首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammoth Mountain is a seismically active volcano 200 000 to 50 000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic 'long-period' earthquakes (Pitt & Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day −1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997), which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds VP/VS was about 9 per cent lower than in the surrounding rocks. Theory (Mavko & Mukerji 1995), experiment (Ito, DeVilbiss & Nur 1979), and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that VP/VS is sensitive to pore-fluid compressibility, through its effect on VP . The observed VP/VS anomaly is probably caused directly by CO2, and seismic VP/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.  相似文献   

2.
Summary. We construct a catalogue of all possible elementary point sources for static deformation in an elastic solid. the familiar double-couples, CLVD's, centres of compression and dilatation, etc., are all members of the complete catalogue. the sources are classified according to the rank of the seismic moment tensor, and according to the weight (or order) of the irreducible tensor representation of the 3-D rotation group. These sources can be classified as belonging to one of three general classes. the static excitation functions are calculated for an infinite, homogeneous, isotropic medium for all these sources. We show that, except for sources belonging to these three general classes, all other sources — which are numerous for the tensors of high rank — are null static sources. That is, sources that do not produce any static displacement outside of the source region. Due to the presence of null sources, an inversion of the static deformation data is non-unique. the expansion of the equivalent-force tensors and the stress glut tensors (or seismic moment tensors) into a set of the symmetric trace-free source tensors is proposed. the sources corresponding to seismic moment tensors of the second, third and fourth ranks are considered in more detail. We identify the third-rank sources with rotational dislocations or disclinations.  相似文献   

3.
The ability of seismological criteria to identify earthquakes from underground explosions depends partly on the orientation of the earthquake source. Well-determined double-couple moment tensor solutions for a large number of earthquakes have been published in the Harvard centroid moment tensor (CMT) and United Slates Geological Survey (USGS) catalogues. Statistical analyses of these catalogues indicate that the distribution of the orientation of earthquake mechanisms is not random. The distribution of the T axes shows significant clustering around the downward vertical, indicating that a larger number of earthquake mechanisms radiate compressional P -wave energy to teleseismic distances from near the maximum of the radiation pattern than is predicted if earthquake sources are randomly oriented double couples. The clustered T axes correspond to compressional dip-slip mechanisms, and it is this type of mechanism which is believed to cause both the m b: M s (the ratio of body-wave to surface-wave magnitude) and first-motion criteria to misidentify an earthquake as an explosion.  相似文献   

4.
A methodology is proposed for the quantification of volcanic explosions based on three parameters derived from broad-band seismic signals: the counter force of the eruption F , the power of the explosion P and the duration of the upward movement of the gas slug in the conduit to the free surface of magma, D . This methodology was applied to the 2004–2005 sequence of explosions at Volcán de Colima, Mexico. The broad-band records of more than 100 explosive events were obtained at a distance of 4 km from the crater. We determined the counter force of the eruption by modelling the low-frequency impulse of the seismic records of 66 volcanic explosions and estimated the power of 116 explosions from the spectra of the high-frequency impulse. The power of Colima explosions spans five orders of magnitude; the counter force spans four orders of magnitude. We show that the power of a volcanic explosion is proportional to the counter force of the eruption. These parameters may be used for the elaboration of a scale of volcanic explosions.  相似文献   

5.
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor.
Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.  相似文献   

6.
Summary. Parameters pertaining to the kinematics of a finite source are usually estimated by fitting specific fault models to the data. On the other hand, these parameters, including source location, are also contained in the moment tensors of higher degree. In this paper, the seismic response is represented in terms of 20 source parameters which are related to components of the moment tensors; they are also related to the parameters of fault models, as will be demonstrated for a number of 'classical' models. A linearized inversion for the moment tensor shows that with real data, or with realistic synthetic data, the results are not necessarily physically meaningful, unless constraints are imposed. The constraints are precisely those appearing as a priori assumptions in the conventional methods of source analysis; it is thus possible to investigate the impact of these assumptions. We will discuss in particular the assumption of a general deviatoric point source (not necessarily a double couple) versus that of a plane fault in finite sources. Although at this stage experience with practical performance of the new method is limited, it is suggested that in the appropriate circumstances constrained inversion for the seismic moment tensors offers a viable alternative to estimate kinematic source parameters.  相似文献   

7.
Cluster analysis of seismic moment tensor orientations   总被引:1,自引:0,他引:1  
This paper demonstrates that well-known methods of cluster analysis and multivariate data analysis are useful for geodynamic interpretation of seismic moment tensors. To use these methods, moment tensors are expressed as vectors in a 6-D space. These are vectors in a rigorous sense, rather than an arbitrary set of ordered numbers, because a dot product can be defined that is independent of the coordinate system. In this vector space, non-isotropic moment tensors are a 5-D linear subspace and normalized moment tensors are unit vectors, or points on a unit sphere. Distance along a great circle of the unit sphere satisfies reasonable requirements for any measure of the difference between normalized moment tensors. In regions with a few isolated sets of orientations, cluster analysis based on the great circle distance identifies the same groups of earthquakes that a seismologist would. Figures based on principal component analysis and discriminant analysis illustrate orientation clustering better than equal area projections of moment tensor principal axes. In one case where clusters have been claimed to exist, orientations appear to be continuously distributed and no evidence is found for separate populations of moment tensors.  相似文献   

8.
The two-point correlation function of the seismic moment tensor   总被引:2,自引:0,他引:2  
Summary. We use the invariants of the two-point correlation function of the seismic moment to investigate the degree of irregularity of an earthquake fault, i.e. to study the rapidity with which a complex fault changes its direction of orientation. The two-point correlation function is a fourth-order tensor which has three scalar invariants in the isotropic case. Although the accuracy of present-day catalogues of fault plane solutions is rather low for our purpose, nevertheless the invariants of these correlation tensors confirm the generally  相似文献   

9.
The first-order statistical moment of the seismic moment tensor   总被引:2,自引:0,他引:2  
Summary. If a complex earthquake is assumed to be a set of individual, randomly oriented elementary pure double couple sources, the solution for the seismic moment of the complex event projected on the mean trend of the fault will perforce be comprised of sources of both double couple and compensated linear vector dipole (CLVD) types. We investigate the statistical properties of these two components of seismic sources in terms of the invariants of the seismic moment tensor of a realistic set of synthetic earthquakes. It is very likely that the size of the CLVD component is two to three orders of magnitude smaller than that of the double couple component.  相似文献   

10.
The main goal of this study is to improve the modelling of the source mechanism associated with the generation of long period (LP) signals in volcanic areas. Our intent is to evaluate the effects that detailed structural features of the volcanic models play in the generation of LP signal and the consequent retrieval of LP source characteristics. In particular, effects associated with the presence of topography and crustal heterogeneities are here studied in detail. We focus our study on a LP event observed at Kilauea volcano, Hawaii, in 2001 May. A detailed analysis of this event and its source modelling is accompanied by a set of synthetic tests, which aim to evaluate the effects of topography and the presence of low velocity shallow layers in the source region. The forward problem of Green's function generation is solved numerically following a pseudo-spectral approach, assuming different 3-D models. The inversion is done in the frequency domain and the resulting source mechanism is represented by the sum of two time-dependent terms: a full moment tensor and a single force. Synthetic tests show how characteristic velocity structures, associated with shallow sources, may be partially responsible for the generation of the observed long-lasting ringing waveforms. When applying the inversion technique to Kilauea LP data set, inversions carried out for different crustal models led to very similar source geometries, indicating a subhorizontal cracks. On the other hand, the source time function and its duration are significantly different for different models. These results support the indication of a strong influence of crustal layering on the generation of the LP signal, while the assumption of homogeneous velocity model may bring to misleading results.  相似文献   

11.
The younger of two closely spaced palaeomagnetic excursions at Pringle Falls, Oregon, is recorded in lacustrine silts that crop out in Long Valley, California. Assigned an age of about 220 000 years, the virtual geomagnetic poles of the younger excursion form a clockwise loop that reached 35 °S latitude east of South America before returning to the northern hemisphere in the Pacific Ocean west of Central America. The poles then form a narrow band across North America while moving to high northern latitudes. This record matches extremely well feature B of the original excursion record from Pringle Falls reported by Herrero-Bervera et al. (1994) and is similar to this excursion at Summer Lake, Oregon ( Negrini et al. 1994 ), in that the pole path is confined primarily to the east–central Pacific Ocean. On the basis of an assumed sedimentation rate of 30  cm per thousand years, the younger excursion (feature B at Pringle Falls) spans an estimated 1200 years and followed by about 1000 years a larger excursion (feature A at Pringle Falls) previously discovered at the same Long Valley site. At a second Long Valley site 30  m away, the younger excursion (feature B) is only partially recorded because of a presumed small hiatus in the sedimentary section.  相似文献   

12.
What can be learned from rotational motions excited by earthquakes?   总被引:1,自引:0,他引:1  
One answer to the question posed in the title is that we will have more accurate data for arrival times of SH waves, because the rotational component around the vertical axis is sensitive to SH waves although not to P-SV waves. Importantly, there is another answer related to seismic sources, which will be discussed in this paper.
Generally, not only dislocations commonly used in earthquake models but also other kind of defects could contribute to producing seismic waves. In particular, rotational strains at earthquake sources directly generate rotational components in seismic waves. Employing the geometrical theory of defects, we obtain a general expression for the rotational motion of seismic waves as a function of the parameters of source defects.
Using this expression, together with one for translational motion, we can estimate the rotational strain tensor and the spatial variation of slip velocity in the source area of earthquakes. These quantities will be large at the edges of a fault plane due to spatially rapid changes of slip on the fault and/or a formation of tensile fractures.  相似文献   

13.
Summary. Linear-programming methods are powerful and efficient tools for objectively analysing seismic focal mechanisms and are applicable to a wide range of problems, including tsunami warning and nuclear explosion identification. The source mechanism is represented as a point in the six-dimensional space of moment-tensor components. Each observed polarity provides an inequality constraint, linear with respect to the moment tensor components, that restricts the solution to a half-space bounded by a hyperplane passing through the origin. The intersection of these half-spaces is the convex set of all acceptable solutions. Using linear programming, a solution consistent with the polarity constraints can be obtained that maximizes or minimizes any desired linear function of the moment tensor components; the dilatation, the thrust-like nature, and the strike-slip-like nature of an event are examples of such functions. The present method can easily be extended to fit observed seismic-wave amplitudes (either signed or absolute) subject to polarity constraints, and to assess the range of mechanisms consistent with a set of measured amplitudes.  相似文献   

14.
Summary. A new method of moment tensor inversion is developed, which combines surface wave data and P -wave first motion data in a linear programming approach. Once surface wave spectra and first motion data are given, the method automatically obtains the solution that satisfies first motion data and minimizes the L1 norm of the surface wave spectra. We show the results of eight events in which the method works and is stable even for shallow events. We also show one event in which surface wave data and P -wave first motion data seem to be incompatible. In such cases, our method does not converge or converges to a solution which has a large minor (second) double couple component. It is an advantage that the method can determine the compatibility of two data sets without trial and error.
Laterally heterogeneous phase velocity corrections are used to obtain spectra at the source. The method is also applied to invert moment tensors of eight events in two recent three-dimensional (3-D) upper mantle structures. In both 3-D models, variances of spectra are smaller than those in a laterally homogeneous model at 256 s. Statistical tests show that those reductions are significant at a high confidence level for five events out of eight examined. For three events, we examined those reductions at shorter periods, 197 and 151 s. The reduction of variances is comparable to the results at 256 s and is again statistically significant at a high confidence level. Orientation of fault planes does not change very much by incorporation of lateral variations of phase velocity or by doing inversions at different periods. This is mainly because of the constraints from P -wave first motion data. Scatter of phase spectra at shorter periods, especially at 151 s, is great and suggests that surface wave ray paths deviate from great circle paths substantially and these effects cannot be ignored.  相似文献   

15.
Summary The displacement fields generated in an internal gravity wave waveguide between plane rigid walls are compared for two types of source: an explosive point source and a rising buoyant sphere moving at constant speed. It is concluded that for large enough spheres and comparable energy expenditures, the buoyant sphere is a far more efficient source of long internal gravity waves. In particular it appears possible to conclude that, in the case of large events such as nuclear or volcanic explosions in the atmosphere, the rising heated air mass can generate long wavelength (Λ > 500 km) internal gravity waves at ionospheric heights.  相似文献   

16.
The vibration of a fluid-filled crack is considered to be one of the most plausible source mechanisms for the long-period events and volcanic tremors occurring around volcanoes. As a tool for the quantitative interpretation of source process of such volcanic seismic signals, we propose a method to numerically simulate the dynamic response of a fluid-filled crack. In this method, we formulate the motions of the fluid inside and the elastic solid outside of the crack, using boundary integrals in the frequency domain and solve the dynamic interactions between the fluid and the elastic solid using the point collocation method. The present method is more efficient compared with the time-domain finite difference method, which has been used in simulations of a fluid-filled crack and enables us to study the dynamics of a fluid-filled crack over a wide range of physical parameters. The method also allows us direct calculation of the attenuation quality factor of the crack resonance, which is an indispensable parameter for estimating the properties of the fluid inside the crack. The method is also designed to be flexible to many applications, which may be encountered in volcano seismology, and thus, extensions of the method to more complicated problems are promising.  相似文献   

17.
Symmetric tensors are typically encountered during investigations associated with stress and strain analysis and, thus, they are of particular interest to geophysicists and geodesists. Furthermore, symmetric tensors are studied using eigentheory analysis which provides the decomposition of the tensor on its principal components (n independent eigenvalues and the corresponding eigenvectors). In this paper, an analytical expression of the covariance matrix of the eigenvalues and eigenvectors of an n-D symmetric tensor is derived based on the principles of linear algebra and differential calculus. Through numerical tests, the proposed formulation is proven to give realistic uncertainty estimates of the determined eigenparameters. The methodology also reveals the significant impact on uncertainty assessments when the parameter dependencies between principal components are neglected.  相似文献   

18.
Seismic sources with observable glut moments of spatial degree two   总被引:1,自引:0,他引:1  
Let ζΛ and r Λ. be the hypocentral position and time of an extended indigenous seismic source. Backus showed that the force moment tensors of the source, Γ( m +1, n )Λ, r Λ), determine and are determined by the motion which the source produces. For small m + n , only the long-period motion is relevant. The glut moment tensor Λ( m,n )Λ, r Λ.) can be calculated uniquely from γ( m +1, n )Λ r Λ) only if m = 0 or m = 1. The tensor G =Λ(2,0)Λ) gives the spatial variance tensor WΛ of the source, and WΛ. roughly describes the size, shape and orientation of the source region. Therefore the failure of the observed F =Γ(3,0)Λ) to determine G uniquely is of seismological interest. In the present paper we show that F determines G uniquely if we assume the source to be a simple straight line source (SSLS) or an ideal fault in an isotropic medium with isotropic prestress (IFIMIP). We give tests on F which determine whether it can come from a SSLS, from an IFIMIP or from a simple plane surface source (SPSS). If we assume the source to be a SPSS then knowing F and the fault plane determines G to within an unknown scalar multiple of a certain tensor tangent to the fault plane. Moreover F determines the fault plane uniquely unless F can come from a SSLS. If it can, then F determines this virtual source line uniquely, and F permits the fault plane to be any plane containing the virtual source line.  相似文献   

19.
We construct a catalogue of all the possible elementary point sources of seismic waves. There are three general classes of sources, two spheroidal and one toroidal. We consider excitation functions for these point-like sources as well as for sources of finite size in far-, intermediate- and near-field for an infinite homogeneous isotropic medium. The sources corresponding to seismic-moment tensors for the second-, third- and fourth-ranks are considered in more detail; we identify 10 different seismic sources in this range: one monopole, two or three dipoles, three quadrupoles, etc. For the step-function of the scalar seismic-moment release, the amplitude spectrum for the third-rank sources is proportional to the angular frequency ω in the region below the corner frequency ω cr. The fourth-rank sources have an ω 2 spectrum in the same range. The possibility of separate and simultaneous inversion of seismic body-wave data and static deformation data for sources of different order is discussed. Some equivalent-force moment higher-rank sources are 'shielded' by lower-rank sources of the same order; the former sources cannot be inverted from seismic data without additional assumptions. Because of their simple radiation pattern, the lower order multipoles, i.e. the monopole and dipoles, are the first sources other than the double-couple which should be considered for inversion.  相似文献   

20.
We present a stepwise inversion procedure to assess the focal depth and model earthquake source complexity of seven moderate-sized earthquakes  (6.2 > M w > 5.1)  that occurred in the Afar depression and the surrounding region. The Afar depression is a region of highly extended and intruded lithosphere, and zones of incipient seafloor spreading. A time-domain inversion of full moment tensor was performed to model direct P and SH waves of teleseismic data. Waveform inversion of the selected events estimated focal depths in the range of 17–22 km, deeper than previously published results. This suggests that the brittle–ductile transition zone beneath parts of the Afar depression extends more than 22 km. The effect of near-source velocity structure on the moment tensor elements was also investigated and was found to respond little to the models considered. Synthetic tests indicate that the size of the estimated, non-physical, non-isotropic source component is rather sensitive to incorrect depth estimation. The dominant double couple part of the moment tensor solutions for most of the events indicates that their occurrence is mainly due to shearing. Parameters associated with source directivity (rupture velocity and azimuth) were also investigated. Re-evaluation of the analysed events shows predominantly normal faulting consistent with the relative plate motions in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号