首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Numerical calculations have been made of the radial gradients and the anisotropyvector atr=1 AU due to galactic cosmic-ray protons and helium nuclei. The model used assumes transport by convection and anisotropic diffusion, and includes the energy losses due to adiabatic deceleration. The present calculations are for the 1964–65 solar minimum. An important constraint applied ineach case was that the model reproduces the electron modulation known from deductions of the galactic spectrum and observations of the near-Earth spectrum; and also reproduces the near-Earth proton and helium nuclei spectra. The diffusion coefficients have been based upon those deduced from magnetic-field power spectra.The principal aim has been to provide estimates of radial gradients and anisotropies, particularly at kinetic energiesT100 MeV/nucleon, by the complete solution of realistic models. Typical values for protons, obtained with a galactic differential number density (total energy)–2.5, atT50 MeV are: radial gradient, 25%/AU; radial anisotropy, –0.2%; azimuthal anisotropy, 0.2%. These values change markedly when the galactic spectrum is cut-off or greatly enhanced atT<150 MeV, but the intensity spectrum near Earth remains substantially unchanged.It has been shown that it is possible to obtain negative radial gradients and positive radial anisotropies atT50 MeV for galactic particles and thus to mimic solar sources. The radial gradient for 1964–65 reported by Anderson (1968) and by Krimigis and Venkatesan (1969) are shown to be consistent with the diffusion coefficient deduced from the magnetic-field power spectrum; those reported by O'Gallagher are higher than expected and that for 20T30 MeV protons appears to be inconsistent. More precise data on conditions throughout the solar cavity are required if more definitive gradients and anisotropies are to be determined.  相似文献   

2.
Relative abundances of energetic nuclei in the 4 July 1974 solar event are presented. The results show a marked enhancement of abundances that systematically increase with nuclear charge numbers in the range of the observation, 6 Z 26 for energies above 15 MeV nucl.–1 While such enhancements are commonly seen below 10 MeV nucl–1, most observations at higher energies are found to be consistent with solar system abundances. The energy spectrum of oxygen is observed to be significantly steeper than most other solar events studied in this energy region. It is proposed that these observations are characteristic of particle populations at energies 1 MeV nucl–1, and that the anomalous features observed here may be the result of the high energy extension of such a population that is commonly masked by other processes or populations that might occur in larger solar events.  相似文献   

3.
We have re-examined and extended the measurements of the primary cosmic ray proton and helium nuclei intensities in the range from a few MeV nuc–1 to 100 GeV nuc–1 using a considerable body of recently published data. The differential spectra obtained from this data are determined as a function of both energy and rigidity. The exponents of the energy spectra of both protons and helium nuclei are found to be different at the same energy/nucleon and to increase with increasing energy between 1 and 100 GeV nuc–1 reaching a value=–2.70 at higher energies and in addition, theP/He ratio changes from a value 5 at 1 GeV nuc–1 and below to a value 30 at 100 GeV nuc–1. On a rigidity representation the spectral exponent for each species is nearly identical and remains virtually constant above several GV at a value of –2.70, and in addition, theP/He ratio is also a constant 7 above 3 GeV. The changingP/He ratio and spectral exponent on an energy representation occur at energies well above those at which interplanetary modulation effects or interstellar ionization energy loss effects can significantly affect the spectra. In effect by comparing energy spectra and rigidity spectra in the intermediate energy range above the point where solar modulation effects and interstellar energy loss effects are important, but in the range where there are significant differences between energy and rigidity spectra, we deduce that the cosmic ray source spectra are effectively rigidity spectra. This fact has important implications regarding the mechanism of acceleration of this radiation and also with regard to the form of the assumed galactic spectrum at low energies. The relationship between the proton and helium spectra derived here and the heavier nuclei spectral differences recently reported in the literature is also examined.If rigidity spectra are adopted for protons and helium nuclei, then the source abundance ratio of these two components is determined to be 7:1. Some cosmological implications of this ratio are discussed.  相似文献   

4.
Photometric mean track width measurements have been made on 81 primary particles (Z9) stopping in a nuclear emulsion stack exposed at 2.7 g/cm2 of residual atmosphere at Fort Churchill, Canada. The standard deviation of the charge determinations amounts to 0.14 units of charge for oxygen and increases to 0.40 units for iron nuclei when 10 mm track is measured. The relative abundances of the nuclei in the charge interval 8Z14 are given for the energy interval 250–400 MeV/nucleon, and comparisons are performed with the results of other measurements. The VH-particles are dominated by iron. The distribution of the VH-particles seems to be consistent with the assumption that the VH-nuclei have in the mean passed through only 1.6±0.5 g/cm2 interstellar matter.  相似文献   

5.
During three balloon flights of a 1 m2 sr ionizationchamber erenkov counter detector system, we have measured the atmospheric attenuation, flux, and charge composition of cosmic-ray nuclei with 16Z30 and rigidity greater than 4.5 GV.The attenuation mean-free-path in air of VH (20Z30) nuclei is found to be 19.7±1.6 g cm–2, a value somewhat greater than the best previous measurement. The attenuation mean-free-path of iron is found to be 15.6±2.2 g cm–2, consistent with predictions of geometric cross-section formulae.We measure an absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity. The relative abundances of evencharged nuclei are found to be in good agreement with results of other recent high-resolution counter experiments.We calculate that our observed cosmic ray chemical composition implies relative abundances at the cosmic-ray source of Ca/Fe=0.12±0.04 and S/Fe=0.14±0.05. The results are consistent with all other elements of charge between 16 and 26 being absent at the source and being produced by cosmic-ray fragmentation in interstellar hydrogen. The results show the ratios A/Fe and S/Fe to be significantly lower in the cosmic-ray source than in the solar system.  相似文献   

6.
Bertsch  D. L.  Biswas  S.  Reames  D. V. 《Solar physics》1974,39(2):479-491
Observations of the proton, helium, (C, N, O) and Fe-group nuclei fluxes made during the large 4 August 1972 solar particle event are presented. The results show a small, but significant variation of the composition of multiply-charged nuclei as a function of energy in the energy region above 10 MeV nucleon–1. In particular, the He/(C, N, O) abundance ratio varies by a factor 2 between 10 and 50 MeV nucleon–1 and the Fe-group/(C, N, O) ratio suggests a similar variation. Abundance ratios from the 4 August 1972 event are compared as a function of energy with ratios measured in other solar events to show that several of the earlier results are consistent with an energy variation like that observed in August 1972, while certain other events must have had a substantially different dependence of composition on energy. At energies 50 MeV nucleon–1, the He/(C, N, O) abundance ratio for August 1972 is consistent with all earlier measurements made above that energy which suggests that variations may vanish at high energies.NASA/NAS Senior Resident Research Associate, on leave from TATA Institute of Fundamental Research, Bombay.  相似文献   

7.
Elemental abundances of the VH group of cosmic radiation have been measured in the energy interval 250–550 MeV nucl–1 in a balloon exposure at Sioux Falls (South Dakota) of a plastic detector LeXAN stack. The so obtained abundances have been extrapolated to the sources in the frame of the homogeneous model correcting for energy loss. After taking into account solar modulation, the best fit to model values has led to a escape mean free path e = 5E –0.4 g cm–2, whereE is the energy in GeV nucl–1, forE>1 GeV nucl–1, and a constant e = 5 g cm–2 forE1 GeV nucl–1. When turning to the diffusion model, also including an energy loss term, a diffusion coefficientD=3×1028 cm2 s–1 has been estimated.  相似文献   

8.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

9.
Numerical solutions of the cosmic-ray equation of transport within the solar cavity and including the effects of diffusion, convection, and energy losses due to adiabatic deceleration, have been used to reproduce the modulation of galactic electrons, protons and helium nuclei observed during the period 1965–1970. Kinetic energies between 10 and 104 MeV/nucleon are considered. Computed and observed spectra (where data is available) are given for the years 1965, 1968, 1969 and 1970 together with the diffusion coefficients. These diffusion coefficients are assumed to be of separable form in rigidity and radial dependence, and are consistent with the available magneticfield power spectra. The force-field solutions are given for these diffusion coefficients and galactic spectra and compared with the numerical solutions. For each of the above years we have (i) determined the radial density gradients near Earth; (ii) found the mean energy losses suffered by galactic particles as they diffuse to the vicinity of the Earth's orbit; (iii) shown quantitatively the exclusion of low-energy galactic protons and helium nuclei from near Earth by convective effects; and (iv), for nuclei of a given energy near Earth, obtained their distribution in energy before entering the solar cavity. It is shown that the energy losses and convection lead to near-Earth nuclei spectra at kinetic energies ≤100 MeV/nucleon in which the differential intensity is proportional to the kinetic energy with little dependence on the form of the galactic spectrum. This dependence is in agreement with the observed spectra of all species of atomic nuclei and we argue that this provides strong observational evidence for the presence of energy losses in the propagation process; and for the exclusion of low energy galactic nuclei from near Earth.  相似文献   

10.
The results of detailed calculations on the production of H2 and He3 nuclei by cosmic ray protons and helium nuclei in interstellar medium are presented. The flux and energy spectra of these nuclei as well as those of cosmic ray H1 and He4 nuclei in the vicinity of the Earth are calculated. For this purpose the source spectra are assumed to be in the form of a power law in total energy per nucleon with an additional velocity dependent term. This spectrum denoted as Fermi Spectrum, is about midway between the power law spectrum in rigidity and in total energy per nucleon. The fluxes are calculated taking into account: (1) energy dependent cross-sections of thirteen nuclear reactions of cosmic ray protons and helium nuclei with interstellar H1 and He4 leading to the production of H2 and He3 nuclei, (2) angular distributions and kinematics of these reactions, (3) ionization loss of the primary and secondary nuclei in interstellar medium, (4) elastic collisions of cosmic ray protons and helium nuclei, (5) distributions of cosmic ray path-lengths in in terstellar space as in gaussian and exponential forms, and (6) interplanetary modulation of cosmic rays from the numerical solution of the complete Fokker-Planck equation describing the diffusion, convection and adiabatic deceleration of cosmic ray nuclei in the solar system. On comparing the calculated values of H2/He4 and He3/(He3+He4) as a function of energy with the observed data of several investigators, it is found that agreement between the calculated values and most of the observed data is obtained on the basis of: (a) source spectrum in the form of Fermi Spectrum, (b) distribution of path-lengths as in the gaussian form with a mean value of 4 g cm–2 of hydrogen or as in exponential form with leakage path length of 4 g cm–2.  相似文献   

11.
The intensity and energy spectra of multiply charged cosmic ray nuclei, in the energy interval 250–1500 MeV/n, were studied at three different levels of solar activity, viz. in 1963, 1964 and 1967. The same detectors, nuclear emulsion stacks flown from Fort Churchill, Canada, were used to determine simultaneouslty the energy spectra of helium, C, N, O as well as H (Z=10–28) nuclei. An analysis of the measured spectra indicates that these can be interpreted in terms of: (a) the source spectrum as a Fermi spectrum with a spectral index of 2.65; (b) the interstellar propagation as in a Gaussian distribution of path lengths with a mean path length of 4 g cm–2 and (c) the interplanetary propagation as given by the numerical solution of the Fokker-Planck equation incorporating diffusion, convection and adiabatic deceleration. On comparing the measured ratios of He to H-nuclei (mean Z14) with the theoretically calculated values for the three levels of solar activity, it is found that within experimental uncertainties, the solar modulation is essentially the same for nuclei of same mass to charge ratio and is not dependent on the charge of the nuclei.On leave from Tata Institute of Fundamental Research, Bombay.  相似文献   

12.
The November 22, 1977 solar flare was observed at energies up to 4.9 MeV by French-built gamma ray detectors aboard the Soviet Prognoz-6 satellite. The data show evidence for 2.23 and 4.43 MeV line emission, with the 2.23 MeV emission occurring about 3 min after the flare onset in hard X-rays. The line intensities, 0.11 cm–2s–1 and 0.06 cm–2s–1 for the 2.23 and 4.43 lines, respectively, are roughly comparable to intensities observed in other events. Particle detectors aboard the Prognoz-6 satellite, however, recorded a proton flux much lower than that observed for the 4 August 1972 event. It is shown that this may be taken as evidence for a thick target interpretation of the proton interactions in the solar atmosphere.  相似文献   

13.
The low l solar acoustic spectrum has been measured with great accuracy (v/v 10–4), for intermediate radial order modes, 11 n 34 (Jiménez et al., 1986; Grec, Fossat, and Pomerantz, 1983; Pallé et al., 1986). The measurement of the frequencies of modes of lower n, up to the fundamental one, are very important as they depart from asymptotic behaviour and, therefore, put more severe constraints on solar models. However, their amplitudes are very low (under 2 cm s–1) and when compared to the solar velocity background noise (Jiménez et al., 1986), a S/N 1 is obtained. Taking advantage of the fact that lifetimes seem to be higher at lower frequencies (lower n values) (Jefferies et al., 1988; Elsworth et al., 1990), very long Doppler velocity measurements, obtained at Teide Observatory, have been used to increase S/N, therefore, providing the possibility to detect such modes. The frequencies observed are compared to those predicted by a solar model (Christensen-Dalsgaard, Däppen, and Lebreton, 1988), using the best equation of state yet computed (Mihalas, Däppen, and Hummer, 1988).  相似文献   

14.
Torsti  J.  Valtonen  E.  Anttila  A.  Vainio  R.  Mäkelä  P.  Riihonen  E.  Teittinen  M. 《Solar physics》1997,170(1):193-204
The energy spectra of the anomalous components of helium, nitrogen and oxygen have been measured by the ERNE experiment on board the SOHO spacecraft. During February 28–April 30, 1996, the maximum intensity of anomalous helium was found to be 3.8 × 10-5 cm-2 sr-1 s-1 (MeV nucl-1)-1 in the energy range 10–15 MeV nucl-1. During the period January 26–April 30, 1996, the maximum oxygen intensity was 1.2 × 10-5 cm-2 sr-1 s-1 (MeV nucl-1)-1 at 4–7 MeV nucl-1, and the maximum nitrogen intensity 1.7 × 10-6 cm-2 sr-1 s-1 (MeV nucl-1)-1 at 4–9 MeV nucl-1. These peak intensities are at the same level as two solar cycles ago in 1977, but significantly higher than in 1986. This gives observational evidence for a 22-year solar modulation cycle. A noteworthy point is that the spectra of anomalous nitrogen and oxygen appear to be somewhat broader than in 1977.  相似文献   

15.
Schulze  B. M.  Richter  A. K.  Wibberenz  G. 《Solar physics》1977,54(1):207-228
For an observer in space the intensities and anisotropies of solar cosmic-ray events are governed by the duration and the functional shape of the injection processes near the Sun and by the propagation along the interplanetary magnetic field from the Sun to the observer. We study the influence of four different types of solar injections (Gaussian, exponential, step-function and coronal diffusion), and of a purely diffusive interplanetary propagation, where the diffusion coefficient has a power law dependence on the radial distance from the Sun, =Mr on both the time-intensity and the time-anisotropy profiles at 1 AU. The main results are as follows: A slow quasi-exponential decay of the intensity can be modelled in some cases; all finite injections produce high anisotropies during the main phase of an event; an effective solar injection length can be determined from simultaneous inspection of the intensities and anisotropies; the intensities and anisotropies do to first order not depend on the analytic shape of the various injection profiles. The model is applied to the November 18, 1968 solar event as observed by Pioneer 9 in the 7.5–21.5 MeV and 21.5–60 MeV energy channels. We obtain local diffusion coefficients in the range M= (2.5–5) × 1021 cm2 s–1 and injection periods of the order of 10–20 hr. Closer inspection reveals the change of interplanetary propagation conditions during the event.  相似文献   

16.
We present the tenth list of blue stellar objects of the second part of the First Byurakan Spectral Sky Survey (FBS). The list contains 100 objects in the region+73°+80° and3 h 30 m 18 h 30 m encompassing an area of 355 square degrees. The objects have stellar V magnitude within the limits 12.0–18.5 and B-V colors between–0.77 and+0.37. Of these 100 objects, 80 were discovered for the first time. We give the equatorial coordinates, stellar V magnitude, color index CI, and preliminary classification of the objects on the basis of low-disperion prismatic spectra. For 29 objects we give approximate types, among which 4 are candidates for quasars, 2 for Seyfert galaxies, 1 for superassociation galaxy IC 381, 18 for white dwarfs, and 4 for cataclysmic variables.Translated fromAstrofizika, Vol. 38, No. 2, 1995.  相似文献   

17.
Burgeret al. (1970) calculated the positron flux from the decay of56Co56Fe from cosmic rays injected from supernovae. The plasma properties of the ejected matter are determined in the present calculation in order to include the ionization loss of the positrons as the matter expands. It is found that using the matter velocity distribution of previous supernova model calculations that roughly 10% of the positrons escape. The average lifetime in the galaxy due to ionization loss is found to be relatively small, 1.5×105 yr, and with the above injection results in ×3, the observed flux. The same matter velocity distribution is subjected to ionization loss in the galaxy and a steady state low energy, 10E200 MeV, differential flux spectrum is found,J(E)E –1.2. This removes the difficulty of the high galactic energy density resulting from a steeper spectrum.  相似文献   

18.
A highly anisotropic packet of solar electron intensities was observed on 6 April 1971 with a sensitive electrostatic analyzer array on the Earth-orbiting satellite IMP-6. The anisotropies of intensities at electron energies of several keV were factors 10 favoring the expected direction of the interplanetary magnetic lines of force from the Sun. The directional, differential intensities of solar electrons were determined over the energy range 1–40 keV and peak intensities were 102 cm–2 s–1 sr–1 eV–1 at 2–6 keV. This anisotropic packet of solar electrons was detected at the sattelite for a period of 4200 s and was soon followed by isotropic intensities for a relatively prolonged period. This impulsive emission was associated with the onsets of an optical flare, soft X-ray emission and a radio noise storm at centimeter wavelengths on the western limb of the Sun. Simultaneous measurements of a type III radio noise burst at kilometric wavelengths with a plasma wave instrument on the same satellite showed that the onsets for detectable noise levels ranged from 500 s at 178 kHz to 2700 s at 31.1 kHz. The corresponding drift rate requires a speed of 0.15c for the exciting particles if the emission is at the electron plasma frequency. The corresponding electron energy of 6 keV is in excellent agreement with the above direct observations of the anisotropic electron packet. Further supporting evidence that several-keV solar electrons in the anisotropic packet are associated with the emission of type III radio noise beyond 50R is provided by their time-of-arrival at Earth and the relative durations of the radio noise and the solar electron packet. Electron intensities at E 45 keV and the isotropic intensities of lower-energy solar electrons are relatively uncorrelated with the measurements of type III radio noise at these low frequencies. The implications of these observations relative to those at higher frequencies, and heliocentric radial distances 50R , include apparent deceleration of the exciting electron beam with increasing heliocentric radial distance.Research supported in part by the National Aeronautics and Space Administration under contracts NAS5-11039 and NAS5-11074 and grant NGL16-001-002 and by the Office of Naval Research under contract N000-14-68-A-0196-0003.  相似文献   

19.
Behind-the-limb flares provide a unique opportunity for the study of vertical source structures of microwave bursts and dynamic flare processes. Based on complex observational data related to the outstanding solar proton event on 16 February, 1984, the development of burst emission at a height z 200000 km above the photosphere has been investigated. A comparison with the associated X-ray emission measured aboard various spacecraft yields a time lag of about 1 min between the onset of the unocculted impulsive HXR-emission and the onsets of the X-ray and microwave emissions occulted by the solar limb. The lag corresponds to a range of speeds of the propagation of the flare volume of about 3000–5000 km s–1. Considering competing transport agents that could account for such expansion of the source volume, a qualitative model of shock-wave activation of loops successively reaching into larger coronal heights is proposed.From a discussion of the possible emission processes involved, conclusions about the magnetic field, electron density, and particle energies have been obtained.  相似文献   

20.
Data accumulated by the Solar Maximum Mission Gamma Ray Spectrometer (GRS) have been searched for evidence of the 2.223 MeV neutron capture line from the Sun, outside the times of -ray-emitting solar flares. Background-corrected spectra accumulated over 3-day intervals between 1980 and 1989 show no evidence of the line. Upper limits are reported separately for periods of high and low solar activity.A conservative 3 upper limit of 5.7 × 10–5 (cm2 s)–1 is placed on the steady flux in the 2.223 MeV line during inactive periods, which is nearly two orders of magnitude lower than previously published results. After correction for limb darkening of the line emission from off-center positions, this upper limit becomes 7.1 × 10–5 (cm2s)–1. Our 3 upper limit on the steady flux in the line during periods of high solar activity is 6.9 × 10–5 (cm2 s)–1, or 8.6 × 10–5 (cm2 s)–1 after correction for limb darkening. Our results imply that the quiescent solar corona cannot be heated by ions accelerated above 1 MeV in microflares (or a continuous acceleration process), so long as the ion energy spectrum is similar to that measured in large flares. We also use our results to derive the rate of tritium production at the solar surface; our upper limit of 9 nuclei (cm2 s)–1 is about a factor of 9 below the upper limit from searches for 3H in the solar wind. We place upper limits of the order 1033 on the number of energetic (> 30 MeV) protons which can be stored in active regions prior to being released in solar flares, which imply that the strongest observed flares cannot be produced by such a mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号