首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce two sets of fully normalized harmonics for the spectral analysis of functions defined on a spherical cap. The harmonics are the products of Fourier functions and the fully normalized associated Legendre functions of non-integer degree. Using Sturm-Liouville theory for boundary-value problems, we present two convenient and stable formulae for computing the zeros of the associated Legendre functions that form two sets of orthogonal functions. Formulae for the stable numerical evaluation of the fully normalized associated Legendre functions of non-integer degree that avoid the gamma function are also derived. The result from the expansions of sea-level anomaly from altimetry into Set 2 fully normalized cap harmonics shows fast convergence of the series, and the degree variances decay rapidly without aliasing effects. The zero-degree coefficients (Set 2) of sea-level anomaly from TOPEX/ POSEIDON (T/P) and ERS-1 indicate an El Niño event during 1993 January-1993 July, and a La Niño event during 1993 November-1994 July, although the ERS-1 result is less obvious. Ocean circulations over the South China Sea and the Kuroshio area are clearly identified with the low-degree expansions of sea-surface topography (SST) from T/P and ERS-1. A cold-core eddy of 4° in diameter centred at 17.5°N, 118 E was detected with the expansion of SST from T/P cycle 47, and a property of the cap harmonics is used to compute this eddy's kinetic energy. The kinetic energy is at a low in winter and high in summer, and its variation seems to be periodic with an amplitude of 0.4 m2 S-2.  相似文献   

2.
Summary. A solution is found for the seismic radiation from an arbitrarily growing spherical source in an inhomogeneously prestressed elastic medium. The general problem of the growing seismic source in a prestressed medium is formulated as a boundary value problem. For the special case of the growing spherical source, an expansion in vector spherical harmonics reduces the problem to a set of one-dimensional Volterra integral equations. The equations can be easily formed through the use of Bessel function recursion relations. The integral equations for a growing spherical cavity are solved numerically. Waveforms are then computed for homogeneous and inhomogeneous stress fields for several growth histories. The resulting waveforms are similar to the waveforms of the corresponding instantaneous problem, but stretched out in time and reduced in amplitude. The effects of diffraction and the overshoot of equilibrium are reduced with a reduction in growth rate. The effects caused by inhomogeneity of the stress field are quite strong for the growing as well as for the instantaneous seismic source.  相似文献   

3.
b
Spherical harmonics are orthonormalized using the Gram-Schmidt process in a function space. The problem of linear dependence of spherical harmonics over the oceans is studied using the Gram matrices and consequently three sets of orthonormal (ON) functions have been constructed. For the process an efficient formula for computing inner products of spherical harmonics has been developed. Important spectral properties of the ON functions are addressed. The ON functions may be used for representing the sea surface topography (SST) in the analysis of satellite altimeter data. The geoid error can be transformed to a representation by the ON functions and hence the comparison of powers of the geoid error and the SST signal only over the oceans is possible, leading to a better way of determining the cut-off frequency of the SST in the simultaneous solution using satellite altimeter data. As a case study, the modified Levitus SST is expanded into the ON functions. The results show that 99.90 per cent of that signal's energy is contained within degree 24 of the orthonormal functions. Such expansions also render better spectral behaviour of oceanic signals as compared to that from spherical harmonic expansions. The study shows that these generalized Fourier functions are suitable for spectral analyses of oceanic signals and they can be applied to future altimetric mission where the geoid and the SST are to be recovered.  相似文献   

4.
Various methods that take account of the potential nature of the field have been proposed for modelling geomagnetic data on a regional scale. Several of these have been applied to a standard data set based on annual mean values from observatories in Europe. Here, we examine some of the properties of spherical cap harmonic analysis when applied to this data set, and compare the quality of fit with that of the other models. It is found that, for this data set, rectangular polynomial analysis provides a compact fit to main field data, but that in most other cases, for both main field and anomaly data, spherical cap harmonic analysis provides the better fit. Although relatively insensitive to chosen cap size, spherical cap harmonic analysis deteriorates more rapidly than the other methods when the number of coefficients is reduced.  相似文献   

5.
Algorithms for the stable computation of generalized and ordinary spherical harmonics are presented. The algorithms are fast and have the useful property that they can compute harmonics for isolated harmonic degrees. fortran and C programs implementing these algorithms are available from the authors.  相似文献   

6.
A spherical harmonic degrees 60, global internal field model is described (called BGS/G/L/0706). This model includes a degree 15 core and piecewise-linear secular variation model and is derived from quiet-time Ørsted and Champ satellite data sampled between 2001.0 and 2005.0. For the satellite data selection, a wide range of geomagnetic index and other data selection filters have been used to best isolate suitably quiet magnetospheric and ionospheric conditions. Only a relatively simple, degree one spherical harmonic, external field model is then required. It is found that a new 'Vector Magnetic Disturbance' index ( VMD ), the existing longitude sector A indices, the auroral zone index IE , and the polar cap index PC are better than Kp and Dst at rejecting rapidly varying external field signals at low, middle, auroral and polar latitudes. The model quality is further enhanced by filling spatial and temporal gaps in the quiet data selection with a second selection containing slightly more disturbed data. It is shown that VMD provides a better parametrization than Dst of the large-scale, rapidly changing, external field. The lithospheric field model between degrees 16 and 50 is robust and displays good coherence with other recently published models for this epoch. BGS/G/L/0706 also shows crustal anomalies consistent with other studies, although agreement is poorer in the southern polar cap. Intermodel coherency reduces above about degree 40, most likely due to incompletely filtered signals from polar ionospheric currents and auroral field aligned currents. The absence of the PC index for the southern hemisphere for 2003 onwards is a particular concern.  相似文献   

7.
利用南极地区40多个GPS跟踪站2010年全年的实测数据,实现了极区电离层TEC建模,对多项式模型、广义三角级数函数模型、低阶球谐函数模型、改进的球谐函数模型以及球冠谐函数模型等五种电离层经验模型进行了比较,并评估了其在极区的适用性情况。结果表明,各个模型在极区都可以取得比较好的拟合精度,残差均值在0.1TECU以内,均方根误差在2 TECU以内。  相似文献   

8.
Regional spherical coordinate observations of the Earth's crustal magnetic field components are becoming increasingly available from shipborne, airborne, and satellite surveys. In assessing the geological significance of these data, theoretical anomalous magnetic fields from geologic models in spherical coordinates need to be evaluated. This study explicitly develops the elegant Gauss–Legendre quadrature formulation for numerically modelling the complete magnetic effects (i.e. potential, vector and tensor gradient fields) of the spherical prism. We also use these results to demonstrate the magnetic effects for the crustal prism and to investigate the crustal magnetic effects at satellite altitudes for a large region of the Middle East centred on Iran.  相似文献   

9.
Although studies on glacial isostatic adjustment usually assume a purely linear rheology, we have previously shown that mantle relaxation after the melting of Laurentide ice sheet is better described by a composite rheology including a non-linear term. This modelling is, however, based on axially symmetric geometry and glacial forcing derived from ICE-3G and suffers from a certain amount of arbitrariness in the definition of the ice load. In this work we apply adjusted spherical harmonics analysis to interpolate the ice thicknesses of ICE-3G and ICE-1 glaciological models. This filters out the non-axisymmetric components of the ice load by considering only the zonal terms in the spherical harmonics expansion. The resulting load function is used in finite-element simulation of postglacial rebound to compare composite versus purely linear rheology. Our results confirm that composite rheology can explain relative sea level (RSL) data in North America significantly better than a purely linear rheology. The performance of composite rheology suggests that in future investigations, it may be better to use this more physically realistic creep law for modelling mantle deformation induced by glacial forcing.  相似文献   

10.
We describe a method of expressing azimuthally anisotropic surface wave velocities on the Earth using a local and smooth spherical-spline parametrization. Anisotropy in the Earth leads to azimuthally varying Love and Rayleigh wave velocities that can be expressed as (cos 2ζ, sin 2ζ) and (cos 4ζ, sin 4ζ) perturbations to the isotropic velocities, where ζ is the direction of surface-wave propagation. The strength of the perturbations varies laterally, and a current goal of seismic tomography is the detailed global mapping of these variations. Several parametrizations have previously been used to describe azimuthally varying velocities. The representation proposed here uses spherical splines and is designed to describe smooth variations in both the strength and geometry of azimuthal anisotropy. The method builds on a simple geometrical approximation for the local azimuth of propagation expressed at the defining spline knot points. It avoids the singularities at the poles that result when azimuthal variations are parametrized using traditional scalar spherical harmonics. Compared with a generalized spherical-harmonic expansion of the tensor fields that represent 2ζ and 4ζ azimuthal variations smoothly on a sphere, the new method offers the advantages of local geographical support and simplicity of implementation.  相似文献   

11.
We present a simple notation for performing differential vector operations in orthogonal curvilinear coordinates, and for easily obtaining partial differential expressions in terms of the physical components. We express n th-order tensors as the summed products of the physical components and n th-order polyads of unit vectors (an extension of Gibbs dyadic notation convenient for a summation convention). By defining a gradient operator with partial derivatives balanced by the inverse scale factors, differential vector (or tensor) operations in orthogonal coordinates do not require the covariant/contravariant notation. Our primary focus is on spherical-polar coordinates, but we also derive formulae which may be applied to arbitrary orthogonal coordinate systems. The simpler case of cylindrical-polar coordinates is briefly discussed. We also offer a compact form for the gradient and divergence of general second-order tensors in orthogonal curvilinear coordinates, which are generally unavailable in standard handbooks. We show how our notation relates to that of tensor analysis/differential geometry. As the analysis is not restricted to Euclidean geometry, our notation may be extended to Riemannian surfaces, such as spherical surfaces, so long as an orthogonal coordinate system is utilized. We discuss the Navier-Stokes equation for the case of spatially variable viscosity coefficients.  相似文献   

12.
Summary. From 1883 to 1901 magnetic elements were continuously recorded at the French Saint-Maur observatory. From 1893 to 1895, Earth potentials along two 15 km long orthogonal lines were also recorded. Moreover, from 1884 to 1885, Blavier,'Ingénieur des Télégraphes', used several some hundred kilométre long telegraphic lines to measure and record Earth potentials. Using this set of data we will study the daily variations of the telluric and magnetic fields and the way according to which these two fields are correlated.
The observed magnetotelluric tensor is antisymmétric when the long telluric lines are considered. It is not the case for the short lines. But, making use of a correction derived from the formalism developed by Le Mouel & Menvielle in the static distortion approximation, one can derive an impedance whose phase is equal to the phase of the impedance derived from the long line data.  相似文献   

13.
Summary The linearized equation of motion for the slightly elliptical rotating earth is obtained and using Phinney & Burridge's generalized spherical harmonics, the variational principle is derived for the normal mode oscillations of the Earth. The numerical solutions of two earth models 1066B and B1S6 are searched by minimizing the energy functional for the terrestrial spectral range longer than the lowest order free oscillation. The periods of core modes computed for the earth model B1S6, with stably stratified outer core, ranges from about 4 to 13hr and the periods for the 1066B are much more spread without clustering around the periods of 6 and 12 hr as in B1S6. The results for the earth model 1066B indicate that an outer core can support long-period oscillations even when it is not stably stratified. The Chandler wobble periods obtained are 402.3 day for B1S6 and 402.7 day for 1066B.  相似文献   

14.
Summary. A method for the determination of the electrical conductivity of the Earth is developed when the components of the response function on the basis of spherical harmonics for a fixed frequency are known. By writing the differential equation for the field inside a spherically symmetric conductor as a finite difference equation, it is shown that the formal solution of the latter for the response function has a Thiele representation in the degree of the harmonics. This property enables one to calculate the conductivity at a finite number of points using a continued-fraction expansion of the response function.  相似文献   

15.
Surface integral formulae are derived expressing any one of certain field quantities, namely current functions, magnetic potentials and normal components of magnetic fields, in terms of any one other, for current systems flowing in concentric spherical surfaces. In all, 36 such formulae are obtained, which should prove useful in many geomagnetic studies, especially in geomagnetic induction problems.  相似文献   

16.
本文利用南极长城站1987年4月至9月的地磁资料,分析了长城站地区冬季地磁S_q变化特征。分析结果表明:(1)南极长城站在初冬(4月)与冬末(9月)月份的S_q变化形态与北半球中纬度的北京地磁台的S_q变化形态基本相似,这可能是由中纬度电离层中的发电机电流所控制的。在仲冬月份(6月与7月),由于太阳紫外辐射效应减少,高纬度的地磁扰动占主导地位,反映出S_q变幅很小和以8小时以下的较短周期谐波起主要作用,(2)在初冬与冬末月份的S_q等效电流矢量,白天比黑夜大约5倍;其矢量方向在白天(08—15时)为顺时针,黑夜为反时针。在仲冬月由于电离层中电流的影响相对减弱,S_q等效电流矢量很小,白天与黑夜基本一样;其矢量分布方向与初冬和冬末的矢量方向不同,这可能是极区的电离层电流或场向电流的影响造成的。  相似文献   

17.
Generalized spherical harmonics are used to simplify the calculation of the perturbation matrix elements (coupling coefficients) for the free oscillations of an anisotropic and laterally heterogeneous earth. In the asymptotic limit of large angular order, the local frequency pertubration which depends on the azimuth and on the location of Earth's surface is defined, and the correspondence to surface waves is established.  相似文献   

18.
张赤军  陆洋 《极地研究》1998,9(2):71-75
1IntroductionTheAntarcticiceshetnearlyocupies90%oftheglobalones,theformationandablationofwhichhaveastrongimpactontheglobalgeo...  相似文献   

19.
The modern geomagnetic field is usually expressed as a spherical harmonic expansion. Although the palaeomagnetic record is very incomplete in both space and time, sufficient data are available from a span of ages to generate time-averaged spherical harmonic field models with many degrees of freedom. Here three data sets are considered: directional measurements from lavas, inclination measurements from ocean sediments, and intensity measurements from lavas. Individual data are analysed, as well as site-averages, using the same methods that have been developed for the modern field, to give models for the past 5 Myr. The normal-polarity field model has an axial-dipole intensity similar to that of the modern-day field, whilst the equatorial-dipole component is very much smaller. The field is not axisymmetric, but shows flux concentrations at the core's surface under Canada and Siberia similar to those observed in the field over historical timescales. Tests on synthetic data show that it is unlikely that these similarities result from the overprinting of the palaeomagnetic field due to inadequate cleaning of the samples. The reverse-polarity field model does not show such obvious features, but this may be due to the sparsity of the data.
The patterns observed in the normal-polarity field, with persistent features in the northern hemisphere and a smooth southern hemisphere, could be explained if the present pattern of secular variation is typical of the past several million years. This would reveal itself as large variations over time in the direction of the magnetic vector in regions of high secular variation, with relatively little change over quieter regions. However, we have been unable to find any evidence for a geographical pattern of secular variation in the data.  相似文献   

20.
We present a spectral-finite-element approach to the 2-D forward problem for electromagnetic induction in a spherical earth. It represents an alternative to a variety of numerical methods for 2-D global electromagnetic modelling introduced recently (e.g. the perturbation expansion approach, the finite difference scheme). It may be used to estimate the effect of a possible axisymmetric structure of electrical conductivity of the mantle on surface observations, or it may serve as a tool for testing methods and codes for 3-D global electromagnetic modelling. The ultimate goal of these electromagnetic studies is to learn about the Earth's 3-D electrical structure.
Since the spectral-finite-element approach comes from the variational formulation, we formulate the 2-D electromagnetic induction problem in a variational sense. The boundary data used in this formulation consist of the horizontal components of the total magnetic intensity measured on the Earth's surface. In this the variational approach differs from other methods, which usually use spherical harmonic coefficients of external magnetic sources as input data. We verify the assumptions of the Lax-Milgram theorem and show that the variational solution exists and is unique. The spectral-finite-element approach then means that the problem is parametrized by spherical harmonics in the angular direction, whereas finite elements span the radial direction. The solution is searched for by the Galerkin method, which leads to the solving of a system of linear algebraic equations. The method and code have been tested for Everett & Schultz's (1995) model of two eccentrically nested spheres, and good agreement has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号