首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于ABAQUS软件平台,应用自行开发的流固耦合动力模型孔压单元模拟场地土体,并通过黏弹性人工边界方法实现地震动的输入,对饱和土体场地中的双孔隧道结构在地震荷载作用下的动力反应进行研究。计算结果表明:在地震反应结束时刻,场地土体位移幅值在两隧道之间以及两隧道的附近区域较大,而远离隧道的区域则较小;场地底部区域土体的孔压幅值较大,而场地顶部区域土体则较小;隧道左右两侧拱腰部位的衬砌的应力较大,而拱顶部位则较小。计算结果同时表明了流固耦合动力模型孔压单元在饱和土体-隧道体系地震反应研究中的适用性。  相似文献   

2.
Liquefaction of seabed under seismic loading is one of the main points that govern the overall stability of submarine pipeline. However, most previous investigations concerned only with free seabed and searched for seismic accumulative excess pore pressure by solving Terzaghi's consolidation equation containing pore pressure source term. It is not able to introduce two-dimensional structures such as submarine pipelines in one-dimensional problem, and it is also not able to obtain the distribution of seismic accumulative excess pore pressure in seabed around submarine pipelines by such a way. In this study, a FEM numerical analysis method for determining the liquefaction of sandy seabed around a buried pipeline under seismic loading is presented. The empirical mode of dynamic increase of pore pressure under undrained shearing induced by seismic loading is incorporated with two-dimensional dynamic consolidation equation and a numerical procedure based on FEM is developed to assess the accumulative excess pore pressure. By numerical computations, the accumulative process of pore pressure and liquefaction potential of seabed soil during seismic loading is evaluated. From a series of numerical computations based on the presented model with various parameters, the effects of soil characteristic parameters and pipeline geometry on seismic accumulative excess pore pressure around submarine pipeline and along the depth of seabed are explored in detail.  相似文献   

3.
饱和软土自由场地地震反应特性振动台试验   总被引:3,自引:0,他引:3       下载免费PDF全文
为了解软土自由场地地震反应特性,开展饱和软土自由场地地震反应特性大型振动台模型试验。分别从模型体系自振特性、震陷位移及不同土层深度测点的加速度、动孔压比等动力响应指标方面,较为深入和全面地分析饱和软土自由场地地震反应规律、破坏机理。同时还分析模型箱的"边界效应"以验证试验土箱的合理性、有效性和测试仪器性能,并由此进一步确定模型地基有效工作区域。研究表明:(1)地震动作用下,饱和软土自由场地特征频率降低,阻尼增大;(2)饱和软土自由场地对水平输入地震波具有短周期滤波、长周期放大效应,且强震作用下地基失效并表现为减隔震作用;(3)饱和软土自由场地动孔压比优势区域位于浅埋土层,并随着输入地震动强度的增大,该区域动孔压比优势逐渐减弱。该研究可为非自由软土场地试验研究提供必要的技术经验。  相似文献   

4.
砂土自由场地震响应的离心机试验研究   总被引:3,自引:1,他引:2  
离心机模型试验是研究岩土地震工程问题的有效手段。本文使用层状剪切箱,通过干落法制备了均匀的砂土模型,进行了离心机振动试验;观测了振动过程中孔隙水压力的发展,土体的加速度响应、侧向变形以及竖向沉降。结果表明,土体的运动和变形与孔隙水压力的发展密切相关,但离心机中的试验现象和现场观测的现象存在显著区别。研究结果增强了对振动过程中土-水之间相互作用机理的理解,同时为自由场地震响应分析方法的验证提供了基础数据。  相似文献   

5.
The evaluation of a countermeasure against liquefaction which uses a sheet pilering for oil tank sites is presented. The simulation of earthquake responses observed at tank sites with and without sheet pile-ring is first performed to validate the three-dimensional finite element numerical model. Using the numerical model, liquefaction analysis is performed and the excess pore water pressure generated in the soil and the settlement of tank are investigated. The comparison of two- and three-dimensional models is also conducted to assess the applicability of two-dimensional analysis. The results show that the numerical model could simulate the observed earthquake responses of tank-ring-soil system, and that the excess pore water pressure and the settlement of the tank could be significantly reduced using a sheet pile-ring. The two-dimensional analysis proves to be capable of representing the main features of the dynamic response of the three-dimensional tank-ring-soil system.  相似文献   

6.
Accurate prediction of the liquefaction of saturated soils is based on strong coupling between the pore fluid phase and soil skeleton. A practical numerical method for large strain dynamic analysis of saturated soils is presented. The up formulation is used for the governing equations that describe the coupled problem in terms of soil skeleton displacement and excess pore pressure. A mixed finite element and finite difference scheme related to large strain analysis of saturated soils based on the updated Lagrangian method is given. The equilibrium equation of fluid-saturated soils is spatially discretized by the finite element method, whereas terms associated with excess pore pressure in the continuity equation are spatially discretized by the finite difference method. An effective cyclic elasto-plastic constitutive model is adopted to simulate the non-linear behavior of saturated soils under dynamic loading. Several numerical examples that include a saturated soil column and caisson-type quay wall are presented to verify the accuracy of the method and its usefulness and applicability to solutions of large strain liquefaction analysis of saturated soils in practical problems.  相似文献   

7.
地震作用下土体发生液化之后,由于超静孔隙水压力的产生和土体抗剪强度的降低,管道易发生上浮破坏。为研究管道上浮动力反应的影响因素,基于OpenSees有限元软件,通过目标反应谱和谱匹配等方法选取地震波,考虑不同管土特性和地震动特性,对地震作用下管道上浮动力反应进行了二维数值模拟。结果表明:土体相对密度、管径和管道埋深对管道上浮反应的影响较大,分别给出了土体相对密度、管径、管道埋深对管道上浮位移的影响规律及对应拟合公式;长持时地震动作用下,超静孔隙水压力消散较慢,管道上浮位移可达短持时地震动作用下管道上浮位移的2倍左右;近断层脉冲地震动作用下,管道上浮破坏和横向破坏两种破坏模式同时存在,且由于速度脉冲效应,管道横向破坏风险大于上浮破坏风险。  相似文献   

8.
地下结构物抗震稳定性的研究具有重要实际意义。基于动态土工离心试验,应用有效应力法分析了不同水平地震作用下土层和地下RC结构物的最大水平位移、不同埋深的土层加速度和超孔隙水压力变化规律,以及结构物的破坏发展特征,并进一步与试验结果进行了相互验证和对比,取得了较好效果,为重要地下结构物的抗震设计提供了依据和参考。  相似文献   

9.
The evaluation of the wave-induced pore pressure around a buried pipeline is particularly important for pipeline engineers involved in the design of offshore pipelines. Most previous investigations of the wave-induced dynamic response around an offshore pipeline have limited to two-dimensional cases. In this paper, a three-dimensional model including buried pipeline is established, based on the existing DYNE3WAC models. Based on the proposed numerical model and poro-elastic soil material assumption, the effects of wave and soil characteristics, such as wave period, water depth, shear modulus and permeability, and configuration of pipelines, such as pipeline radius and pipeline buried depth, on the wave-induced excess pore pressure will be examined. Numerical results indicated that the normalized excess pore pressures versus z/h near the pipeline increase as the obliquity angle, wave period and water depth increase, and they decrease as the burial depth and radius of pipeline increase above the pipeline. Soil permeability has obvious influence on the wave-induced normalized excess pore pressure, and different soil material will result in distinct computation results.  相似文献   

10.
Shaking table tests were performed to investigate the damage mechanisms of a subway structure in soft soil while experiencing strong ground motions. The seismic responses of the structure and soil were found to be more sensitive to input motions with richer low-frequency components. The excess pore pressure ratio of soil increased slightly, and the distribution of the excess pore pressure surrounding the structure showed clear spatial effects. The frequency spectrum characteristics of input ground motions clearly influenced the lateral displacement of the structure. In addition, the structure was most severely damaged at the top or the bottom of the interior columns. Finite element analyses were conducted by using the modified Martin–Seed–Davidenkov viscoelastic and the rate-independent plastic-damage constitutive models for soil and concrete, respectively. Satisfactory agreement was observed between the simulation and test results, the difference between these results was discussed in detail. The results provide insight into how the characteristics of strong ground motion might influence and present a simplified analysis method to quantitatively evaluate the damage of subway structures in soft soil.  相似文献   

11.
Lateral spreads are complex dynamic phenomena that are challenging to represent numerically. In this paper numerical models are developed and calibrated using the displacement, acceleration, and pore water pressure time histories recorded in a free-field lateral spreading centrifuge test. The calibrated numerical model then is used to predict another free-field lateral spreading centrifuge test using the same soil profile but different input acceleration time history. The computed response shows good agreement with the centrifuge test measurements. This paper demonstrates that even in a large strain problem, such as lateral spreading, small strain damping plays an important role in numerical simulation results; it also shows the need to have pressure dependent dilation parameters in the employed soil constitutive model implemented in order to simultaneously reproduce measurements of pore water pressure, acceleration and lateral displacement.  相似文献   

12.
The evaluation of the wave-induced excess pore pressure around a buried pipeline is particularly important for pipeline engineers involved in the design of offshore pipelines. Existing models for the wave-induced seabed response around submarine pipeline have been limited to poro-elastic soil behavior and de-coupled oscillatory and residual mechanisms for the rise in excess pore water pressure. To overcome the shortcoming of the existing models, in this study a three-dimensional poro-elasto-plastic soil model with submarine pipeline is established, in which both oscillatory and residual mechanisms can be simulated simultaneously. With the proposed model, a parametric study is conducted to investigate the relative differences of the predictions of the wave-induced pore pressure with poro-elasto-plastic model. Based on numerical examples, it can be concluded that the poro-elasto-plastic behaviors of soil have more significant influence on wave-induced pore pressure of seabed around submarine pipeline. As the seabed depth increases, the normalized pore pressures decrease rapidly at the upper part of seabed, and then change slightly at the lower part of the seabed. Soil permeability and wave period have obvious influence on the wave-induced normalized pore pressure.  相似文献   

13.
Numerical analysis of an infinite pile group in a liquefiable soil was considered in order to investigate the influence of pile spacing on excess pore pressure distribution and liquefaction potential. It was found that an optimal pile spacing exists resulting in minimal excess pore pressure. It was also found that certain pile group configurations might reduce liquefaction potential, compared to free field conditions. It was observed that for closely spaced piles and low frequency of loading, pile spacing has little influence on the response of the superstructure.  相似文献   

14.
A three dimensional dynamic numerical methodology is developed and used to back-analyze experimental data on the seismic response of single piles in laterally spreading slopes. The aim of the paper is not to seek successful a-priori (Type A) predictions, but to explore the potential of currently available numerical techniques, and also to get feedback on modeling issues and assumptions which are not yet resolved in the international literature. It is illustrated that accurate simulation of the physical pile–soil interaction mechanisms is not a routine task, as it requires the incorporation of advanced numerical features, such as an effective stress constitutive soil model that can capture cyclic response and shear-induced dilation, interface elements to simulate the flow of liquefied ground around the pile and proper calibration of soil permeability to model excess pore pressure dissipation during shaking. In addition, the “conventional tied node” formulation, commonly used to simulate lateral boundary conditions during shaking, has to be modified in order to take into account the effects of the hydrostatic pore pressure surplus that is created at the down slope free field boundary of submerged slopes. A comparative analysis with the two different lateral boundary formulations reveals that “conventional tied nodes”, which also reflect the kinematic conditions imposed by laminar box containers in centrifuge and shaking table experiments, may underestimate seismic demands along the upper part of the pile foundation.  相似文献   

15.
The evaluation of seismic pile response is particularly useful for geotechnical engineers involved in the design of foundations in liquefying site. Shake table testing was performed to study the dynamic interactive behavior of soil–pile foundations in liquefying ground under different shaking frequency and amplitude. The soil profile consisted of a clayey layer over liquefiable sand over clay. The model was tested with a series of El Centro earthquake motions with peak accelerations ranging from 0.15g to 0.50g, and time step from 0.006 to 0.02 s. Representative data, including time histories of accelerations and excess pore pressure ratios that characterize the important aspects of soil–pile interaction in liquefying ground are presented. The shaking frequency has no significant effect on the magnitudes of excess pore pressure ratio, ground and pile accelerations and pile bending moments. Excess pore pressure ratio, ground acceleration and pile acceleration, and pile bending moment largely depend on the shaking amplitude.  相似文献   

16.
This paper describes a systematic study on the fundamental features of seismic soil pressure on underground tunnels, in terms of its magnitude and distribution, and further identifi es the dominant factors that signifi cantly infl uence the seismic soil pressure. A tunnel embedded in water-saturated poroelastic half-space is considered, with a large variety of model and excitation parameters. The primary features of both the total soil pressure and the pore pressure are investigated. Taking a circular tunnel as an example, the results are presented using a fi nite element-indirect boundary element(FE-IBE) method, which can account for dynamic soil-tunnel interaction and solid frame-pore water coupling. The effects of tunnel stiffness, tunnel buried depth and input motions on the seismic soil pressure and pore pressure are also examined. It is shown that the most crucial factors that dominate the magnitude and distribution of the soil pressure are the tunnel stiffness and dynamic soil-tunnel interaction. Moreover, the solid frame-pore water coupling has a prominent infl uence on the magnitude of the pore pressure. The fi ndings are benefi cial to obtain insight into the seismic soil pressure on underground tunnels, thus facilitating more accurate estimation of the seismic soil pressure.  相似文献   

17.
The paper presents a mathematical model for the deformation of soil under irregular cyclic loading in the simple-shear conditions. The model includes the possible change in the effective pressure in saturated soil due to the cyclic shearing, the reciprocal influence of the effective pressure on the response of the soil to the shear loading, and the pore pressure dissipation due to the seepage of the pore fluid. The hysteresis curves for the strain–stress relationship are constructed in such a way that they produce both the required backbone curve and the required damping ratio as functions of the strain amplitude. At the same time, the approach enables the constitutive functions involved in the model to be specified in various ways depending on the soil under study. The constitutive functions can be calibrated independently of each other from the conventional cyclic shear tests. The constitutive model is incorporated in the boundary value problem for the dynamic site response analysis of level ground. A numerical solution is presented for the dynamic deformation and liquefaction of soil at the Port Island site during the 1995 Hyogoken-Nambu earthquake.  相似文献   

18.
编制完全耦合的三维排水有效应力动力反应分析程序,对可液化地基进行三维地震响应分析,探讨了不同土性参数、不同土层构成和不同附加压重等因素对可液化地基抗液化性能的影响。结果表明:在地震荷载作用下,天然饱和砂土地基中的超孔隙水压力随深度的增大而增大;在不同深度处,超孔压峰值到达的时刻比地震加速度峰值到达的时刻要晚;随输入地震加速度的减弱,深层处的超孔压开始消散或基本保持不变,浅层处的超孔压保持不变或略有上升,这一现象与土性参数、输入地震荷载的情况等因素有关;土性参数对土体本身的抗液化性能有重要影响,初始孔隙比越小,相对密度越大,土体的抗液化能力越强;附加压重有利于地基抗液化能力的提高;随着附加压重的增大,超孔压比减小;附加压重对地基中超孔隙水压力的增长有明显的抑制作用。  相似文献   

19.
饱和砂土液化是由地震引起的一种最常见的工程地质现象,也是造成重大地震灾害的主要原因之一。由于成因的复杂性和所造成灾害的严重性,饱和砂土液化一直是土动力学和岩土地震工程研究领域的重要课题。针对饱和砂土液化问题,基于开源地震工程数值计算平台OpenSees,对材料库中的4种砂土本构模型进行数值计算。采用二维u-p单元模拟土颗粒位移和孔隙水压力,分析和对比4种模型在循环动力荷载作用下的加速度、超孔隙水压力、位移、剪应力-剪应变和平均有效应力路径方面的响应结果。研究结果表明:(1)砂土对输入加速度表现出一定的放大效应,对于不同的模型,该放大效应存在一些差异;(2) Stress Density模型在循环动力荷载作用下易产生永久变形;(3)在循环动力荷载作用下,PDMY模型和CycLiqCPSP模型的强度逐渐降低,直到完全消失;(4) Stress Density模型和Manzari Dafalias模型在循环动力荷载下表现出明显的剪胀效应。研究成果对砂土液化的数值模拟问题具有重要的理论价值,可为饱和砂土的液化模拟和砂土本构模型的选取提供参考。  相似文献   

20.
Pile foundation as well as other underground structures could be seriously affected by soil liquefaction during strong earthquakes. Damages on pile foundation due to liquefaction can be reduced by implementation of some soil improvement method. Main objective of present study is developing of drain method that can improve the soil in order to mitigate the destructiveness of liquefaction on superstructure supported by pile foundation. Series of shaking table tests were conducted on 2×2 pile foundation and soil model was improved by drains. Configurations of drains around piles, intensity of shaking were one of the parameters that were changing during the tests in order to investigate the response of pile foundation in improved soil condition.Shaking table tests and performed On-site experiment showed the following effects of the new drain method. (1) When the intensity of earthquake motion is 200 gal or less, generation of excess pore water pressure is reduced and the pile bending moment is decreased, (2) when the intensity of earthquake motion is stronger (300 gal or more), drainage effect prevents disappearance of subgrade reaction, and (3) proposed new type of drain can control excess pore water pressure without clogging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号