首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
The hydrodynamic groundwater data and stable isotopes of water have been used jointly for better understanding of upward leakage and mixing processes in the Djerid aquifer system (southwestern Tunisia). The aquifer system is composed of the upper unconfined Plio-Quaternary (PQ) aquifer, the intermediate (semi-)confined Complex Terminal (CT) aquifer and the deeper confined Continental Intercalaire (CI) aquifer. A total of 41 groundwater samples from the CT and PQ aquifers were collected during June 2001. The stable isotope composition of waters establishes that the CT deep groundwater (depleted as compared to present Nefta local rainfall) is ancient water recharged during late Quaternary time. The relatively recent water in the shallow PQ aquifer is composed of mixed water resulting from upward leakage and sporadic meteoric recharge. In order to characterize the meteoric input signal for PQ in the study area, rainfall water samples were collected during 4 years (2000–2003) at the Nefta meteorological station. Weighted mean values of isotopic contents with respect to rainfall amounts have been computed. Despite the short collection period in the study area, results agree with those found in Beni Abbes (southwestern Algerian Sahara) by Fontes on 9 years of rainfall surveillance. Stable isotopic relationships provide clear evidence of shallow PQ aquifer replenishment by deep CT groundwater. The 18O/upward leakage rate allowed the identification of distinctive PQ waters related to CT aquifer configuration (confined in the western part of the study area, semi-permeable in the eastern part). These trends were confirmed by the relation 18O/TDS. The isotope balance model indicated a contribution of up to 75% of the deep CT groundwater to the upper PQ aquifer in the western study area, between Nefta and Hazoua.  相似文献   

2.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   

3.
In the Djerid-Nefzaoua region, southern Tunisia, about 80% of agricultural and domestic water supply is provided by the complex terminal (CT) aquifer. However, 20% of this demand is provided by other hydraulically connected aquifers, namely the continental intercalaire (CI) and the Plio-Quaternary (PQ). Overexploitation of the CT aquifer for agricultural practices has contributed to the loss of the artesian condition and the decline of groundwater level which largely increased the downward leakage from the shallow PQ aquifer. Excess irrigation water concentrates at different rates in the irrigation channels and in the PQ aquifer itself. Then, it returns to the CT aquifer and mixes with water from the regional flow system, which contributes to the salinization of the CT groundwater. A geochemical and isotopic study had been undertaken over a 2-years period in order to investigate the origin of waters pumped from the CT aquifer with an emphasis on its hydraulic relationships with the underlying and the overlying CI and PQ aquifers. Geochemistry indicates that groundwater samples collected from different wells show an evolution of the water types from Na-Cl to Ca-SO4-Cl. Dissolution of halite, gypsum and anhydrite-bearing rocks is the main mechanism that leads to the salinization of the groundwater. Isotopic data indicate the old origin of all groundwater in the aquifer system. Mixing and evaporation effects characterizing the CT and the PQ aquifers were identified using δ2H and δ18O relationship and confirmed by the conjunction of δ2H with chloride concentration.  相似文献   

4.
Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30–50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Electronic Publication  相似文献   

5.
Large-scale interaction between the Continental Intercalaire and the Djeffara aquifer systems in the southeast of Tunisia has been investigated with the aid of chemical and isotopic tracers. Two distinct groundwater types have been identified: (1) the Continental Intercalaire groundwater characterized by elevated temperatures (50–61.4°C), low δ18O (−8.4 to−7.87) and δ2H (−67.2 to−59) values and negligible radiocarbon content, both testifying its great age dating from the late Pleistocene period, and (2) the Djeffara groundwater with distinctly heavier isotopic composition (δ18O = −8.31 to −5.80, δ2H = −65.9 to −31.9). The Djeffara groundwaters reveal a distinct changes of physico-chemical and isotopic parameters near El Hamma Faults in the northwestern part of the Djeffara basin. These changes could possibly be explained by a vertical leakage from the Continental Intercalaire aquifer through El Hamma Faults. The mixing proportions inferred from stable isotope mass balance prove that the contribution of the Continental Intercalaire to the recharge of Djeffara aquifer is very significant and may reach 100% in the El Hamma region and in the northern part of Gabes. Isotope tracers strongly suggest that recent recharge to the Djeffara aquifer system is very limited. Its current yield, particularly in its central and northern parts can be maintained only thanks to large-scale underground inflow from the Continental Intercalaire aquifer system, which carries late Pleistocene palaeowater. Consequently, current exploitation of groundwater resources of the Djeffara aquifer has non-sustainable character.  相似文献   

6.
A multi-tracer approach has been carried out in the Sbeïtla multilayer aquifer system, central Tunisia, to investigate the geochemical evolution, the origin of groundwaters and their circulation patterns. It involves statistical data analysis coupled with the definition of the hydrochemical and isotopic features of the different groundwaters. Principal Components Analysis (PCA) of geochemical data used in conjunction with bivariate diagrams of major and trace elements indicate that groundwater mineralization is mainly controlled by water-rock interaction and anthropogenic processes in relation to return flow of irrigation waters. The PCA of isotopic data and bivariate conventional diagrams of stable and radiogenic isotopes i.e. δ18O vs. δ2H and δ18O vs. 14C provide valuable information about the origin and the circulation patterns of the different groundwater groups. They permit classifying groundwaters into three groups. The first group is characterized by low 3H concentrations, low 14C activities and depleted stable isotope contents. It corresponds to an old end-member in relation with palaeoclimatic recharge which occurred during the Late Pleistocene and the Early Holocene humid periods. The second group is distinguished by high to moderate 3H concentrations, high 14C activities and enriched heavy isotope signatures. It corresponds to a modern end-member originating from a mixture of post-nuclear and present-day recharge in relation to return flow of irrigation waters. The third group is characterized by an average composition of stable and radiogenic isotope signatures. It provides evidence for the mixing between the upward moving palaeoclimatic end-member and the downward moving present-day end-member.  相似文献   

7.

Particularly in arid and semiarid areas, more and more populations rely almost entirely on imported water. However, the extent to which intentional discharge into transiting river systems and unintentional leakage may be augmenting water resources for communities along and down gradient of the water transfer scheme has not previously been subject to research. The objective of this study was to assess both the potential of a large-scale water transfer (WT) scheme to increase groundwater availability by channel transmission losses in a large dryland aquifer system (2,166 km²) in Brazil, and the capability of the receiving streams to transport water downstream under a prolonged drought. An integrated surface-water/groundwater model was developed to improve the estimation of the groundwater resources, considering the spatio-temporal variability of infiltrated rainfall for aquifer recharge. Aquifer recharge from the WT scheme was simulated under prolonged drought conditions, applying an uncertainty analysis of the most influential fluxes and parameters. The annual recharge (66 mm/year) was approximately twice the amount of water abstracted (1990–2016); however, the annual recharge dropped to 13.9 mm/year from 2012 to 2016, a drought period. Under similar drought conditions, the additional recharge (6.89 × 106 m³/year) from the WT scheme did not compensate for the decrease in groundwater head in areas that do not surround the receiving streams. Actually, the additional recharge is counteracted by a decrease of 25% of natural groundwater recharge or an increase of 50% in pumping rate; therefore, WT transmission losses alone would not solve the issue of the unsustainable management of groundwater resources.

  相似文献   

8.
为了有效提升大清河流域平原区地下水水位,亟需在此区域开展地下水人工补给工程,并确定合理的建设位置及有效的补给方式。首先基于研究区可利用补给水源、地下水位、地表高程、地表坡度及与河道距离5个指标的分布特征,构建地下水补给潜力评价体系,采用ArcGIS空间分析功能对研究区进行了地下水人工补给潜力区划;然后在此评价体系基础上,在典型人工补给高潜力区进一步开展系列野外现场试验,探讨适宜可行的地下水人工补给方式。结果表明:研究区西北部及南部河道附近区域开展人工补给工程潜力较高,而中部、北部及西南部远离河道的区域潜力较低。高潜力区——白沟引河地段包气带及含水层渗透性良好,整体渗透系数均在5 m/d左右或更高,适宜地表补给,但河床渗透性较差,渗透系数基本在0.01~0.09 m/d间,若通过河道补给需配合清淤等措施。其中,在上游及中游沿岸适宜将河道水通过生态水渠引至修建的地表入渗池或借助天然渗坑内入渗补给,在中下游沿岸区域适宜将补给水进行严格的水处理后采用井灌方式补给,在白沟引河中下游河道适宜修建拦水坝,利用河道进行入渗补给。  相似文献   

9.
According to the characteristics of groundwater in arid area, this paper proposes DRAV model for groundwater vulnerability assessment, where D is groundwater depth, R is the net recharge of aquifer, A is the aquifer characteristics, and V is the lithology of vadose zone. As a case study, the paper assesses the vulnerability of pore phreatic water in Tarim Basin of Xinjiang, China by using the DRAV model. The results indicate that the areas of phreatic water with vulnerability index ranges of 2–4, 4–6, 6–8 and >8 accounting for 10.1, 80.4, 9.2 and 0.2% of the total plain area of the Tarim Basin respectively, and the areas with the latter two vulnerability ranges (6–8 and >8) are mainly located in the irrigation districts with thin soil layer (20–30 cm thick surface soil of vadose zone, mainly with underlying sandy gravel) and with silty and fine sand layer. Such vadose zone generally lacks sandy loam and clayey soil and has larger recharge by infiltration of irrigation water.  相似文献   

10.

The potential sources of recharge of both water and solutes to the Quaternary aquifer in the area between Ismailia and El Kassara canals in northeastern Egypt include seepage from the irrigation canals and conduits, return flow after irrigation in the cultivated fields, local precipitation, and the upward flow of groundwater from the underlying Miocene aquifer system. Water isotopes, solute concentrations, and sulfate isotopes were used to investigate the geochemical sources, reactions, and the impacts of the hydraulic connections among recharge sources. The obtained results indicate a minimal influence of the underlying Miocene aquifer as a water and solute source while old and new contributions from the irrigation canals represent the main sources of recharge. The chemical reactions responsible for the chemical constituents and salinity in the aquifer include silicate weathering, evaporite dissolution, and carbonate precipitation. Most of groundwater samples appear to lie at/or close to equilibrium with montmorillonite, kaolinite, and illite where clay minerals are quite common in the local soils of the Quaternary aquifer.

  相似文献   

11.
Evaluation of major ion chemistry and solute acquisition process controlling water chemical composition were studied by collecting a total of fifty-one groundwater samples in shallow (<25 m) and deep aquifer (>25 m) in the Varanasi area. Hydrochemical facies, Mg-HCO3 dominated in the largest part of shallow groundwater followed by Na-HCO3 and Ca-HCO3 whereas Ca-HCO3 is dominated in deep groundwater followed by Mg-HCO3 and Na-HCO3. High As concentration (>50 μg/l) is found in some of the villages situated in northeastern parts (i.e. adjacent to the concave part of the meandering Ganga river) of the Varanasi area. Arsenic contamination is confined mostly in tube wells (hand pump) within the Holocene newer alluvium deposits, whereas older alluvial aquifers are having arsenic free groundwater. Geochemical modeling using WATEQ4F enabled prediction of saturation state of minerals and indicated dissolution and precipitation reactions occurring in groundwater. Majority of shallow and deep groundwater samples of the study area are oversaturated with carbonate bearing minerals and under-saturated with respect to sulfur and amorphous silica bearing minerals. Sluggish hydraulic conductivity in shallow aquifer results in higher mineralization of groundwater than in deep aquifer. But the major processes in deep aquifer are leakage of shallow aquifer followed by dominant ion-exchange and weathering of silicate minerals.  相似文献   

12.
Continental Flood Basalts (CFB) occupy one fourth of the world’s land area. Hence, it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development. A model assisted isotope, geochemical, geospatial and geophysical study was conducted to understand the monsoonal characteristics, recharge processes, renewability and geochemical evolution in one of the largest continental flood basalt provinces of India. HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics. Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge. Lumped parameter models (LPM) were employed to quantify the mean transit time (MTT) of groundwater. Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path. A geophysical model was used to understand the geometry of the aquifer. The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea. Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned; (i) quick and direct recharge by precipitation through fractured and weathered basalt, (ii) low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge. Tritium data showed that the groundwater is a renewable source and have shorter transit times (from present day to <30 years). The hydrogeochemical study indicated multiple sources/processes such as: the minerals dissolution, silicate weathering, ion exchange, anthropogenic influences etc. control the chemistry of the groundwater. Based on the geo-electrical resistivity survey, the potential zones (weathered and fractured) were delineated for the groundwater development. Thus, the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.  相似文献   

13.
The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3?>?50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity.  相似文献   

14.
Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.  相似文献   

15.
Major ions and important trace elements in addition to δ18O and δ2H were analysed for 43 groundwater samples sampled from the Al-Batin alluvial fan aquifer, South Iraq. The most dominant ions (with respect to molarity) were: Na+ > Cl? > SO4 2? > Ca2+ > Mg2+ > NO3 ? > HCO3 ?, with total dissolved solids (TDS) averaging 7855 mg/L. High concentrations were found for the trace elements U, Mo, V, B, Sr, and Cr. This study suggests a hydraulic connection exists near the fan apex between the uppermost part of the Al-Batin aquifer and the underlying Dammam aquifer by means of the Abu-Jir fault system. Except for the effects of extensive irrigation, fertilizer use, and poorly maintained sewers, the groundwater chemistry is mainly controlled by geological processes such as dissolution of evaporites and the enrichment of dissolved ions as a result of the high evaporation and low recharge rate. Furthermore, it is shown that the Kuwaiti fuel–oil burning during Gulf War in 1991 contributed to the enrichment of V and Mo in the studied aquifer. The spatial distribution of most ions appears to generally increase from the south-west towards the north-east, in the direction of groundwater flow. The stable isotopes show heavier values in groundwater with a gradually increasing trend in the direction of groundwater flow due to the decreasing depth to groundwater and thus increasing of evaporation from both groundwater or irrigation return water. Additionally, the stable isotope signature suggests that rainfall from sources in the Arabian Gulf and the Arabian Sea is the major source of recharge for the Al-Batin aquifer. Except for two samples of groundwater, all samples were not suitable for potable use according to the WHO standards. Most of the groundwater is suitable for some agricultural purpose and for livestock water supply. Apart from the high salinity, boron represents the most critical element in the groundwater with respect to agricultural purposes.  相似文献   

16.
 The Hadejia–Nguru Wetlands are annually inundated flood plains in semi-arid northeastern Nigeria. The area has a unique ecosystem that forms a natural barrier against the encroachment of the Sahara desert. Both the rich wetland vegetation and local farmers using shallow tube wells depend on a groundwater mound (with a water table less than 6 m below the surface) that is present in the unconfined aquifer under the flood-plain area. Using well records (1991–97) and a hydrogeologic profile based on piezometers that were monitored for two years, it is shown that recharge through the annually inundated flood plains is the source of the groundwater mound. Maintenance of the groundwater-recharge function of the flood plains depends on wet-season releases from two large upstream dams. On the basis of a water-budget method, the mean (1991–97) wet-season unconfined groundwater recharge in the flood-plain area between Hadejia and Nguru and in the immediate vicinity (1250 km2) is estimated to be 132 mm (range, 73–197 mm). Outflow from the unconfined flood-plain aquifer to the unconfined upland aquifer is approximately 10% of the wet-season flood-plain recharge. The unconfined groundwater outflow from the flood-plain area can provide a significant contribution to the present-day rural water supply in the surrounding uplands, but it does not offer much potential for additional groundwater abstraction. In addition to outflow to the upland aquifer (∼14 mm), the distribution of the annually recharged water volume of the shallow flood-plain aquifer is (1) domestic uses (3 mm), (2) small-scale irrigation (∼15 mm), and (3) evapotranspiration ( 1 100 mm). Along the hydrogeologic profile, the recharge in the upland (i.e., outflow from the unconfined flood-plain aquifer and possibly diffuse rain-fed recharge) is in balance with the water uses (i.e., domestic uses, groundwater outflow, and evapotranspiration). The absence of a seasonal water-level trend in the two piezometers in the upland indicates that no rain-fed recharge occurs through preferential path-way (macropore) flow. Received, June 1998 / Revised, November 1998, January 1999 / Accepted, January 1999  相似文献   

17.
Groundwater in Sfax City (Tunisia) has been known since the beginning of the century for its deterioration in quality, as a result of wastewater recharge into the aquifer. An average value of 12 × 106 m3 of untreated wastewater reaches the groundwater aquifer each year. This would result not only in a chemical and biological contamination of the groundwater, but also in an increase of the aquifer piezometric level. Quantitative impacts were evaluated by examining the groundwater piezometric level at 57 surface wells and piezometers. The survey showed that, during the last two decades, the groundwater level was ever increasing in the urban area with values reaching 7 m in part; and decreasing in Sidi Abid (agricultural area) with values exceeding −3 m. Groundwater samples for chemical and microbial analysis were collected from 41 wells spread throughout the study area. Results showed significantly elevated levels of sodium, chlorides, nitrates and coliform bacteria all over the urban area. High levels (NO3: 56–254 mg/l; Na >1,500 mg/l; Coliforms >30/100 ml) can be related to more densely populated areas with a higher density of pit latrine and recharge wells. Alternatively results showed a very variable chemical composition of groundwater, e.g. electrical conductivity ranges from 4,040 to19,620 μs/cm and the dry residual varies between 1.4 and 14 g/l with concentrations increasing downstream. Furthermore a softening of groundwater in Set Ezzit (highly populated sector) was observed.  相似文献   

18.
The objective of this study is to refine the understanding of recharge processes in watersheds representative for karstic semiarid areas by means of stable isotope analysis and hydrogeochemistry. The study focuses on the Granada aquifer system which is located in an intramontane basin bounded by high mountain ranges providing elevation differences of almost 2900 m. These altitude gradients lead to important temperature and precipitation gradients and provide excellent conditions for the application of stable isotopes of water whose composition depends mainly on temperature. Samples of rain, snow, surface water and groundwater were collected at 154 locations for stable isotope studies (δ18O, D) and, in the case of ground- and surface waters, also for major and minor ion analysis. Thirty-seven springs were sampled between 2 and 5 times from October 2004 to March 2005 along an altitudinal gradient from 552 masl in the Granada basin to 2156 masl in Sierra Nevada. Nine groundwater samples were taken from the discharge of operating wells in the Granada basin which are all located between 540 and 728 masl. The two main rivers were monitored every 2–3 weeks at three different altitudes. Rainfall being scarce during the sampling period, precipitation could only be sampled during four rainfall events. Calculated recharge altitudes of springs showed that source areas of mainly snowmelt recharge are generally located between 1600 and 2000 masl. The isotope compositions of spring water indicate water sources from the western Mediterranean as well as from the Atlantic without indicating a seasonal trend. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different sources of recharge which occur mainly by bankfiltration of the main rivers. Isotopic signatures in the southeastern part of the aquifer indicate a considerable recharge contribution by subsurface flow discharged from the adjacent carbonate aquifer. No evaporation effects due to agricultural irrigation were detected.  相似文献   

19.
The Nubia Sandstone aquifer system is one of the most extensive groundwater systems in North Africa, covering an area of about 2,000,000 km2, including parts of Egypt, Libya, Sudan, and Chad. In the Western Desert of Egypt, the Nubian formation has a thermal gradient of 1.1–5°C 100 m–1 with the exception of the East Oweinat area, located in the southern part of the Western Desert. This is the only part of this huge system where ground-water occurs under unconfmed conditions in an area where the Nubian sandstone crops out and is underlain by shallow basement rocks; in this area groundwater has no thermal characteristics. The aquifer system in the East Oweinat area attains a relatively high hydraulic conductivity. The direction of groundwater flow is generally northeastwards but is distorted at faults and fracture zones. Chemical analyses of groundwater in the area indicate a low salt content and suitability for irrigation purposes. As the estimated recharge to the area is low compared with the foreseen irrigation water requirement, the development of groundwater in the East Oweinat should be based on groundwater mining. Although the evaluation of the groundwater resources in East Oweinat has indicated that groundwater can be extracted at a rate of 4.7×106 m3 d–1, the long-term economics of extraction that can sustain large-scale development projects has to be assessed.  相似文献   

20.
The Minqin Basin is at the lower reach of the Shiyang River of Gansu province in northwest China. Dramatic decline in groundwater level has resulted from over-abstraction of groundwater since the late 1950s to satisfy increasing irrigation and other demands. Severe water shortage led to environmental degradation. To better understand the spatial–temporal variation of groundwater levels and to evaluate the groundwater resources in the region, a three-dimensional regional groundwater flow model was built and calibrated under transient condition. The MODFLOW program was used and the research area was discretized as a square network with cell size of 400 × 400 m. The model showed that the aquifer was under destructive stress, with a groundwater resource deficit of 260 million cubic meters per year (Mm3/year) on average. Since the inflow of surface water from the upstream basin has declined to about 100–150 Mm3/year in recent decades, the irrigation return flow had become the main recharge and accounted for 60.6% of total recharge; meanwhile, abstraction by pumping wells took 99.2% from the total groundwater discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号