首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Known eclogite occurrences in the Sanbagawa metamorphic belt of SW Japan are dominantly in metagabbro bodies which have complex polyphase metamorphic histories. These bodies are generally described as tectonic blocks and their relationship to the Sanbagawa metamorphism is unclear. New findings of foliated eclogite in the Seba and Kotsu areas show that eclogite facies metamorphism is much more widespread than generally thought. Evidence that the foliated eclogite units originated as lavas or sediments implies that these units can be treated as a high-grade part of the subduction-related Sanbagawa metamorphism. Although separated by an along-strike distance of 80 km, the Seba and Kotsu eclogites have very similar garnet and omphacite compositions, suggesting that they were formed under similar metamorphic conditions. However, differences in the associated retrograde assemblages (epidote–amphibolite in the Seba unit and epidote–blueschist in the Kotsu unit) suggest contrasting P – T  paths. In both units, the eclogite rocks occupy the highest structural level of the Sanbagawa belt and overlie rocks metamorphosed at lower pressure. The lower boundary to the eclogite units is therefore a major tectonic discontinuity locally decorated with lenses of exotic material. These features can help trace the boundary into other areas. The previously known outcrops of eclogite show enough similarities with the newly found areas to suggest that all the eclogite facies rocks in the Sanbagawa belt constitute a single nappe that lies at the highest structural levels of the orogen.  相似文献   

2.
Chronology of Sanbagawa metamorphism   总被引:5,自引:0,他引:5  
By collating age data based on the fossil age of the protoliths, radiometric dating of the metamorphic minerals, and sedimentary records of erosion at the earth's surface, the history of the Sanbagawa metamorphism can be summarized as follows. (1) The pre-metamorphic sedimentary rocks (Carboniferous-Jurassic + Early Cretaceous?) became mixed and formed a thickened packet in the vicinity of an ancient trench through a variety of subduction-related tectono-sedimentary processes, probably in Early Cretaceous time (c., 130-120 Ma). (2) The subducted protoliths underwent progressive metamorphism reaching a maximum depth of c. 30 km in late Early Cretaceous time (c. 116 ± 10 Ma). (3) The high-P/T metamorphic rocks began to rise toward the surface (during the interval 110-50 Ma) with minimum estimates for the average cooling rate around 9-12°C/Ma and an average uplift rate around 0.4-0.5 mm/year. (4) Finally, at some stage after reaching the erosional surface, the high-P/T metamorphic rocks were covered unconformably by the middle Eocene (c. 50-42 Ma) Kuma Group. On the basis of the present chronological summary of the Sanbagawa metamorphism, the areal extent of the Sanbagawa metamorphism is also discussed with respect to the weakly metamorphosed subduction-accretion complex of the next tectonic belt to the south, the Northern Chichibu belt.  相似文献   

3.
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 44.5 kbar (1517 km depth), and 240270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite KAr ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the KAr phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 34 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion.  相似文献   

4.
Tetsumaru Itaya 《Lithos》1981,14(3):215-224
Carbonaceous material in pelitic schists of the Sanbagawa metamorphic belt in central Shikoku, Japan, was separated from the host rocks and its X-ray diffraction and chemical composition were studied. Its crystal structure and chemistry change continously with increasing metamorphic grade and approach those of well-ordered graphite near the biotite isograd. As graphitization is a rate process, the temperature of complete graphitization differs from one metamorphic terrain to another as a function of the duration of metamorphism. In an individual metamorphic terraan, however, the degree of graphitization is a useful indicator of relative metamorphic temperature in lower-grade rocks.  相似文献   

5.
在合肥盆地南缘广泛分布的中生界内,砾石主要由变质岩碎屑组成。碎屑在地层中分布及垂向上的变化,为重塑造山带折返剥露历史提供了证据。防虎山组和三尖铺组底部砾岩碎屑组合为:石英片岩+云母片岩+石墨片岩+千枚岩+石英岩+脉石英+片麻岩(局部),表明在早侏罗世晚期Pliensbachian期(距今195Ma)之前,佛子岭群和卢镇关群已经折返到地表并遭受剥露。早白垩世凤凰台组、毛坦厂组和周公山组中砾岩碎屑组合为:片岩+石英岩+片麻岩+混合岩+榴辉岩+角闪岩+斜长岩+花岗岩+大理岩等,榴辉岩以及其它基性岩的微量元素特征表明它们可能是一个在早白垩世以前(距今135Ma)折返到地表并遭受完全剥露,而现在已经从造山带消失的超高压构造地层单元。大别造山带出露的超高压变质带(大别杂岩)在北缘中生代地层中目前尚未发现有可靠的沉积记录,推测它们的大规模折返和剥露可能在新生代,并持续到现在。据此认为大别造山带大规模的折返剥露分为3个阶段:早侏罗世之前、晚侏罗世—早白垩世早期和新生代。  相似文献   

6.
The prograde amphibole that coexists with chlorite, epidote, muscovite, albite, quartz and hematite in Sanbagawa schists was examined to investigate the relationship between the prograde P-T paths of individual rocks and the metamorphic field gradient in the Sanbagawa metamorphic belt, central Shikoku. The amphibole changes from actinolite, through ferri-winchite and crossite, to barroisite and hornblende with increasing grade along the metamorphic field gradient. However, the sequence of prograde amphibole compositions in each sample varies in different mineral zones. The general scheme can be summarized as: magnesioriebeckite-riebeckite crossite in the upper chlorite zone of lower-grade rocks; crossite or glaucophane barroisite in the garnet zone of medium-grade rocks; and actinolite or winchite barroisite hornblende in the albite-biotite zone of higher-grade rocks. Changes of amphibole composition indicate that the prograde P-T path recorded in the higher-grade rocks was situated on the higher-temperature side of that of the lower-grade rocks and on the lower-pressure side of the metamorphic field gradient. The systematic change of P-T paths implies an increasing d P /d T during continuous subduction. These features can be interpreted as documenting prograde metamorphism within a young subduction zone that has a non-steady-state geotherm.  相似文献   

7.
Prograde P–T paths and thermal modelling suggest metamorphism in the Sanbagawa belt represents unusually warm conditions for subduction-type metamorphic belts, and these likely reflect conditions of a convergent margin a few million years before the arrival of an active spreading ridge. Radiometric age data and kinematic indicators of ductile deformation suggest the Sanbagawa belt formed in a Cretaceous convergent margin associated with a plate movement vector that had a large sinistral oblique component with respect to the belt, the East Asian margin. Plate reconstructions for the Cretaceous to Tertiary for this region show that the only plausible plate compatible with such motion at this time is the Izanagi plate. These reconstructions also show that progressively younger sections of the Izanagi plate were subducted beneath eastern Asia, i.e. a spreading ridge approached, until 85–83 Ma when the Izanagi Plate ceased to exist as an independent plate. The major reorganization of plates and associated movements around this time is likely to be the age of major interaction between the ridge and convergent margin. The ridge-approach model for the Sanbagawa metamorphism, therefore, predicts that peak metamorphism is a few million years older than this age range. New Lu–Hf dating of eclogite in the Sanbagawa belt gives ages of 89–88 Ma, in excellent agreement with the prediction. Combining this estimate for the peak age of metamorphism with published P–T-t results implies vertical exhumation rates of greater than 2.5 cm yr−1. This high rate of exhumation can explain the lack of a significant thermal overprint in the Sanbagawa belt during subduction of the ridge.  相似文献   

8.
Abstract Sodic amphiboles are common in Franciscan type II and type III metabasites from Cazadero, California. They occur as (1) vein-fillings, (2) overgrowths on relict augites, (3) discrete tiny crystals in the groundmass, and (4) composite crystals with metamorphic Ca–Na pyroxenes in low-grade rocks. They become coarse-grained and show strong preferred orientation in schistose high-grade rocks. In the lowest grade, only riebeckite to crossite appears; with increasing grade, sodic amphibole becomes, first, enriched in glaucophane component, later coexists with actinolite, and finally, at even higher grade, becomes winchite. Actinolite first appears in foliated blueschists of the upper pumpellyite zone. It occurs (1) interlayered on a millimetre scale with glaucophane prisms and (2) as segments of composite amphibole crystals. Actinolite is considered to be in equilibrium with other high-pressure phases on the basis of its restricted occurrence in higher grade rocks, textural and compositional characteristics, and Fe/Mg distribution coefficient between actinolite and chlorite. Detailed analyses delineate a compositional gap for coexisting sodic and calcic amphiboles. At the highest grade, winchite appears at the expense of the actinolite–glaucophane pair. Compositional characteristics of Franciscan amphiboles from Ward Creek are compared with those of other high P/T facies series. The amphibole trend in terms of major components is very sensitive to the metamorphic field gradient. Na-amphibole appears at lower grade than actinolite along the higher P/T facies series (e.g. Franciscan and New Caledonia), whereas reverse relations occur in the lower P/T facies series (e.g. Sanbagawa and New Zealand). Available data also indicate that at low-temperature conditions, such as those of the blueschist and pumpellyite–actinolite facies, large compositional gaps exist between Ca- and Na-amphiboles, and between actinolite and hornblende, whereas at higher temperatures such as in the epidote–amphibolite, greenschist and eclogite facies, the gaps become very restricted. Common occurrence of both sodic and calcic amphiboles and Ca–Na pyroxene together with albite + quartz in the Ward Creek metabasites and their compositional trends are characteristic of the jadeite–glaucophane type facies series. In New Caledonia blueschists, Ca–Na pyroxenes are also common; Na-amphiboles do not appear alone at low grade in metabasites, instead, Na-amphiboles coexist with Ca-amphiboles throughout the progressive sequence. However, for metabasites of the intermediate pressure facies series, such as those of the Sanbagawa belt, Japan and South Island, New Zealand, Ca–Na pyroxene and glaucophane are not common; sodic amphiboles are restricted to crossite and riebeckite in composition and clinopyroxenes to acmite and sodic augite, and occur only in Fe2O3-rich metabasites. The glaucophane component of Na-amphibole systematically decreases from Ward Creek, New Caledonia, through Sanbagawa to New Zealand. This relation is consistent with estimated pressure decrease employing the geobarometer of Maruyama et al. (1986). Similarly, the decrease in tschermakite content and increase in NaM4 of Ca-amphiboles from New Zealand, through Sanbagawa to New Caledonia is consistent with the geobarometry of Brown (1977b). Therefore, the difference in compositional trends of amphiboles can be used as a guide for P–T detail within the metamorphic facies series.  相似文献   

9.
Understanding the exhumation process of deep-seated material within subduction zones is important in comprehending the tectonic evolution of active margins. The deformation and slip history of superficial nappe pile emplaced upon high-P/T type metamorphic rocks can reveal the intimate relationship between deformation and transitions in paleo-stress that most likely arose from changes in the direction of plate convergence and exhumation of the metamorphic terrane. The Kinshozan–Atokura nappe pile emplaced upon the high-P/T type Sanbagawa (= Sambagawa) metamorphic rocks is the remnant of a pre-existing terrane located between paired metamorphic terranes along the Median Tectonic Line (MTL) of central Japan. Intra- and inter-nappe structures record the state of paleo-stress during metamorphism and exhumation of the Sanbagawa terrane. The following tectonic evolution of the nappes is inferred from a combined structural analysis of the basal fault of the nappes and their internal structures. The relative slip direction along the hanging wall rotated clockwise by 180°, from S to N, in association with a series of major tectonic changes from MTL-normal contraction to MTL-parallel strike-slip and finally MTL-normal extension. This clockwise rotation of the slip direction can be attributed to changes in the plate-induced regional stress state and associated exhumation of the deep-seated Sanbagawa terrane from the Late Cretaceous (Coniacian) to the Middle Miocene.  相似文献   

10.
EPMA analyses and K-Ar age determinations were carried out on phengite in pelitic schist from the Sanbagawa metamorphic belt of the Kanto Mountains, Central Japan.

Phengite from the Sanbagawa pelitic schist in the Kanto Mountains generally occurs as aggregates of fine-grained crystals. It is extremely fine-grained in domains adjacent to relatively rigid garnet and albite porphyroblasts. This suggests that deformation-induced grain-size reduction took place in phengite during the ductile deformation accompanying the exhumation of the host schists. EPMA analysis shows that phengite is chemically heterogeneous at the thin-section scale, suggesting that it formed during retrograde metamorphism in restricted equilibrium domains. The retrograde chemical reaction was promoted by the ductile deformation.

K-Ar ages of phengite get younger from the Southern Unit (82 Ma) to the Northern Unit (58 Ma) in the Kanto Mountains. The age range is similar to that in Central Shikoku. The older schists occur in the higher metamorphic grade zone in Central Shikoku and in the lower-grade zone in the Kanto Mountains. The thermal structures in Central Shikoku are inverted, so that the highest-grade zone occurs in the upper or middle parts of the apparent stratigraphic succession. In contrast, the Kanto Mountains have a normal thermal structure: the higher-grade zone is in the lower part of the apparent stratigraphic succession. The different tectonic features in exhumation produced the two contrasting age-temperature-structure relations at the western side of Sanbagawa belt in Central Shikoku and the eastern end of the Sanbagawa belt in the Kanto Mountains that are 800 km distant from each other. Namely, the western Sanbagawa belt in Central Shikoku underwent longer ductile deformation during the exhumation than the eastern Sanbagawa belt in the Kanto Mountains.  相似文献   


11.
The Western Sonobari Complex in northwestern Mexico consists of metamorphosed rocks mostly derived from Palaeozoic (?) sedimentary and Mesozoic igneous protoliths. Rocks of this complex display amphibolite facies orogenic metamorphism, pervasive foliation, migmatization, and four folding phases. These features are ascribed to a contractional tectonic event with NNW–SSE shortening direction, which caused thrusting, thickening of the crust, and sinking of the lithological units. U–Pb geochronology of migmatitic leucosome bands indicates that peak metamorphic conditions were reached between ~93 and 89 Ma. Post-tectonic Late Cretaceous peraluminous aplite-pegmatite dikes transect the metamorphic foliation. Traditional thermobarometry in the metamorphic rocks yields average pressures and temperatures of 9.0–7.1 kbar and 745–663°C, typical of intermediate P/T Barrovian metamorphism. On the basis of its age and contractional character, the thickening event originating the metamorphism may be related to collision of the Alisitos island arc against crustal blocks of Mexico. Thermobarometric data of post-tectonic intrusives including Late Cretaceous granodiorite and Eocene gabbro indicate emplacement within an overthickened crust, while P-T conditions of post-tectonic dikes point towards an almost isothermal decompression path along the amphibolite facies field. Rock units of similar age and metamorphic character are discontinuously exposed from the Islas Marias offshore the Nayarit coast to the Peninsular Ranges batholith of Baja California, and even extend north into the Sierra Nevada batholith and the Sevier hinterland. This extensive belt of Barrovian metamorphic rocks thus provides a record of middle Cretaceous shortening and crustal thickening related to arc-continent collision followed by subduction resuming.  相似文献   

12.
The geochemical evolution of metamorphic rocks during subduction‐related metamorphism is described on the basis of multivariate statistical analyses. The studied data set comprises a series of mapped metamorphic rocks collected from the Sanbagawa metamorphic belt in central Shikoku, Japan, where metamorphic conditions range from the pumpellyite–actinolite to epidote–amphibolite facies. Recent progress in computational and information science provides a number of algorithms capable of revealing structures in large data sets. This study applies k‐means cluster analysis (KCA) and non‐negative matrix factorization (NMF) to a series of metapelites, which is the main lithotype of the Sanbagawa metamorphic belt. KCA describes the structures of the high‐dimensional data, while NMF provides end‐member decomposition which can be useful for evaluating the spatial distribution of continuous compositional trends. The analysed data set, derived from previously published work, contains 296 samples for which 14 elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, Rb, Sr, Zr and Ba) have been analysed. The KCA and NMF analyses indicate five clusters and four end‐members, respectively, successfully explaining compositional variations within the data set. KCA indicates that the chemical compositions of metapelite samples from the western (Besshi) part of the sampled area differ significantly from those in the east (Asemigawa). In the west, clusters show a good correlation with the metamorphic grade. With increasing metamorphic grade, there are decreases in SiO2 and Na2O and increases in other components. However, the compositional change with metamorphic grade is less obvious in the eastern area. End‐member decomposition using NMF revealed that the evolutional change of whole‐rock composition, as correlated with metamorphic grade, approximates a stoichiometric increase of a garnet‐like component in the whole‐rock composition, possibly due to the precipitation of garnet and effusion of other components during progressive dehydration. Thermodynamic modelling of the evolution of the whole‐rock composition yielded the following results: (1) the whole‐rock composition at lower metamorphic grade favours the preferential crystallization of garnet under the conditions of the garnet zone, with biotite becoming stable together with garnet in higher‐grade rock compositions under the same P–T conditions; (2) with higher‐grade whole‐rock compositions, more H2O is retained. These results provide insight into the mechanism suppressing dehydration under high‐P metamorphic conditions. This mechanism should be considered in forward modelling of the fluid cycle in subduction zones, although such a quantitative model has yet to be developed.  相似文献   

13.
Abstract

— The composite nappe of the Spongtang ophiolite is thrust over Mesozoic and Cenozoic sediments of the North-Indian margin and shelf. The ophiolitic peridotiles tectonic-ally overlie a sedimentary melange, the detailed stratigraphy of which reveals the evolution of the South-Tethyan margin from its opening to its closure. The matrix of the melange is dated as Upper Campanian to Lower Eocene. Volcano-sedimentary olistoliths indicate carbonate platform sedimentation associated with alkaline lavas in the Permian, followed by more pelagic sedimentation of Upper Triassic and mid- Cretaceous age. They derived from external platforms near to the Indian shelf, but separated from it. Composite olistoliths of mid to late Cretaceous age, containing Permian elements, are found in the upper Cretaceous to lower Eocene wildflysch. Primary contacts of melange upon serpentinites indicates that the deeply eroded oceanic crust served partly as a substratum for the melange.  相似文献   

14.
In central Shikoku, SW Japan, the Mikabu belt is bounded to the north by the Sanbagawa belt, and to the south by the northern (N) Chichibu belt. The N-Chichibu belt can be further subdivided into northern and southern parts. There is no apparent difference in the overall geology, structure, or fossil and radiometric ages between the Mikabu belt and the northern part of the N-Chichibu belt. Greenstones from the Mikabu belt and the northern part of the N-Chichibu belt show evidence for similar low-grade metamorphism, and include the following mineral assemblages with albite+chlorite in excess: metamorphic aragonite, sodic pyroxene+quartz, epidote+actinolite+pumpellyite, glaucophane+ pumpellyite+quartz, and lawsonite (not with actinolite or glaucophane). These similarities suggest that the Mikabu belt and the northern part of the N-Chichibu belt belong to the same geological unit (the MB-NNC complex). The mineral assemblages also indicate that the MB-NNC complex belongs to a different metamorphic facies from the low-grade part of the Sanbagawa belt, that is, the former represents lower temperature/higher pressure conditions than the latter. Structural and petrological continuity between the MB-NNC complex and Sanbagawa belt has not yet been confirmed, but both have similar radiometric ages. It is therefore most likely that the MB-NNC complex and Sanbagawa belt belong to the same subduction complex, and were metamorphosed under similar but distinct conditions. These two units were juxtaposed during exhumation. In contrast, the southern part of the N-Chichibu belt is distinct in lithology and structure, and includes no mineral assemblages diagnostic of the MB-NNC complex and the Sanbagawa belt. Thus, the southern part of the N-Chichibu belt may represent a different geological unit from the MB-NNC complex and Sanbagawa belt.  相似文献   

15.
造山带隆起剥蚀过程与沉积记录   总被引:1,自引:0,他引:1       下载免费PDF全文
大别山造山带是中生代碰撞造山作用的产物,其隆起过程中形成了合肥盆地。本文对合肥盆地侏罗系碎屑岩进行了成分分析,发现砾岩中有两类榴辉岩,一类为高压变质榴辉岩,另一类为超高压变质榴辉岩。对砂岩中碎屑白云母的成分分析表明,指示高压变质作用的多硅白云母在较低层位已大量出现。重建的碎屑物注入顺序为:非超高压变质岩—高压变质岩—超高压变质岩。结合变质岩石学研究和地球物理观测资料重建的大别山造山带内部结构,可进一步重建大别山的剥蚀历史:大别山造山带最先(三尖铺组沉积初期)受到剥蚀的是非超高压变质的片岩、片麻岩及大理岩,高压变质岩折返到地表受到剥蚀不晚于中侏罗世初期(三尖铺组沉积早期),而超高压变质岩折返到地表经受剥蚀的时间稍早于中侏罗世中期(凤凰台组沉积初期)。天山是典型的陆内造山带,其隆起是新生代以来印度板块与欧亚板块碰撞的一种远程效应。本文对天山发育的花岗岩磷灰石裂变径迹分析,并对南侧的塔里木盆地北部古近系及新近系沉积岩进行了碎屑岩物源分析,在新的磁性地层学格架中讨论了天山的隆起剥蚀历史。砾石组分的突然变化发生在75~35 Ma,26~17 Ma和12~8 Ma间,从中天山物源区逐渐变为南天山物源区,12 Ma后变为以南天山为主要物源区。砂岩及重矿物组分变化表明,物源在124 Ma、26(~24)Ma及15(~12)Ma时发生过变化。磷灰石裂变径迹则进一步揭示了天山的3阶段差异性隆起历史:天山的早期隆起发生在124~80 Ma间,从中天山和南天山的交界处开始并向南扩展;第二次隆起发生在大约100~60 Ma间,从中天山开始向南扩展;第三次隆起从大约50 Ma开始,并向北南两侧扩展,至大约30 Ma时扩展到北天山,约20 Ma时扩展至南天山;其后,南天山在15(~12)Ma时发生了独立的隆起事件。本文的两个研究实例表明,盆地的充填符合计算机数据结构的堆栈过程,但造山带的隆起剥蚀却会出现明显的差异性。不能简单地说造山带的剥蚀和盆地的充填具镜像对称关系,这有可能导致错误的认识,一定要具体事例具体分析。  相似文献   

16.
In order to decipher the origin of eclogite in the high‐P/T Sanbagawa metamorphic belt, SHRIMP U–Pb ages of zircons from quartz‐bearing eclogite and associated quartz‐rich rock (metasandstone) were determined. One zircon core of the quartz‐rich rock yields an extremely old provenance age of 1899 ± 79 Ma, suggesting that the core is of detrital origin. Eight other core ages are in the 148–134 Ma range, and are older than the estimated age for trench sedimentation as indicated by the youngest radiolarian fossil age of 139–135 Ma from the Sanbagawa schists. Ages of metamorphic zircon rims (132–112 Ma) from the quartz‐rich rock are consistent with metamorphic zircon ages from the quartz‐bearing eclogite, indicating that eclogite facies metamorphism peaked at 120–110 Ma. These new data are consistent with both the Iratsu eclogite body and surrounding highest‐grade Sanbagawa schists undergoing coeval subduction‐zone metamorphism, and subsequent re‐equilibration under epidote amphibolite facies conditions during exhumation.  相似文献   

17.
青海拉鸡山:一个多阶段抬升的构造窗   总被引:18,自引:2,他引:16       下载免费PDF全文
王二七  张旗 《地质科学》2000,35(4):493-500
拉鸡山断裂带位于祁连山褶皱带内,呈北西-南东向延伸.后者构成青藏高原的东北边缘,由三个主要构造单元组成:北部是一条早古生代的板块缝合带,中部是一个元古代的结晶地块,南部由一套晚古生代到三叠纪的被动大陆边缘沉积物组成.对拉鸡山及其邻区的构造研究结果表明,祁连山褶皱带在古生代加里东期发生过大规模的缩短,北祁连的早古生代蛇绿岩和岛弧火山岩沿祁连山中央冲断层向南,陆内俯冲到中祁连元古界变质杂岩之下.由于发生在晚古生代和晚中生代的陆内变形,位于中祁连之下的北祁连的蛇绿岩和岛弧火山岩发生褶皱,并被抬升到地表.到新生代,由于印度板块和欧亚大陆之间的碰撞和陆内汇聚作用,拉鸡山断裂带再次活动,这些下古生界蛇绿岩和岛弧火山岩通过冲断作用快速抬升,将中祁连地块一分为二.因此,拉鸡山是一个抬升的构造窗,不是一个中祁连结晶地块中的早古生代大陆裂谷.  相似文献   

18.
中、上扬子北部盆-山系统演化与动力学机制   总被引:5,自引:0,他引:5       下载免费PDF全文
中国南方中生代经历了中国大陆最终主体拼合的陆缘及其之后的陆内构造演化。晚古生代末期,在秦岭—大别山微板块与扬子板块之间存在向西张口的洋盆,即勉略古洋盆。中三叠世末期开始,扬子板块相对于华北板块发生自南东向北西的斜向俯冲碰撞作用,扬子北缘晚三叠世至中侏罗世发育陆缘前陆褶皱逆冲带与前陆盆地系统。晚侏罗世至早白垩世,中国东部的大地构造背景发生了重要的构造转变,中、上扬子地区处于三面围限会聚的大地构造背景。在这种大地构造格局下,中、上扬子地区晚侏罗世至早白垩世发育陆内联合、复合构造与具前渊沉降的克拉通内盆地系统。自中侏罗世末期开始,扬子北缘前陆带与雪峰山—幕阜山褶皱逆冲带经历了自东向西的会聚变形过程及盆地的自东向西的迁移过程和收缩过程。扬子北缘相对华北板块的斜向俯冲导致在中扬子北缘的深俯冲及超高压变质岩的形成。俯冲之后以郯庐断裂—襄广断裂围限的大别山超高压变质地块在晚侏罗世向南强逆冲,致使扬子北缘晚三叠世至中侏罗世前陆盆地被掩覆和改造。  相似文献   

19.
The higher grade metamorphic zonation of the Sambagawa (= Sanbagawa) belt is established for the first time for the whole area of central Shikoku. As discontinuous reactions to define the isograd are absent, the metamorphic grade is primarily determined by the Mg-Fe partitioning between garnet and chlorite along representative traverses. However, for regional mapping, mineralogical features of the pelitic schists, such as using mineral assemblages of more than divariant equilibrium, the modal garnet to chlorite ratio, and the optical properties of chlorite, are employed as auxiliary criteria.
The presence of the highest grade mineral zone in the middle of the structural level is confirmed, but its spatial distribution is far more complex than hitherto accepted. Thermal axes are now confirmed at three different structural levels. A model is presented in which the stacking of thrust sheets of different grade took place while metamorphic reactions were in progress. Thermal readjustment brought a continuous metamorphic temperature gradient across and within the thrust sheets. Tectonic blocks of metagabbro and ultramafic rock were emplaced synchronously with thinning and subsequently also re-equilibrated. Local anomalies of metamorphic grade, represented by mixing of schists of different metamorphic grade, exist, but they are due to a later stage event.  相似文献   

20.
Magmatic rocks of variable age and composition crop out extensively in Western and Northwestern Anatolia. In the present study we subdivide these granitoids according to their ages. The young granitoids (Late Cretaceous to Late Miocene) develop high-temperature metamorphic aureoles. Six isochronous belts are defined, which become progressively younger from north to south. The late Eocene to late Miocene granitoid belts are curved and open to the southwest. The old granitoids (Cambrian to Middle Jurassic) are present in the northwestern and northern parts of Anatolia. Many of their radiometric ages are disturbed as a result of later tectonic events responsible for the present-day structure of Western Turkey. Except for Cambrian granitoids, these rocks result from a series of northward-dipping subduction zones of Hercynian to Late Carboniferous age, along the Karakaya trench up to the Late Triassic, along and north of the Izmir-Ankara zone during the Middle Jurassic to the Late Cretaceous, and possibly north of the Hellenic subduction zone since the Paleogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号