首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper investigates aspects of the localization analysis of frictional materials. We derive closed formulas and diagrams for the inclination angle of critical discontinuity surfaces which develop in homogeneous compression and biaxial loading tests. The localization analysis is based on a Drucker–Prager‐type elastoplastic hardening model for non‐associated plastic flow at small strains, which we represent in spectral form. For this type of constitutive model, general analytical formulas for the so‐called critical hardening modulus and the inclination angle of critical discontinuity surfaces are derived for the plane strain case. The subsequent treatment then specializes these formulas for the analysis of compression and biaxial loading modes. The key contribution here is a detailed analysis of plane strain deformation modes where the localized failure occurs after subsequent plastic flow. The derived formulas and diagrams can be applied to the checking of an accompanying localization analysis of frictional materials in finite‐element computations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Gas hydrate‐bearing sediments (GHBSs) have been considered as a potential energy resource. In this paper, the mechanical properties of GHBS are firstly investigated by the integrated test apparatus for synthesis of GHBS using silty sand as skeleton. Triaxial tests indicate an obvious transition of stress‐strain relationship from strain hardening under low hydrate saturation and strain softening under high hydrate saturation. The hypoplastic models coupled with Drucker‐Prager criterion and the Mohr‐Coulomb criterion are proposed to analyze the stress‐strain relationship of GHBS with considering the effective porosity because of the hydrate filling in the pores of GHBS. The strain hardening and softening behaviors are well predicted with less material parameters compared with the classical models. Compared with the test results, the proposed hypoplastic models are verified to be capable of capturing the salient features of the mechanical behaviors of GHBS under the conditions of little temperature change and no hydrate dissociation.  相似文献   

3.
We consider discontinuous bifurcations as the indicator of a localized failure for a class of composites that are characterized by elastic fibres reinforcing an elastic–plastic matrix. A macroscopic tangent stiffness tensor for the fibre‐reinforced composite is developed by consistently homogenizing the contribution of fibres in a spherical representative volume element. Analytical solutions are derived for the critical hardening modulus and corresponding bifurcation directions for the case of plane strain loading. Properties of the solutions are further illustrated on the example of the non‐associated Drucker–Prager model at onset of yielding. Results show that presence of fibres decreases the critical hardening modulus, thus inhibiting the onset of strain localization. The rate of decrease in the critical hardening modulus is the highest for pure shear, followed by uniaxial tension, uniaxial compression, biaxial tension and biaxial compression. The main fibre parameters that control the onset of strain localization are their volumetric content and their stiffness modulus whereby very stiff fibres can produce the most significant decrease in the critical hardening modulus, especially for the state of biaxial tension. The critical hardening modulus for the non‐associated Drucker–Prager model exhibits a full range of localization modes including compaction bands, dilation bands, and transition in the form of shear bands regardless of the presence of fibres. Presence of fibres affects bifurcation directions, except in the case when Poisson's ratio of the matrix is equal to 0.25. The results demonstrate stabilizing effects of fibres by which they provide the control against the onset of strain localization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The mechanical strength of rock in terms of shear or compressive failure has been previously adopted as a criterion for sand production and when used solely has been proven to overestimate the process. On the other hand, ignoring the mechanical strength behaviour of the material increases the tendency for inaccurate estimations of the erosion process. In this work, an equally proportionated inclusion of the mechanical strength and erosion-based criteria in sanding predictions is proposed and assessed by numerical models. Several rock failure models and their influences on the sanding process have been analysed, including models such as the Drucker–Prager (DP), the Drucker–Prager hardening (DP hardening), the Mohr–Coulomb (MC) and the Mohr–Coulomb softening (MC softening). Modelling outcomes show distinct differences in rock response to operating and boundary conditions (e.g. flow rate and drawdown), and predictions of sand production. It was confirmed by modelling results that despite the low magnitude of stresses and strains developed at the well face and perforation regions, post-yield hardening behaviour increases the estimation of the amount and intensity of sand production. Also, incorporating a post-yield softening behaviour increases the magnitude of stresses and strains; however, this effect is observed to have a negligible impact on sand production. The role of void ratio has been recognised as a dominant factor, as its evolution significantly determines the pattern and intensity of sand production. A more cautious selection and rigorous coupling of rock strength models in sand production modelling is therefore essential if accuracy of predictions is to be improved.  相似文献   

5.
The paper presents detailed FE simulation results of concrete elements under mixed‐mode failure conditions according to the so‐called shear‐tension test by Nooru‐Mohamed, characterized by curved cracks. A continuous and discontinuous numerical two‐dimensional approach was used. In order to describe the concrete's behaviour within continuum mechanics, two different constitutive models were used. First, an elasto‐plastic model with isotropic hardening and softening was assumed. In a compression regime, a Drucker–Prager criterion with a non‐associated flow rule was used. In turn, in a tensile regime, a Rankine criterion with an associated flow rule was adopted. Second, an isotropic damage constitutive model was applied with a single scalar damage parameter and different definitions of the equivalent strain. Both constitutive laws were enriched by a characteristic length of micro‐structure to capture properly strain localization. As an alternative approach, the extended finite element method was used. Our results were compared with the experimental ones and with results of other FE simulations reported in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A plastic deviatoric model with hardening is developed on the basis of geomechanical tests performed in the saturated case on low permeable porous material such as argillite. This model is a generalized Mohr–Coulomb plastic criterion combined with a Drucker–Prager plastic potential and the hardening parameter is the plastic distortion. Three different hardening functions have been introduced on the basis of triaxial tests: an increase of friction angle, a decrease of cohesion after a threshold and a contractancy to dilatancy transition for volumetric plastic strain. This plastic model has been adapted to the partially saturated case. The effective stress is expressed thanks to the equivalent interstitial pressure π. Numerical results are presented for the excavation and monotonous ventilation of a deep cylindrical cavity. A first plastification due to excavation is followed by a second one due to desaturation. The extent of the non-saturated zone provokes an extent of a plastic zone in the rock mass. Analysis shows that the origin of the plastification can be found in the deviatoric stresses because mean effective stresses are compressive during drying. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The inelastic response of Tennessee marble is modelled by an elastic plastic constitutive relation that includes pressure dependence of yield, strain‐softening and inelastic volume strain (dilatancy). Data from 12 axisymmetric compression tests at confining pressures from 0 to 100 MPa are used to determine the dependence of the yield function and plastic potential, which are different, on the first and second stress invariants and the accumulated inelastic shear strain. Because the data requires that the strain at peak stress depends on the mean stress, the locus of peak stresses is neither a yield surface nor a failure envelope, as is often assumed. Based on the constitutive model and Rudnicki and Rice criterion, localization is not predicted to occur in axisymmetric compression although faulting is observed in the tests. The discrepancy is likely due to the overly stiff response of a smooth yield surface model to abrupt changes in the pattern of straining. The constitutive model determined from the axisymmetric compression data describes well the variation of the in‐plane stress observed in a plane strain experiment. The out‐of‐plane stress is not modelled well, apparently because the inelastic normal strain in this direction is overpredicted. In plane strain, localization is predicted to occur close to peak stress, in good agreement with the experiment. Observation of localization on the rising portion of the stress–strain curve in plane strain does not, however, indicate prepeak localization. Because of the rapid increase of mean stress in plane strain, the stress–strain curve can be rising while the shear stress versus shear strain curve at constant mean stress is falling (negative hardening modulus). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
During several triaxial compression experiments on plastic hardening, softening, and failure properties of dense sand specimens, it was found on various stress paths that the size of the failure surface was not constant. Instead, it changed depending on the current state of hydrostatic pressure. This finding is in contrast to the standard opinion consisting of the fact that the failure surface remains constant, once it has been reached during an experiment or in situ. In general, the behaviour of cohesionless granular‐material‐like sand is somehow characterised in between fluid and solid, where the solid behaviour results from the angle of internal friction and the confining pressure. Although the friction angle is an intrinsic material property, the confining pressure varies with the boundary conditions, thus defining different solid properties like plastic hardening, softening, and also failure. Based on our findings, it was the goal of the present contribution to introduce an improved setting for the plastic strain hardening and softening behaviour including the newly found yield properties at the limit state. For the identification of the material parameters, a complete triaxial experimental analysis of the tested sand is given. The overall elasto‐plasticity concept is validated by numerical computations of several laboratory foundation‐ and slope‐failure experiments. The performance of the proposed approach is compared with the standard concept of a constant failure surface, where the corresponding yield surfaces are understood as contours of equivalent plastic work or plastic strain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
基于Drucker-Prager准则的岩石弹塑性损伤本构模型研究   总被引:1,自引:0,他引:1  
袁小平  刘红岩  王志乔 《岩土力学》2012,33(4):1103-1108
大多数岩石材料软化本构模型在硬化函数中引入塑性内变量来表示材料的硬化/软化性质,但并不能反映岩石微裂隙损伤对材料力学性能的影响及单轴拉伸和压缩所表现的初始屈服强度f0与屈服极限fu的差异。基于D-P准则同时考虑塑性软化及损伤软化,建立岩石类材料的弹塑性本构关系及其数值算法。塑性屈服函数采用Borja等的应力张量的硬化/软化函数,反映塑性内变量及应力状态对硬化函数的影响;由于岩石损伤软化是微裂隙扩展所导致的体积膨胀引起的,因此,提出用体积应变表征岩石损伤变量的演化,并用回映隐式积分算法编制了岩石的弹塑性损伤本构程序。对单轴压缩及拉伸荷载作用下的岩石材料试验进行数值模拟,结果表明,所提出的岩石弹塑性损伤本构模型可以较好地符合岩石材料的力学特性。  相似文献   

10.
三轴压缩条件下裂隙性黄土的破坏特征   总被引:3,自引:0,他引:3  
卢全中  葛修润  彭建兵  冯利斌 《岩土力学》2009,30(12):3689-3694
通过裂隙性黄土样的三轴压缩试验,利用土样裂隙和侧壁标记的网格在试验前后的对比与直观反映,描述了具有不同裂隙空间形态的不同性状土样在不同试验围压下的破坏特征,总结了其变形破坏规律,试验结果显示,裂隙性黄土的破坏分为脆性破坏和塑性破坏两种类型,表现为极强软化型、强软化型、软化型、理想塑性型(或弱软化型、弱硬化型)和硬化型5种型式,其破坏特征与土样原裂隙的空间形态及性质、试验围压等因素密切相关,形成的破裂面位置主要受土样的原裂隙、变形方式和上下底面透水石的边界控制。  相似文献   

11.
The plane strain condition is a common, but polyaxial stress state for geotechnical structure designs, in which the selection of an appropriate yield or failure criterion is crucial to reasonably account for the intermediate principal stress. Under plane strain condition, a unified linear yield criterion for seven commonly used geotechnical yield criteria is presented in conjunction with the inductive method. These seven yield criteria considered in this study are the Mohr–Coulomb, Tresca, Drucker–Prager, Mogi–Coulomb, Extended Matsuoka–Nakai, Extended Lade–Duncan criteria, and the Unified Strength Theory. The generalized analytical solutions for earth pressure of retaining walls, critical load of strip foundations as well as stress and displacement of circular tunnels are derived on the basis of the proposed unified yield criterion, and their respective theoretical significance is analyzed. Thereafter, the critical load of strip foundations obtained herein is compared with two numerical results from the literature. Furthermore, the effect of strength theory on result differences of the three typical geotechnical problems by simply selecting constants, which conform to different yield criteria, is explored through a parametric study. It is found that the proposed unified yield criterion is convenient for investigating analytical solutions of the aforementioned geotechnical structures. The strength theory effect due to adopting different yield criteria is considerably significant, which cannot be ignored. Additionally, recommendations are provided on how to make use of these seven yield criteria for an optimum design.  相似文献   

12.
Porosity strongly affects the overall ductile behavior of cohesive geomaterials undergoing plastic deformation. In the present paper, we proposed an original micromechanical approach that suitably couples Drucker–Prager‐type plasticity, evolving porosity under general triaxial loadings. The resulting model has the advantage to be based on a single macroscopic yield function, which also plays the role of plastic potential. It is shown that this yield function is particularly appropriate to account for the pore collapse and plastic shearing mechanisms that govern the mechanical behavior of the studied Lixhe chalk. Finally, the new model is implemented and validated by comparison to triaxial tests data, covering a wide range of confining pressures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a damage–viscoplastic cap model for rocks with brittle and ductile behavior under low‐velocity impact loading, which occurs, e.g. in percussive drilling. The model is based on a combination of the recent viscoplastic consistency model by Wang and the isotropic damage concept. This approach does not suffer from ill posedness—caused by strain softening—of the underlying boundary/initial‐value problem since viscoplasticity provides a regularization under dynamic loading by introducing an internal length scale. The model uses the Drucker–Prager (DP) yield function with the modified Rankine criterion as a tension cut‐off and a parabolic cap surface as a compression cut‐off. The parabolic cap is smoothly fitted to the DP cone. The strain softening law in compression is calibrated with the degradation index concept of Fang and Harrison. Thereby, the model is able to capture the brittle‐to‐ductile transition and hardening behavior of geomaterials under highly confined compression, which is the prevailing stress state under a bit‐button in percussive drilling. Rock strength heterogeneity is characterized statistically at the structural level using the Weibull distribution. An explicit time integrator is chosen for solving the FE‐discretized equations of motion. The contact constraints due to the impact of an indenter are imposed with the forward increment Lagrange multiplier method that is compatible with explicit time integrators. The model is tested at the material point level with various uniaxial and triaxial tests. At the structural level confined compression, uniaxial tension tests and a rock sample under low‐velocity impact are simulated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Tensorially invariant constitutive relations are systematically derived for large strain elastoplastic response of geomaterials. The analysis centres on Mohr–Coulomb (MC) and Drucker–Prager (DP) models with arbitrary hardening and non-associated response. Both flow and deformation theories are constructed for each model with emphasis on linear incremental relations between the Eulerian strain rate tensor and the objective Jaumann stress rate tensor. Specifying the results for plane strain compression we find that deformation theory produces a much smaller tangent instantaneous shear modulus than flow theory. It follows that failure of ellipticity and onset of surface instabilities predicted by deformation theory for associated solids occur at much lower levels of strain than the corresponding flow theory results. On the other hand, flow theory predictions admit a considerable sensitivity to the level of non-associativity. In fact, at high levels of non-associativity flow theory predictions for loss of ellipticity can be at strains below those obtained from deformation theory. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Consolidation of a poroelastic material that yields according to Drucker–Prager or Mohr–Coulomb criteria leads to a Stefan problem for time-dependent pore fluid pressure. The solution to the Stefan problem for a column of infinite depth is known and is adapted to poroelastic/plastic consolidation of a weightless material under a uniform surface load applied instantaneously and subsequently maintained constant. In this approach, the plastic potential and yield criterion need not be the same. If yielding occurs concurrently with application of load, then collapse is instantaneous. Otherwise, yielding may occur during the consolidation period. If so, then the elastic–plastic zone first appears at the surface and subsequently moves down the column. Depth to the elastic–plastic boundary is given by the simple expression Z = 2βt where β is a constant determined from continuity conditions at the elastic–plastic boundary. Time-dependent surface displacement that occurs during consolidation is directly proportional to Z. There is little difference between elastic–plastic and purely elastic results in a numerical example because there is little difference in the respective consolidation coefficients. Elastic–plastic finite element results obtained from a column of finite depth are in close agreement with analytical results as long as the pore pressure at the bottom of the column does not change significantly from the value induced by application of the surface load. The analytical solution provides for: (1) efficient evaluation of material properties effects on consolidation, including strength and fluid compressibility, and (2) an accurate way of validating poroelastic/plastic computer codes that are based on Drucker–Prager and Mohr–Coulomb criteria. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
This study presents two three‐parameter failure criteria for cohesive‐frictional materials based on the Mohr–Coulomb failure function. One proposed failure criterion can be linked to Mogi's empirical formula and incorporates the well‐known Von‐Mises, Drucker–Prager, and Linear Mogi criteria as special cases. Another one with smooth and convex cross sections contains a general Lode dependence in the deviatoric plane and includes the Matsuoka–Nakai and Lade–Duncan Lode dependences as special cases. The effect of the intermediate principal stress on the strength of the material can be taken into account in both criteria. The proposed criteria are numerically calibrated against polyaxial data sets of many different types of rocks and concrete. The comparison results show that the performance of the proposed criteria is excellent, and the failure criterion with a general Lode dependence performs better than the other one for concrete. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Advanced material constitutive models are used to describe complex soil behaviour. These models are often used in the solution of boundary value problems under general loading conditions. Users and developers of constitutive models need to methodically investigate the represented soil response under a wide range of loading conditions. This paper presents a systematic procedure for probing constitutive models. A general incremental strain probe, 6D hyperspherical strain probe (HSP), is introduced to examine rate‐independent model response under all possible strain loading conditions. Two special cases of HSP, the true triaxial strain probe (TTSP) and the plane‐strain strain probe (PSSP), are used to generate 3‐D objects that represent model stress response to probing. The TTSP, PSSP and general HSP procedures are demonstrated using elasto‐plastic models. The objects resulting from the probing procedure readily highlight important model characteristics including anisotropy, yielding, hardening, softening and failure. The PSSP procedure is applied to a Neural Network (NN) based constitutive model. It shows that this probing is especially useful in understanding NN constitutive models, which do not contain explicit functions for yield surface, hardening, or anisotropy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A methodology is developed in SPH framework to analyze the behavior of preexisting multiple intersecting discontinuities or joints in rock material. The procedure does not require any additional unknowns to represent discontinuities and to capture velocity jump across them. Instead, a discontinuity is represented by a set of joint particles placed along the discontinuity plane, in which relative velocity and traction vector is evaluated, obeying the Mohr–Coulomb friction law with zero tension constrain. For failure of continuous rock material, the Drucker–Prager yield criterion with tensile cracking is employed in the elastic‐plastic constitutive model. Free‐sip, no‐slip, and symmetric boundary conditions are also implemented in SPH framework for proper representation of physical system. The paper analyzes behavior of a rock sample having a discontinuity plane under uniaxial loading and compares velocity and stress with a theoretical solution derived considering effective vertical stiffness of the joint planes. The efficacy of the proposed method is successfully demonstrated by solving another two problems of jointed rock mass under uniaxial and gravitational loading conditions.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
高温冻结粉土力学特性试验研究   总被引:1,自引:1,他引:0  
为了探讨高温冻结粉土的力学特性,进行了一系列常规三轴压缩和三轴压缩加卸载试验。结果表明:(1)随着围压的增大,应力应变曲线先表现为应变软化,后应变硬化,最后又应变软化。(2)体积应变曲线均表现为先体缩后体胀,且围压越大,体胀越弱。(3)通过引入改进的双曲线模型,能较好地模拟应变软化和硬化特性。在q-p平面内建立了一个新的强度准则,并利用修正Mohr-Coulomb屈服准则,探讨了黏聚力c和内摩擦角φ的变化规律。根据试验结果,确定了不同围压及不同加卸载循环次数下高温冻结粉土的回弹模量及其损伤变化规律。最后,建立了塑性体积变形和塑性剪切变形之间的关系式和表达式,进一步探讨了高温冻结粉土的剪胀特性。  相似文献   

20.
A literature review has shown that there exist adequate techniques to obtain ground reaction curves for tunnels excavated in elastic‐brittle and perfectly plastic materials. However, for strain‐softening materials it seems that the problem has not been sufficiently analysed. In this paper, a one‐dimensional numerical solution to obtain the ground reaction curve (GRC) for circular tunnels excavated in strain‐softening materials is presented. The problem is formulated in a very general form and leads to a system of ordinary differential equations. By adequately defining a fictitious ‘time’ variable and re‐scaling some variables the problem is converted into an initial value one, which can be solved numerically by a Runge–Kutta–Fehlberg method, which is implemented in MATLAB environment. The method has been developed for various common particular behaviour models including Tresca, Mohr–Coulomb and Hoek–Brown failure criteria, in all cases with non‐associative flow rules and two‐segment piecewise linear functions related to a principal strain‐dependent plastic parameter to model the transition between peak and residual failure criteria. Some particular examples for the different failure criteria have been run, which agree well with closed‐form solutions—if existing—or with FDM‐based code results. Parametric studies and specific charts are created to highlight the influence of different parameters. The proposed methodology intends to be a wider and general numerical basis where standard and newly featured behaviour modes focusing on obtaining GRC for tunnels excavated in strain‐softening materials can be implemented. This way of solving such problems has proved to be more efficient and less time consuming than using FEM‐ or FDM‐based numerical 2D codes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号