip variability. For imposed mantle flow supporting the slab, the initial stage of slab steepening is followed by a stage of continuous slab dip decrease. This slab shallowing eventually leads to mantle wedge closure, subduction cessation and slab break‐off, possibly driving subduction flips.  相似文献   

11.
泥石流的二维数学模型   总被引:5,自引:2,他引:3  
泥石流是在重力作用下,由砂粒石块和水等组成的固液混合物,是一种发生于山区的复杂的地质灾害现象。泥石流主要是由暴雨诱发引起的,它沿着复杂的三维地形高速流动,具有流体流动的特性。为了模拟泥石流的运动规律,预测降雨诱发的泥石流的到达距离和泛滥范围,减少和避免泥石流引起的灾害,把泥石和雨水组成的固液混合物假定为遵循均匀、连续、不可压缩的、非定常的牛顿流体运动规律。基于质量守恒方程和Naiver-stokes方程,采用深度积分方法,推导出了一个模拟泥石流运动的二维数学模型。所有方程式可用有限差分法来求解。结合GIS,该模型可用于预测泥石流的流动距离和泛滥范围,以及泛滥范围内的危险房屋和路段,也可以用于泥石流灾害的风险性分析。  相似文献   

12.
Analysis of large deformation of geomaterials subjected to time‐varying load poses a very difficult problem for the geotechnical profession. Conventional finite element schemes using the updated Lagrangian formulation may suffer from serious numerical difficulties when the deformation of geomaterials is significantly large such that the discretized elements are severely distorted. In this paper, an operator‐split arbitrary Lagrangian–Eulerian (ALE) finite element model is proposed for large deformation analysis of a soil mass subjected to either static or dynamic loading, where the soil is modelled as a saturated porous material with solid–fluid coupling and strong material non‐linearity. Each time step of the operator‐split ALE algorithm consists of a Lagrangian step and an Eulerian step. In the Lagrangian step, the equilibrium equation and continuity equation of the saturated soil are solved by the updated Lagrangian method. In the Eulerian step, mesh smoothing is performed for the deformed body and the state variables obtained in the updated Lagrangian step are then transferred to the new mesh system. The accuracy and efficiency of the proposed ALE method are verified by comparison of its results with the results produced by an analytical solution for one‐dimensional finite elastic consolidation of a soil column and with the results from the small strain finite element analysis and the updated Lagrangian analysis. Its performance is further illustrated by simulation of a complex problem involving the transient response of an embankment subjected to earthquake loading. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Most aqueous sedimentary environments contain varying concentrations of fine‐grained, often clay‐rich, sediment that is transported in suspension and may modify the properties of the flow and underlying mobile bed. This paper presents results from a series of laboratory experiments examining the mean and turbulent properties of clay‐laden (kaolinite) flows, of various volumetric sediment concentrations between 0·046% and 12·7%, moving over a fixed, idealized current ripple. As the kaolinite concentration was raised, with flow velocity and depth constant, four flow types were observed to occur: (i) turbulent flow, in which flow separation is dominant in the leeside of the ripple; (ii) turbulence‐enhanced transitional flow, in which turbulence in the leeside separation zone region is enhanced; (iii) turbulence‐attenuated transitional flow, in which turbulence along the separation zone shear layer and in the free flow above it becomes damped, eventually leading to a reduction in the size of the separation zone wake region; and (iv) laminar plug flow, in which turbulence is damped and flow is almost stagnant in the lee of the ripple. Such modulation of turbulence by increasing clay concentrations suggests that many paradigms of flow and bedform dynamics, which have been based on extensive past work in clear water flows, require revision. The present results highlight a need to fully characterize the boundary conditions for turbulence modulation as a function of clay type and applied flow conditions, and the effects of such flows on fully mobile cohesionless beds.  相似文献   

14.
Modelling and numerical simulation of two-phase debris flows   总被引:1,自引:0,他引:1  
Gravity-driven geophysical mass flows often consist of fluid–sediment mixtures. The contemporary presence of a fluid and a granular phase determines a complicated fluid-like and solid-like behaviour. The present paper adopts the mixture theory to incorporate the two phases and describe their respective movements. For the granular phase, a Mohr–Coulomb plasticity is employed to describe the relationship between normal and shear stresses, while for the fluid phase, the viscous Newtonian fluid is taken into account. At the basal topography, a Coulomb sliding condition for the solid phase and a Navier’s sliding condition for the fluid phase are satisfied, while the top free surface is traction-free for both the phases. For the interactive forces between the phases, the buoyancy force and viscous drag force are included. The established governing equations are expressed in a curvilinear coordinate system embedded in a curvilinear reference basal surface, above which an arbitrary shallow basal topography is permitted. Taking into account the typical length characteristics of such geophysical mass flows, the “thin-layer” approximation is assumed, so that a depth integration can be performed to simplify the governing equations. The resulting strongly nonlinear partial differential equations (PDEs) are first simplified and then analysed for a steady state in a travelling coordinate system. We find the current model can reproduce the characteristic shape of some flow fronts. Additionally, a stability analysis for steady uniform flows is performed to demonstrate the development of roll waves that means instabilities grow up and become clearly distinguishable waves. Furthermore, we numerically solve the resulting PDEs to investigate general unsteady flows down a curved surface by means of a high-resolution non-oscillatory central difference scheme with the total variation diminishing property. The dynamic behaviours of the granular and fluid phases, especially, the effects of the drag force and the fluid bed friction are discussed. These investigations can enhance the understanding of physics behind natural debris flows.  相似文献   

15.
为探索模拟大变形自由面流体运动的高精度数值计算方法,以溃坝水流运动为例,基于MPS法(Moving Particle Semi-implicit method,移动粒子半隐式法)建立了一个垂向二维改良MPS法数值计算模型。首先,为了改善传统MPS法中存在的自由表面粒子误判以及数值能量耗散问题,提出新的自由表面粒子识别方法和高精度的压力梯度模型。在此基础上,以Lobovsky'等的溃坝物理模型实验为例,探讨不同形式压力泊松方程源项对溃坝冲击压计算精度的影响,提出一个新的源项形式。数值结果分析表明,新自由表面粒子识别方法和高精度压力梯度模型可以有效地减少自由面粒子的误判概率,抑制水流运动计算中的数值能量耗散。而压力计算结果与实验结果的对比表明,所提出的压力泊松方程源项可以有效地减少数值压力震荡的幅度。  相似文献   

16.
粘性泥石流入汇主河极大地改变了入汇区的河床堆积地貌,其动力学实质是非牛顿流体与牛顿流体的交互作用,合理描述粘性泥石流入汇区河床堆积动力过程对于划定粘性泥石流风险区范围和认知流域地貌演化具有重大意义。粘性泥石流入汇区河床堆积体时空演化过程有别于粘性泥石流在地表的纯堆积过程,通过回顾国内外学者在泥石流入汇区堆积动力学方面的研究成果,可以发现在粘性泥石流入汇区内堆积现象复杂,存在"阵性"输移、"元堆积"和龙头"水滑"等特殊现象。但目前的研究对泥石流和水流交互机制都进行了简化,一是将粘性泥石流视为挟沙水流,直接采用异重流方法;二是将粘性泥石流视为"半固态",只考虑水流的输沙特征,研究认为基于这样的简化不足以描述粘性泥石流入汇的物理过程和特殊现象,也低估了粘性泥石流交汇区冲击速度和堆积范围。同时,根据粘性泥石流入汇区河床堆积动力过程的研究现状,结合粘性泥石流入汇的特殊运动过程,提出未来可开展的工作:一是粘性泥石流入汇的物理过程和其交互机制的合理简化;二是普适性高的粘性泥石流-水流堆积动力学模型的建立。   相似文献   

17.
A Lagrangian numerical approach for the simulation of rapid landslide runouts is presented and discussed. The simulation approach is based on the so‐called Particle Finite Element Method. The moving soil mass is assumed to obey a rigid‐viscoplastic, non‐dilatant Drucker–Prager constitutive law, which is cast in the form of a regularized, pressure‐sensitive Bingham model. Unlike in classical formulations of computational fluid mechanics, where no‐slip boundary conditions are assumed, basal slip boundary conditions are introduced to account for the specific nature of the landslide‐basal surface interface. The basal slip conditions are formulated in the form of modified Navier boundary conditions, with a pressure‐sensitive threshold. A special mixed Eulerian–Lagrangian formulation is used for the elements on the basal interface to accommodate the new slip conditions into the Particle Finite Element Method framework. To avoid inconsistencies in the presence of complex shapes of the basal surface, the no‐flux condition through the basal surface is relaxed using a penalty approach. The proposed model is validated by simulating both laboratory tests and a real large‐scale problem, and the critical role of the basal slip is elucidated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
无网格数值方法在结构物水动力研究中的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
运用一种移动粒子半隐式法建立无网格水流数值模型,探讨该模型在结构物水动力特性研究中的可能性。在无网格条件下,粒子间的相互作用通过核子函数来表示,并通过建立物理量光滑模型、梯度模型和二阶导数模型来离散控制方程。流体的不可压缩性是通过引入粒子数密度概念实现的。该方法不受流体变形程度和固边界形状的限制,因而具有特定的适应性。运用该模型模拟了水柱倒塌后有无透空块体两种情况下右端直墙上的压力过程。计算结果表明透空块体可使直墙压力减小42%。  相似文献   

19.
A numerical model is presented to describe the evolution of fracture aperture (and related permeability) mediated by the competing chemical processes of pressure solution and free‐face dissolution/precipitation; pressure (dis)solution and precipitation effect net‐reduction in aperture and free‐face dissolution effects net‐increase. These processes are incorporated to examine coupled thermo‐hydro‐mechano‐chemo responses during a flow‐through experiment, and applied to reckon the effect of forced fluid injection within rock fractures at geothermal and petroleum sites. The model accommodates advection‐dominant transport systems by employing the Lagrangian–Eulerian method. This enables changes in aperture and solute concentration within a fracture to be followed with time for arbitrary driving effective stresses, fluid and rock temperatures, and fluid flow rates. This allows a systematic evaluation of evolving linked mechanical and chemical processes. Changes in fracture aperture and solute concentration tracked within a well‐constrained flow‐through test completed on a natural fracture in novaculite (Earth Planet. Sci. Lett. 2006, in press) are compared with the distributed parameter model. These results show relatively good agreement, excepting an enigmatic abrupt reduction in fracture aperture in the early experimental period, suggesting that other mechanisms such as mechanical creep and clogging induced by unanticipated local precipitation need to be quantified and incorporated. The model is applied to examine the evolution in fracture permeability for different inlet conditions, including localized (rather than distributed) injection. Predictions show the evolution of preferential flow paths driven by dissolution, and also define the sense of permeability evolution at field scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A mathematical model is developed for the dynamic analysis of earthquake‐triggered rapid landslides, considering two mechanically coupled systems: (a) the accelerating deformable body of the slide and (b) the rapidly deforming shear band at the base of the slide. The main body of the slide is considered as a one‐phase mixture of Newtonian incompressible fluids and Coulomb solids sliding on a plane of variable inclination. The evolution of the landslide is modeled via a depth‐integrated model of the Savage–Hutter type coupled with: (a) a cyclic hysteretic constitutive model of the Bouc–Wen type and (b) Voellmy's rheology for the deformation of the material within the shear band. The original shallow‐water equations that govern the landslide motion are appropriately reformulated to account for inertial forces due to seismic loading, and to allow for a smooth transition between the active and the passive state. The capability of the developed model is tested against the Higashi–Takezawa landslide. Triggered by the 2004 Niigata‐ken Chuetsu earthquake, the slide produced about 100m displacement of a large wedge from an originally rather mild slope. The mechanism of material softening inside the shear band responsible for the surprisingly large run‐out of the landslide is described by a set of equations for grain crushing‐induced pore‐water pressures. The back‐analysis reveals interesting patterns on the flow dynamics, and the numerical results compare well with field observations. It is shown that the mechanism of material softening is a crucial factor for the initiation and evolution of the landslide, while viscoplastic frictional resistance is a key requirement for successfully reproducing the field data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号