首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural tracers (alkalinity and silica) were used to infer groundwater–surface‐water exchanges in the main braided reach of the River Feshie, Cairngorms, Scotland. Stream‐water samples were collected upstream and downstream of the braided section at fortnightly intervals throughout the 2001–2002 hydrological year and subsequently at finer resolution over two rainfall events. The braided reach was found to exert a significant downstream buffering effect on the alkalinity of these waters, particularly at moderate flows (4–8 m3 s?1/?Q30–70). Extensive hydrochemical surveys were undertaken to characterize the different source waters feeding the braids. Shallow groundwater flow systems at the edge of the braided floodplain, recharged by effluent streams and hillslope drainage, appeared to be of particular significance. Deeper groundwater was identified closer to the main channel, upwelling through the hyporheic zone. Both sources contributed to the significant groundwater–surface‐water interactions that promote the buffering effect observed through the braided reach. Their impact was less significant at higher flows (>15 m3 s?1/>Q10) when acidic storm runoff from the peat‐covered catchment headwaters dominated, as well as under baseflow conditions (<4 m3 s?1/<Q70), when upstream alkalinity was already buffered owing to headwater groundwater sources assuming dominance. The significant temporally and spatially dynamic influence of these groundwater–surface‐water interactions was therefore seen to have important implications for both catchment functioning and instream ecology. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
River incision and vegetation dynamics in cut-off channels   总被引:1,自引:0,他引:1  
The consequences of river incision on ecosystems dynamics in cut-off channels were hypothesized to be 1) the reduction of river backflows and overflows of the river in the former channels; 2) the reduction of seepage flows from the river and drainage into the channels; 3) the drainage of the hillslope aquifer by the former channels. The subsequent changes of aquatic plant communities should be 1) the terrestrialization of the higher part of former channels and 2) their change into more oligotraphent ones if the hillslope aquifer is poorer in nutrients than the river. In those reaches where the river bed is aggraded, river backflows in the cut-off channel should increase, as should overflows and seepage, and more eutraphent species should develop. Changes in aquatic vegetation were studied over a ten-year period in four cut-off channels supplied by a nutrient-poor hillslope aquifer and a nutrient-rich river. Two of them were located in an incised reach of the river, one in an aggraded reach and one (reference) in a reach that was neither aggraded nor incised. The vegetation of the reference channel exhibited only minor changes over the ten-year period, indicating that the successional trend is not perceptible at the time scale of the study, and thus that any change observed in the other channels can be ascribed to river incision or aggradation. Terrestrialization expected in the channels located in the incised reach clearly progressed in the downstream parts, but was inhibited by groundwater supplies in the upper parts. As expected, oligotraphent communities progressed or remained dominant in the upper part. The channel located in the aggraded reach of the river exhibited the highest floristic changes. As expected, eutraphent communities progressed in this channel, but unexpectedly, terrestrialization also progressed in the upstream part. Alternative explanations are: 1) aggradation could have instigated more backflows and overflows without modifying significantly the mean water-level and 2) more frequent water overflows could have favoured alluvial deposition and thus terrestrialization.  相似文献   

3.
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the distribution of coaster brook trout (a life history variant of Salvelinus fontinalis) spawning redds. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. A monitoring well system consisting of 22 wells was installed in the riverbed to measure surface and subsurface temperatures over a 13-month period. The array of monitoring wells was positioned to span areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from five depths within each monitoring well. Temperatures in the substrate beneath the spawning area were generally less variable than river temperatures, whereas temperatures under the nonspawning area were generally more variable and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated groundwater velocities in the spawning area were primarily in the upward direction and were generally greater in magnitude than velocities in the nonspawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater flux into the river bed.  相似文献   

4.
Field measurements and morphodynamic simulations were carried out along a 5‐km reach of the sandy, braided, lower Tana River in order to detect temporal and spatial variations in river bed modifications and to determine the relative importance of different magnitude discharges on river bed and braid channel evolution during a time span of one year, i.e. 2008–2009. Fulfilling these aims required testing the morphodynamic model's capability to simulate changes in the braided reach. We performed the simulations using a 2‐D morphodynamic model and different transport equations. The survey showed that more deposition than erosion occurred during 2008–2009. Continuous bed‐load transport and bed elevation changes of ±1 m, and a 70–188‐m downstream migration of the thalweg occurred. Simulation results indicated that, during low water periods, modifications occurred in both the main channel and in other braid channels. Thus, unlike some gravel‐bed rivers, the sandy lower Tana River does not behave like a single‐thread channel at low discharge. However, at higher discharge, i.e. exceeding 497 m3/s, the river channel resembled a single‐thread channel when channel banks confined the flow. Although the spring discharge peaks caused more rapid modifications than slower flows, the cumulative volumetric changes of the low water period were greater. The importance of low water period flows for channel modifications is emphasized. Although the 2‐D model requires further improvements, the results were nevertheless promising for the future use of this approach in braided rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Many west coastal and northern Norwegian rivers run through deep, confined valleys with permeable layers of glacial and alluvial deposits. Groundwater flows through these permeable layers and enter lakes and rivers as underwater seepage and springs. Groundwater inflow to inland Norwegian rivers may constitute 40–100% of total water discharge during low flow periods in late summer and winter. Juvenile salmonids may take advantage of groundwater upwellings and actively seek out such patches. In regulated rivers groundwater influx may create refuges during low flow or hydropeaking episodes. The importance of groundwater for salmon redd site selection and egg survival is also clear, although less known and documented in regulated rivers.Eggs of Atlantic salmon (Salmo salar) are deposited in redds in river bed gravels lacking fine sediments and with high oxygen levels. Egg development is therefore dependent on the interaction of a number of environmental factors such as groundwater influx, oxygen and temperature. Atlantic salmon in the regulated River Suldalslågen, Western Norway, spawn relatively late compared to other Norwegian rivers, with a peak in early January. Newly emerged fry are found from the end of May to the beginning of June, i.e. “swim up” one month earlier than expected using models for egg and alevin development and river water temperatures. The most plausible explanation is that groundwater has a higher and more stable temperature than surface river water. In field experiments, fertilized salmon eggs were placed in boxes close to natural spawning redds in the river bed at sites influenced and those not influenced by groundwater. A difference of up to 40 days in 50% hatching was found, and “swim up” occurred at the end of May in boxes influenced by groundwater.Preliminary studies have revealed that groundwater also plays an important role in survival of salmon eggs in the River Suldalslågen when dewatered in winter. Eggs placed in boxes in groundwater seepage areas during winter in the dewatered river bed survived even when covered by ice and snow. The survival from fertilization until 30 April, one month before hatching, was 91%, the same survival as found for eggs placed in boxes in the wetted river bed. However, mortality from fertilization to hatching was higher compared to the eggs placed in wetted river bed, 57 and 91% respectively.Groundwater creates a horizontal and vertical mosaic of temperatures in spawning redd areas leading to potentially greater variation in spawning sites, time of hatching and “swim up”. This is likely to increase egg survival during low flow periods in regulated rivers. In conclusion, the interaction between groundwater and surface river water should therefore be considered when managing fish populations in regulated rivers.  相似文献   

6.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The recent (25 years) morphodynamics of a proglacial reach of the Ridanna Creek, North‐East Italy, evolving in the absence of human constraints, has been investigated by means of an intensive field activity and of the analysis of aerial photographs. The study reach mostly displays a braided morphology, with sharp downstream variations of valley gradient, sediment size and formative conditions within the main channel. These discontinuities are associated with different processes of channel adjustment at different timescales, which have been quantified by coupling hydrological with morphological information. Several processes of channel change and variations in braiding intensity have been documented along the whole reach and highlight how a regular, weakly meandering main channel may significantly affect the morphodynamics of the braided network. A first attempt to predict the morphological instability of this main channel at the observed spatial scales through existing linear theories of curved river channels shows a good agreement with field observations. Finally, the complete hydro‐morphodynamical characterization of such an undisturbed alpine river reach can provide a relevant contribution to the definition of reference conditions for Alpine rivers required by the EU Water Framework Directive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
We adopt a multidisciplinary approach toward the quantitative assessment of juvenile fish habitats in Alpine rivers using analytical modeling. The study focuses on braided and single-thread channel configurations together with their associated hydrodynamic patterns. A distinct difference between flows in these channels is the number and spatial arrangement of recirculation zones. These are due to the separation of flow from the river banks and result in a higher retention of flow in braided channels. Braided channels were also shown to provide more favourable shelter and nursing conditions for fish larvae and juveniles by mitigating high velocities during floods, by maintaining relatively shallow areas of flow, and by significant adjustments in the thermal regime. A historical analysis revealed a significant reduction of braided reaches along Alpine rivers that have most likely led to a significant degradation of the fish fauna.  相似文献   

9.
1 INTRODUCTION It is well known that the river channel patterns are determined by long-term water-sediment conditions. However, quantitative expressions for river channel patterns and their fluvial processes still remain not clear. Existing theories in this aspects, such as geomophological theory, theory of maximum energy consuming rate, stability theory, theory of probability, and statistic analysis, are developed based on certain simplified assumptions and can not be successfully used t…  相似文献   

10.
Following the implementation of the European Water Framework Directive (WFD) and the need to reach a “good ecological status” for rivers, key-questions are being raised about braided rivers. Before any environmental policy can be drawn up, these rivers need to be located, long term changes must be evaluated, and the regional diversity of such systems must be understood, as their inner complexity has not yet been well studied. Therefore, the aim of this work is to carry out a census of the braided channels of the French Alps and to establish a typology based on basic geomorphic indicators. A minimum estimate of the cumulative length of braided rivers prior to major infrastructure construction amounted to 1214 km. Around 53% of these rivers have disappeared during the last two centuries in relation to embankment or channelization, but a loss of 17% is still unexplained. The range in catchment size, mean slope and active channel width has been determined for the Western Alpine braided channels as well as the range in changes due to narrowing, widening and shifting. Seven types of braided rivers have been distinguished based on geographical settings (climate conditions and geology) and differences in terms of adjustment to human pressure on peak flow and sediment delivery. The percentage area of islands in the active channel and the relative length of banks also show a regional difference. Maximum and minimum thresholds of braided activity have been established taking into account the active channel width and the catchment area. The position of the studied reaches between these two thresholds are discussed in relation to position of rivers known in the literature, considering both long-term trends and short-term fluctuations in channel width.  相似文献   

11.
Scarcity of hydrological data, especially streamflow discharge and groundwater level series, restricts the understanding of channel transmission losses (TL) in drylands. Furthermore, the lack of information on spatial river dynamics encompasses high uncertainty on TL analysis in large rivers. The objective of this study was to combine the information from streamflow and groundwater level series with multi‐temporal satellite data to derive a hydrological concept of TL for a reach of the Middle Jaguaribe River (MJR) in semi‐arid north‐eastern Brazil. Based on this analysis, we proposed strategies for its modelling and simulation. TL take place in an alluvium, where river and groundwater can be considered to be hydraulically connected. Most losses certainly infiltrated only through streambed and levees and not through the flood plains, as could be shown by satellite image analysis. TL events whose input river flows were smaller than a threshold did not reach the outlet of the MJR. TL events whose input flows were higher than this threshold reached the outlet losing on average 30% of their input. During the dry seasons (DS) and at the beginning of rainy seasons (DS/BRS), no river flow is expected for pre‐events, and events have vertical infiltration into the alluvium. At the middle and the end of the rainy seasons (MRS/ERS), river flow sustained by base flow occurs before/after events, and lateral infiltration into the alluvium plays a major role. Thus, the MJR shifts from being a losing river at DS/BRS to become a losing/gaining (mostly losing) river at MRS/ERS. A model of this system has to include the coupling of river and groundwater flow processes linked by a leakage approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
《国际泥沙研究》2020,35(6):609-620
The fluvial geomorphology in tectonically active (particularly rapid uplift) regions often undergoes continuous change. The rapid uplift is coincident with high erosion rates; consequently, incised valleys are formed. Mass flows (for example, avalanches, landslides, and debris flows) in incised valleys can markedly influence fluvial processes and even reshape valley geomorphology. However, these processes and long-term evolution corresponding to mass flows require further clarification. Field campaigns were carried out in the region near the Yigong Tsangpo and Palong Tsangpo Rivers (hereafter the Yigong and Palong Rivers), the two largest tributaries of the lower Yarlung Tsangpo River, to examine the feedback between fluvial processes and mass flows. Remote sensing images from recent decades were used to compare the channel morphology before and after typical mass flows (particularly catastrophic ones). The morphology of the lower Yigong River has evidently been impacted by landslides, while that of the Palong River has mainly been shaped by glacial processes and debris flows. At present, the morphology of the latter consists of alternating sections of gorges and wide valleys, with a staircase-like longitudinal profile. The gorge sections exhibit single and deeply incised channels with a high-gradient channel bed and terraces. In contrast, the wide valley sections consist of lakes, braided or anabranching channels, gentle bed gradients, and thick alluvial deposits. Debris flows occur more frequently in gullies in the reaches of the gorge sections and rarely in gullies along the wide valley sections. The occurrence of mass flow events has resulted in an imbalance of the previous (quasi-)equilibrium in the river morphology; however, this has triggered negative feedback that is driving the transient river morphology to a new state of (quasi-)equilibrium.  相似文献   

13.
A 1:50 scale hydraulic model was designed, based on Froude number similarity and using hydrological and sediment data from a small braided gravel-bed river (the North Branch of the Ashburton River, Canterbury, New Zealand). Eighteen experiments were conducted; seven using steady flows, and eleven using unsteady flows. The experiments were carried out in a 20 m × 3 m tilting flume equipped with a continuous sediment feed and an automated data acquisition and control system. In all experiments water at 30°C was used to reduce viscosity-related scale effects. Analyses of the experimental data revealed that bedload transport rates in braided channels are highly variable, with relative variability being inversely related to mean bedload transport rate. Variability was also found to be cyclic with short-term variations being caused by the migration of bedforms. Bedload transport was found to be more efficient under steady flow than under unsteady flow, and it was postulated that this is caused by a tendency for channel form to evolve towards a condition which maximizes bedload transport for the occurring flow. Average bedload transport rate was found to vary with channel form, although insufficient measurements were made to define a relationship.  相似文献   

14.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

15.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The etymology and historic usage of such terms as ‘anabranch’, ‘anastamose’ and ‘braided’ within river science are reviewed. Despite several decades of modern research to define river channel typologies inclusive of single channels and multiple channel networks, typologies remain ill‐conditioned and consequently ill‐defined. Conventionally employed quantitative planform characteristics of river networks possibly cannot be used alone to define channel types, yet the planform remains a central part of all modern classification schemes, supplemented by sedimentological and other qualitative channel characteristics. Planform characteristics largely have been defined using non‐standardized metrics describing individual network components, such as link lengths, braiding intensity and bifurcation angles, which often fail to separate visually‐different networks of channels. We find that existing typologies remain pragmatically utilitarian rather than fundamentally physics‐based and too often fail to discriminate between two distinctive and important processes integral to new channel initiation and flow‐splitting: (i) in‐channel bar accretion, and (ii) channel avulsion and floodplain excision. It is suggested that, first, if channel planform is to remain central to river typologies, then more rigorous quantitative approaches to the analysis of extended integral channel networks at extended reach scales (rather than network components) are required to correctly determine whether ‘visually‐different’ channel patterns can be discriminated consistently; and, second, if such visually‐different styles do in fact differ in their governing processes of formation and maintenance. A significant question is why do so many seemingly equilibrium network geometries possess a large number of anabranches in excess of predictions from theoretical considerations? The key research frontier with respect to initiating and maintaining multichannel networks remains the understanding and discrimination of accretionary‐bar flow splitting versus avulsive processes. Existing and new knowledge on flow splitting processes needs to be better integrated into channel typologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Thalweg migration of an alluvial river plays a key role in channel evolution, which may influence the effect of existing river training works and biodiversity on floodplains, and cause losses in riparian land and property. The braided reach of the Lower Yellow River underwent continuous channel aggradation during the period from 1986 to 1999, and then remarkable channel degradation in 1999–2015 owing to the state of operation of the Xiaolangdi Reservoir in 1999. Here we quantify associated thalweg migration changes and identify the key influencing factor in the braided reach. Thalweg‐migration distances and intensities at section‐ and reach‐scales were calculated during the past 30 years from 1986 to 2015, in order to investigate the characteristics of thalweg migration in the reach. There was a 47% reduction in the reach‐scale thalweg‐migration distance and a 35% reduction in the corresponding migration intensity after the reservoir operation. It is also revealed that fluvial erosion intensity is a dominant factor in controlling the thalweg migration, based on the investigation into various influencing factors in the study reach. The thalweg‐migration intensity of the braided reach can be expressed as a power function of the previous four‐year average fluvial erosion intensity. The calculated thalweg‐migration intensities in 1986–2015 using the proposed relation generally agree with the observed data. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
A model to simulate channel changes in ephemeral river channels and to test the effects of hydrological changes due to climate change and[sol ]or land use change was developed under the auspices of the EU funded MEDALUS programme (Mediterranean Desertification and Land Use). The model, CHANGISM (Channel Change GIS Simulation Model), is designed to simulate the effect of channel flow events and of climate conditions on morphology, sediment and vegetation, through sequences of events and conditions, over periods of up to several decades. The modelling is based on cellular automata but with calculations for water and sediment continuity. Process rules have both deterministic and stochastic elements. An important feature of the model is that it incorporates feedback elements between each event. The main aim of the model is to indicate the likely outcomes of events and combinations of conditions. It is linked to GIS for both input and output. The modelling is based on a channel reach and state is input as GIS layers of morphology (DEM), sediment and vegetation cover and state. Other initial conditions of soil moisture, groundwater level, and overall gradient are input. Parameters for processes are read from tables and can be easily changed for successive runs of the model. The bases for decisions on process specifications are discussed in this paper. Initial tests of the operation and sensitivity of the model were made on idealized reaches. The model was then tested using data from monitored sites in SE Spain. Simulations using clearwater flow worked well but initial simulations using events with sediment loads showed some tendency for excess deposition. Further tests and modifications are taking place. Overall, the model is one of the most sophisticated that simulates the interaction of flows with sediment and vegetation and the outcomes in terms of erosion, deposition, morphology, sediment cover, vegetation cover and plant survival over periods of up to 30 years for the scale of a channel reach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Defining and measuring braiding intensity   总被引:1,自引:0,他引:1  
Geomorphological studies of braided rivers still lack a consistent measurement of the complexity of the braided pattern. Several simple indices have been proposed and two (channel count and total sinuosity) are the most commonly applied. For none of these indices has there been an assessment of the sampling requirements and there has been no systematic study of the equivalence of the indices to each other and their sensitivity to river stage. Resolution of these issues is essential for progress in studies of braided morphology and dynamics at the scale of the channel network. A series of experiments was run using small‐scale physical models of braided rivers in a 3 m ∞ 20 m flume. Sampling criteria for braid indices and their comparability were assessed using constant‐discharge experiments. Sample hydrographs were run to assess the effect of flow variability. Reach lengths of at least 10 times the average wetted width are needed to measure braid indices with precision of the order of 20% of the mean. Inherent variability in channel pattern makes it difficult to achieve greater precision. Channel count indices need a minimum of 10 cross‐sections spaced no further apart than the average wetted width of the river. Several of the braid indices, including total sinuosity, give very similar numerical values but they differ substantially from channel‐count index values. Consequently, functional relationships between channel pattern and, for example, discharge, are sensitive to the choice of braid index. Braid indices are sensitive to river stage and the highest values typically occur below peak flows of a diurnal (melt‐water) hydrograph in pro‐glacial rivers. There is no general relationship with stage that would allow data from rivers at different relative stage to be compared. At present, channel count indices give the best combination of rapid measurement, precision, and range of sources from which measurements can be reliably made. They can also be related directly to bar theory for braided pattern development. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The Middle Reach of the Huai River (MRHR) flows northeast into the Hongzehu Lake. Before entering the Hongzehu Lake, the Huai River has a braided channel which is shallow and wide, and the riverbed has a negative slope. Based on the characteristics of the MRHR, this river reach can be divided into the following sections: a quasi-straight (or mildly curved) section, a bend section, and a braided section. The majority of the MRHR is quasi-straight. In this paper, several parameters are used to assess the geomorphology of the MRHR. Statistical analyses are performed to establish a relationship between the span length "L" and channel width "B" for different channel patterns. The relationship between the meandering length "S" and bankfull channel width "B" is also derived. Results indicate that the bankfull channel width "B", the bankfull cross sectional area "A" and the average flow depth "H" are mainly dependent on the dominant discharge in the channel. A relationship is derived that describes the denendencv of the curvature radius "R" on the dominant discharae "O". water surface slone "J"and the turning angle "α".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号