首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-level moisture transport over the Indian Ocean has been computed using NOAA/HIRS data for the years 1980, 1981 and 1984. The global relation between monthly mean surface-level humidity and precipitable water (Liu, 1986) has been applied for the computation of surface-level humidity using monthly mean satellite-derived water vapour. The monthly mean surface wind fields over the Indian ocean provided by Florida State University have been used for the surface-level moisture flux computations. Our analysis indicates net positive surface-level moisture flux divergence over the Arabian Sea and negative moisture flux divergence over the Bay of Bengal. It has also been found that evaporation over the Arabian Sea is a variable quantity and forms a significant part of the net moisture budget over the Arabian Sea. The relative contribution of cross-equatorial flux and evaporation from the Arabian Sea has been studied for all three years.  相似文献   

2.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

3.
张永生  吴国雄 《气象学报》1998,56(5):513-528
该工作将亚洲季风区作为一个复杂的海-陆-气耦合系统,来深入考察季风区海-气、陆-气相互作用的基本事实和物理过程,探讨它们在决定亚洲季风爆发及北半球行星尺度大气环流的季节突变的物理机理。本文是系列文章的第一篇,着重研究亚洲夏季风爆发的区域性和阶段性特征,以及过渡季节热带、副热带地区海-气、陆-气相互作用的基本事实,初步分析了它们之间的联系。研究表明,热带季风对流于4月底到5月初越过赤道进入北半球,首先出现在孟加拉湾东部-中南半岛西南部地区,然后于5月中旬和6月上旬末分别出现在南海和印度半岛地区,呈阶段性爆发的特征。季风对流在孟加拉湾东部-中南半岛西南部地区爆发阶段,在大气环流变化和对流活动中心位置出现区别于南海季风和印度季风爆发的特征。通过对地表感热通量和海表潜热通量的分析,表明热带海洋上海表感热通量甚小于海表潜热通量,南海季风爆发时期印度洋上海表潜热通量显著增大,印度季风爆发后海表潜热通量的高值中心在孟加拉湾和阿拉伯海上建立起来。印度洋上低层增强的过赤道气流引起的强烈的海-气相互作用导致海表水汽的大量蒸发,并通过其输送作用,为季风对流的爆发提供了充足的水汽来源。过渡季节在副热带地区(沿27.5~37.5°N纬带上), 青藏高原和西太平洋上地(海)表感热通量和潜热通量均有迅速的季节变化性, 但趋势相反。当青藏高原上地表感热通量和潜热通量呈阶段性的显著加大, 西太平洋上海表感热通量和潜热通量迅速减小。这种大陆和海洋对大气加热的显著的季节化的差异, 影响着大气环流的季节转变。  相似文献   

4.
Summary During most El-Ni?o events the Indian summer monsoon rainfall has been below normal. El-Ni?o that occurred during 1997 was one of the strongest in the 20th century, but did not have an adverse impact on the Indian summer monsoon rainfall in 1997. This is despite the fact that most parameters observed in May 1997 suggested that the Indian summer monsoon rainfall may be below normal. This intriguing feature of the 1997 Indian summer monsoon rainfall has been examined by studying the evolution of various parameters from May to August. The behavior of the 1997 monsoon is related to its evolution during June and July, with westward migration of cloudbands from West Pacific that increased convection over Bay of Bengal. We find that there exists a significant correlation between convective activity over Bay of Bengal and winds over the Arabian Sea with the latter lagging convection over Bay of Bengal by about three days. The convective activity over Bay of Bengal induces stronger winds over the Arabian Sea and this in turn enhances advection of moisture into the Indian landmass and leads to increased precipitable water and strength of the monsoon. Using a simple thermodynamic model we show that increased precipitable water during July leads to increased rainfall. A similar behavior has also been noticed during the 1983 monsoon, with precursors indicating a possible poor monsoon but subsequent events changed the course of the monsoon. Received May 21, 2001 Revised October 10, 2001  相似文献   

5.
The time series of the sea surface temperature(SST) anomaly,covering the eastern (western) equatorial Pacific,central Indian Ocean,Arabian Sea.Bay of Bengal and South China Sea(SCS),have been analyzed by using wavelet transform.Results show that there exists same interdeeadal variability of SST in the tropical Pacific and tropical Indian Ocean,and also show that the last decadal abrupt change occurred in the 1970s.On the interannual time scale,there is a similar interannual variability among the equatorial central Indian Ocean and the adjacent three sea basins(Arabian Sea.Bay of Bengal and South China Sea).but the SST interannual changes of the Indian Ocean lagged 4-5 months behind that of the equatorial central-east Pacific.Meanwhile,the interannual variability and long-range change between SST anomaly and Indian summer monsoon rainfall in recent decades have been explained and analyzed.It indicates that there existed a wet(dry) period in India when the tropical SST was lower(higher)than normal,but there was a lag of phase between them.  相似文献   

6.
Summary In this paper, interseasonal characteristics of the Asian summer monsoon in the years of 1987 and 1988 are studied as 1987 is characterized by a large deficiency of monsoon rainfall (drought) and that of 1988 by a large excess monsoon rainfall (flood) over India. In order to compare the similarities and differences seen in the large scale dynamics and energetics of the Asian summer monsoon during the years of extreme monsoon activity, uninitialized analyses (12 Z) of the European Centre for Medium Range Weather Forecasts (ECMWF), U.K. are utilized in this study for the summer monsoon seasons of 1987 and 1988.It is found that the excess rainfall season (1988) is characterized by much stronger tropical easterly jet (TEJ) associated with the upper tropospheric easterlies and the East African low level jet (Somali Jet) associated with lower tropospheric westerlies. Such a feature mainly determines the strength of the reverse Hadley circulation which normally covers the South Asian continent during the northern summer. Further, the energetics of the TEJ show that the monsoon of 1988 has comparatively stronger zones of kinetic energy flux divergence (convergence) at its entrance (exit) regions. These zones of kinetic energy flux divergence are largely maintained by the adiabatic processes over the strong kinetic energy flux divergence zones over the Bay of Bengal and east central Arabian Sea as compared to that of 1987. Apart from this, both the zonal and meridional components of the ageostrophic flows are found to be stronger during 1988 monsoon season. Analysis of the vertically integrated thermodynamical features of the monsoon indicate that the monsoon of 1988 was characterized by an excess import of heat and moisture into the monsoon atmosphere as compared to that of 1987. Further, from the quantitative estimation of certain significant heat and moisture budget parameters during the contrasting monsoon seasons of 1987 and 1988, it becomes evident that considerable differences exist in the quantities of adiabatic production of heat energy, diabatic heating and the moisture source/sink.With 13 Figures  相似文献   

7.
基于1982—2013年逐月NCEP资料及GODAS资料,采用回归分析、合成分析以及2.5层简化海洋模式数值模拟等方法,研究了热带东印度洋的大气和海洋过程对印度洋海温偶极子(IOD,Indian Ocean Dipole)东极(IODE,IOD East pole)海温异常的影响。结果表明,IODE海温异常的演变超前IOD西极(IODW,IOD West pole)海温异常的演变,并对IOD事件的生成和发展起到关键作用。初夏,来自阿拉伯海、中南半岛地区以及孟加拉湾西南部的水汽输送,导致孟加拉湾东部出现强降水。降水释放的潜热在热带东印度形成了一个跨越赤道的经向环流,有利于加强赤道东印度洋的过赤道气流,并在苏门答腊沿岸形成偏南风异常。该异常偏南风通过影响混合层垂向夹卷混合过程和纬向平流过程,导致IODE海温迅速下降。随后赤道东南印度洋异常东南风迅速增强以及赤道中印度洋东风异常的出现,增强了自东南印度洋向西印度洋的水汽输送,削弱了向孟加拉湾的水汽输送,使西南印度洋的降水增强,孟加拉湾东部的降水减弱。因此,IOD达到盛期前孟加拉湾东部的降水通过局地经向环流在苏门答腊沿岸形成偏南风异常,导致苏门答腊沿岸迅速的降温,并最终导致IOD事件的发生。  相似文献   

8.
Summary The evolution of geophysical parameters over Indian Ocean during two contrasting monsoon years 2002 (drought) and 2003 (normal) were studied using TRMM/TMI satellite data. Analysis indicates that there was a lack of total water vapour (TWV) build up over Western Indian Ocean (WIO) during May 2002 (drought) when compared to 2003 (normal). Negative (positive) TWV anomalies were found over the WIO in May 2002 (2003). In 2002, negative SST anomaly of ∼1.5 °C is found over entire WIO when compared to 2003. Anomalously high sea surface wind speed (SWS) anomaly over the South West Indian Ocean (SWIO) and WIO would have resulted in cooling of the sea surface in May 2002 in comparison to 2003. In 2003 the wind speed anomaly over entire WIO and Arabian Sea (AS) was negative, whereas sea surface temperature (SST) anomaly was positive over the same region, which would have resulted in higher moisture availability over these regions. A negative (positive) TWV anomaly over Eastern Arabian Sea (EAS) and positive (negative) anomaly over WIO forms a dipole structure. In the month of June no major difference is seen in all these parameters over the Indian Ocean. In July 2002 the entire WIO and AS was drier by 10–15 mm as compared to 2003. The pentad (5 day) average TWV values shows high (>55 mm) TWV convergence over EAS and Bay of Bengal (BoB) during active periods of 2003, which gives high rainfall over these regions. However, during 2002 although TWV over BoB was >55 mm but it was ∼45–55 mm over EAS during entire July and hence less rainfall. The evaporation has been calculated from the bulk aerodynamic formula using TRMM/TMI geophysical products. It has been seen that the major portion of evaporative moisture flux is coming from southern Indian Ocean (SIO) between 15 and 25° S. Evaporation in June was more over AS and SIO in 2003 when compared to 2002 which may lead to reduce moisture supply in July 2002 and hence less rainfall compared to July 2003.  相似文献   

9.
In this study,we aimed to elucidate the critical role of moisture transport affecting monsoon activity in two contrasting summers over the Arabian Sea during the years 1994,a relatively wet year,and 2002,a relatively dry year.A comprehensive diagnostic evaluation and comparisons of the moisture fields were conducted;we focused on the precipitation and evaporation as well as the moisture transport and its divergence or convergence in the atmosphere.Monthly mean reanalysis data were obtained from the National Centers for Environmental Prediction(NCEP-I and-II).A detailed evaluation of the moisture budgets over Pakistan during these two years was made by calculating the latent energy flux at the surface(E P) from the divergence of the total moisture transport.Our results confirm the moisture supply over the Arabian Sea to be the major source of rainfall in Pakistan and neighboring regions.In 1994,Pakistan received more rainfall compared to 2002 during the summer monsoon.Moisture flow deepens and strengthens over Arabian Sea during the peak summer monsoon months of July and August.Our analysis shows that vertically integrated moisture transport flux have a significant role in supplying moisture to the convective centers over Pakistan and neighboring regions from the divergent regions of the Arabian Sea and the Bay of Bengal.Moreover,in 1994,a deeper vertically integrated moisture convergence progression occurred over Pakistan compared to that in 2002.Perhaps that deeper convergence resulted in a more intense moisture depression over Pakistan and also caused more rainfall in 1994 during the summer monsoon.Finally,from the water budget analysis,it has been surmised that the water budget was larger in 1994 than in 2002 during the summer monsoon.  相似文献   

10.
采用美国联合台风警报中心(JTWC)提供的北印度洋1977-2008年热带气旋资料、NOAA提供的1982-2008年高分辨率合成资料和NCEP提供的1982-2008年全球再分析资料,对北印度洋上167个热带气旋个例进行了统计分析,结果表明:1)北印度洋热带气旋通常发生在阿拉伯海东部和孟加拉湾中部,阿拉伯海上活动的热...  相似文献   

11.
The pressure variations over the North Indian Ocean during the summer monsoon season have been exam-ined using the monthly data from June to September for the period 1961 to 1968. It is found that these varia-tions can be described by two significant eigenvectors (EV1 and EV2) which together account for 53% of the total variance.The first eigenvector (EV1) represents in phase variation over both, the Arabian Sea and the Bay of Bengal with higher variations over the northern side of the area. The second eigenvector (EV2) depicts the out-of-phase variation between the pressure anomalies over the north and the south of 15°N latitude with two areas of pronounced variation, viz., the head Bay of Bengal and the equatorial region near 65°E longitude.The coefficients of EV1 show significant association with rainfall of West Coast and Central India for the concurrent months. These coefficients also show significant association with the pressure and temperature indices of the Southern Oscillation. The coefficients of EV2 show significant association with the monsoon rainfall of south peninsular India.  相似文献   

12.
Using 10-year (2001 10) monthly evaporation, precipitation, and sea surface salinity (SSS) datasets, the relationship between local freshwater flux and SSS in the north Indian Ocean (NIO) is evaluated quantitatively. The results suggest a highly positive linear correlation between freshwater flux and SSS in the Arabian Sea (correlation coefficient, R=0.74) and the western equatorial Indian Ocean (R=0.73), whereas the linear relationships are relatively weaker in the Bay of Bengal (R=0.50) and the eastern equatorial Indian Ocean (R=0.40). Additionally, the interannual variations of freshwater flux and SSS and their mutual relationship are investigated in four sub- regions for pre-monsoon, monsoon, and post-monsoon seasons separately. The satellite retrievals of SSS from the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions can provide continuous and consistent SSS fields for a better understanding of its variability and the differences between the freshwater flux and SSS signals, which are commonly thought to be linearly related.  相似文献   

13.
The present study investigates the relationship between extreme north-east (NE) monsoon rainfall (NEMR) over the Indian peninsula region and El Niño forcing. This turns out to be a critical science issue especially after the 2015 Chennai flood. The puzzle being while most El Niños favour good NE monsoon, some don’t. In fact some El Niño years witnessed deficit NE monsoon. Therefore two different cases (or classes) of El Niños are considered for analysis based on standardized NEMR index and Niño 3.4 index with case-1 being both Niño-3.4 and NEMR indices greater than +1 and case-2 being Niño-3.4 index greater than +1 and NEMR index less than −1. Composite analysis suggests that SST anomalies in the central and eastern Pacific are strong in both cases but large differences are noted in the spatial distribution of SST over the Indo-western Pacific region. This questions our understanding of NEMR as mirror image of El Niño conditions in the Pacific. It is noted that the favourable excess NEMR in case-1 is due to anomalous moisture transport from Bay of Bengal and equatorial Indian Ocean to southern peninsular India. Strong SST gradient between warm western Indian Ocean (and Bay of Bengal) and cool western Pacific induced strong easterly wind anomalies during NE monsoon season favour moisture transport towards the core NE monsoon region. Further anomalous moisture convergence and convection over the core NE monsoon region supported positive rainfall anomalies in case-1. While in case-2, weak SST gradients over the Indo-western Pacific and absence of local low level convergence over NE monsoon region are mainly responsible for deficit rainfall. The ocean dynamics in the Indian Ocean displayed large differences during case-1 and case-2, suggesting the key role of Rossby wave dynamics in the Indian Ocean on NE monsoon extremes. Apart from the large scale circulation differences the number of cyclonic systems land fall for case-1 and case-2 have also contributed for variations in NE monsoon rainfall extremes during El Niño years. This study indicates that despite having strong warming in the central and eastern Pacific, NE monsoon rainfall variations over the southern peninsular India is mostly determined by SST gradient over the Indo-western Pacific region and number of systems formation in the Bay of Bengal and their land fall. The paper concludes that though the favourable large scale circulation induced by Pacific is important in modulating the NE monsoon rainfall the local air sea interaction plays a key role in modulating or driving rainfall extremes associated with El Niño.  相似文献   

14.
Delayed impact of El Niño on Tropical Indian Ocean (TIO) Sea Surface Temperature (SST) variations and associated physical mechanisms are well documented by several studies. However, TIO SST evolution during the decay phase of La Niña and related processes are not adequately addressed before. Strong cooling associated with La Niña decay over the TIO could influence climate over the Indian Oceanic rim including Indian summer monsoon circulation and remotely northwest Pacific circulation. Thus understanding the TIO basin-wide cooling and related physical mechanisms during decaying La Niña years is important. Composite analyses revealed that negative SST anomalies allied to La Niña gradually dissipate from its mature phase (winter) till subsequent summer in central and eastern Pacific. In contrast, magnitude of negative SST anomalies in TIO, induced by La Niña, starts increasing from winter and attains their peak values in early summer. It is found that variations in heat flux play an important role in SST cooling over the central and eastern equatorial Indian Ocean, Bay of Bengal and part of Arabian Sea from late winter to early summer during the decay phase of La Niña. Ocean dynamical processes are mainly responsible for the evolution of southern TIO SST cooling. Strong signals of westward propagating upwelling Rossby waves between 10°S to 20°S are noted throughout (the decaying phase of La Niña) spring and summer. Anomalous cyclonic wind stress curl to the south of the equator is responsible for triggering upwelling Rossby waves over the southeastern TIO. Further, upwelling Rossby waves are also apparent in the Arabian Sea from spring to summer and partly contributing to the SST cooling. Heat budget analysis reveals that negative SST/MLT (mixed layer temperature) anomalies over the Arabian Sea are mostly controlled by heat flux from winter to spring and vertical advection plays an important role during early summer. Vertical and horizontal advection terms primarily contribute to the SST cooling anomalies over southern TIO and the Bay of Bengal cooling is primarily dominated by heat flux. Further we have discussed influence of TIO cooling on local rainfall variations.  相似文献   

15.
The characteristics of moisture transport over the Asian summer monsoon region and its relationship with summer precipitation in China are examined by a variety of statistical methods using the NCEP/NC AR reanalysis data for 1948-2005.The results show that:1) The zonal-mean moisture transport in the Asian monsoon region is unique because of monsoon activities.The Asian summer monsoon region is a dominant moisture sink during summer.Both the Indian and East Asian monsoon areas have their convergence cente...  相似文献   

16.
Interannual variations of the monsoon onset over Kerala (MOK) have been studied using data from over 60?years (1948?C2009) of NCEP/NCAR reanalysis and outgoing long-wave radiation. The sea surface temperature fields over the North Indian Ocean associated with the MOK have been examined in association with El Nino and Indian Ocean Dipole (IOD) events which originate in the Pacific and Indian Ocean, respectively. An analysis of the tropical convective maximum showed significant differences in its strength and location during the El Nino, IOD, early, normal, and delayed MOK composites. Further, we also looked into the role of the convective systems formed over the Arabian Sea and Bay of Bengal on MOK. The most significant features during early (delayed) MOK years is the abnormal persistence of westerlies (easterlies) several days prior to MOK and enhanced (suppressed) deep convection over the southeastern Arabian Sea and the southern Bay of Bengal. Moisture builds up over peninsular India several pentads prior to MOK during La Nina, negative IOD, and concurrent La Nina and negative IOD years as compared to the El Nino, positive IOD, and concurrent El Nino and positive IOD years, indicating its significant role on MOK. The monsoon Hadley cell and Walker circulations are weaker (stronger) during a delayed (early) MOK. Further, the sea surface temperature anomalies in the western Pacific are negative (positive) during delayed (early) MOK.  相似文献   

17.
Summary Monthly mean surface fields of different meteorological parameters and evaporation are studied for the 1979 (poor monsoon) and 1983 (good monsoon) monsoon seasons over the Arabian Sea, in order to understand the role of evaporation on the Indian monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal in both years (3.66×1010 and 3.59×1010 tons/day in 1979 and 1983, respectively). No coherence is observed between the evaporation and the west coast rainfall within a season. It is also noted that the pressure distribution over the Arabian Sea is even important to advect the moisture towards the west coast of India, through winds.With 10 Figures  相似文献   

18.
In this paper, a diagnostic study is carried out with global analysis data sets to determine how the large scale atmospheric circulation affecting the anomalous drought of the Indian summer monsoon 2002. The daily analysis obtained from National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) for the month of July is used to investigate the mean circulation characteristics and the large scale energetics over the Indian monsoon domain. Examination of rainfall revealed that the summer monsoon (JJAS) rainfall of 2002 over India is 22% below normal in which the large deficit of 56% below normal rainfall in July. The recent past drought during summer season of 2004 and 2009 are 12 and 23%, respectively, below normal rainfall. The large deficit of rainfall in 2009 is from the June month with 48% below normal rainfall, where as 2004 drought contributed from July (19%) and August (24%). Another significant facet of the rainfall in July 2002 is lowest ever recorded in the past 138 years (1871–2008). The circulation features illustrated weak low level westerly wind at 850 hPa (Somali Jet) in July during large deficit rainfall years of 1987 and 2002 with a reduction of about 30% when compared with the excess and normal rainfall years of 1988 and 2003. Also, tropical easterly jet at 150 hPa reduced by 15% during the deficit rainfall year of 2002 against the excess rainfall year of 1988. Both the jet streams are responsible for low level convergence and upper level divergence leading to build up moisture and convective activity to sustain the strength of the monsoon circulation. These changes are well reflected in reduction of tropospheric moisture profile considerably. It is found that the maximum number of west pacific cyclonic system during July 2002 is also influenced for large deficit rainfall over India. The dynamic, thermodynamic and energetic clearly show the monsoon break type situation over India in the month of July 2002 resulting less convective activity and the reduction of moisture. The large diabatic heating, flux convergence of heat and moisture over south east equatorial Indian Ocean are also responsible for drought situation in July 2002 over the Indian region.  相似文献   

19.
Inter-annual variability in the onset of monsoon over Kerala (MOK), India, is investigated using daily temperature; mean sea level pressure; winds at 850, 500 and 200 hPa pressure levels; outgoing longwave radiation (OLR); sea surface temperature (SST) and vertically integrated moisture content anomaly with 32 years (1981–2013) observation. The MOK is classified as early, delayed, or normal by considering the mean monsoon onset date over Kerala to be the 1st of June with a standard deviation of 8 days. The objective of the study is to identify the synoptic setup during MOK and comparison with climatology to estimate the predictability of the onset type (early, normal, or delayed) with 5, 10, and 15 days lead time. The study reveals that an enhanced convection observed over the Bay of Bengal during early MOK is found to shift over the Arabian Sea during delayed MOK. An intense high-pressure zone observed over the western south Indian Ocean during early MOK shifts to the east during delayed MOK. Higher tropospheric temperature (TT) over the western Equatorial Ocean during early MOK and lower TT over the Indian subcontinent intensify the land–ocean thermal contrast that leads to early MOK. The sea surface temperature (SST) over the Arabian Sea is observed to be warmer during delayed than early MOK. During early MOK, the source of 850 hPa southwesterly wind shifts to the west equatorial zone while a COL region has been found during delayed MOK at that level. The study further reveals that the wind speed anomaly at the 200-hPa pressure level coincides inversely with the anomaly of tropospheric temperature.  相似文献   

20.
The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号