首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 394 毫秒
1.
The first results of comprehensive CORONAS-F observations of solar activity are presented. The CORONAS-F instrumentation and principal scientific objectives are briefly described and examples of the first results of data reduction are given. This article was republished due to two color figures (nos. 4 and 5) missed in the original translation. Our apologies to the authors and the readers of the journal. The online version of the original article can be found at  相似文献   

2.
We present the results of our calculations of the absorbed radiation doses onboard the International Space Station (ISS) based on CORONAS-F data on the spectra of protons in near-Earth space and on the conditions of their penetration into the polar caps. Our estimates are compared with the dosimetry data onboard the ISS and with the results of similar calculations based on GOES-10 (Geostationary Operational Environmental Satellite) data. There is satisfactory agreement between the absorbed doses estimated from CORONAS-F data and the measurements on the ISS. When the data from the high-apogee GOES-10 satellite are used, the agreement between calculations and measurements is considerably poorer. This is probably due to the influence of solar cosmic ray proton penetration into the polar caps.  相似文献   

3.
More than 300000 solar images in the extreme ultraviolet and soft X-ray regions were obtained using two telescopes and four spectroheliometers of the CORONAS-F/SPIRIT device from August 2001 to December 2005. Methods for the processing of such data and extracting physical information are presented, taking into account the experience of processing and analysis of other space experiments on solar research. Some results on applications of the considered methods are presented.  相似文献   

4.
Our main goal is to show that the spatial and temporal dynamics of the temperature content for plasma structures in the solar corona can be described quantitatively in principle, which is necessary for understanding the formation mechanisms of soft X-ray emission. An approach based on a consistent modeling of complex data from the CORONAS-F, GOES, and RHESSI satellites is suggested. A basically new element of this approach is the use of time series of monochromatic full-Sun images in the X-ray MgXII 8.42 Å line and EUV lines obtained in the SPIRIT experiment onboard CORONAS-F. Two inversion procedures have been used to determine the volume and column differential emission measures defined by the Stieltjes integral: an optimization one based on a multitemperature parametric model and an iterative one based on the Bayesian theorem, respectively. The calculations with coronal abundances agree with the RHESSI data within the experimental error limits, while those with photospheric abundances give no satisfactory agreement. The relatively cold (with temperature 2–4 MK) and transient (4–10 MK) plasmas are shown to play a significant role in producing soft X-ray emission during flare events and in their energy budget. The spatial electron density and temperature distributions and their time evolution have been obtained for long-duration events that were first observed in the monochromatic MgXII channel and were previously called “spiders.” The method used has allowed us to verify the absolute intercalibration of the fluxes recorded in all experiments and to reference the SPIRIT MgXII images to the solar disk. We also consider possible flare plasma heating mechanisms for impulsive and long-duration (spider) flare events.  相似文献   

5.
We present a catalog of 100 lines in the wavelength range 280–330 Å detected by the RES-C spectroheliograph in solar active regions and flares during the SPIRIT experiment aboard the CORONAS-F orbital station. We identified 54 lines. The line intensities recorded during the X3.4 (GOES) solar flare of December 28, 2001, are given. The data reduction procedure is discussed.  相似文献   

6.
The fluxes and penetration boundaries of solar energetic particles on the CORONAS-F satellite during October 2003 superstorms are compared with the riometric absorption measurements on a worldwide network of riometers. The dynamics of the polar cap boundaries is investigated at various phases of magnetic storms. The dependence of absorption on time of the day and on solar proton spectrum is calculated at various phases of a solar energetic particle event.  相似文献   

7.
Plasma temperature diagnostics in solar flares and active regions has been carried out using data from the SPIRIT spectroheliograph onboard the CORONAS-F satellite. The temperature distribution of the differential emission measure (DEM) has been determined from the relative intensities of spectral lines recorded in the spectral range 280–330 Å in the period from 2001 to 2005. Analysis of these distributions has led to the conclusion about the existence of active regions with various “characteristic” temperature compositions. The presence of a hot plasma with temperatures logT = 6.8?7.2 in active regions has been established for the first time from XUV spectroscopic data and monochromatic X-ray line images. The DEM distribution for intense long-decay flares has also been obtained for the first time and a similarity of the temperature compositions for flares of different classes at the decay phase has been found. The spectra have been modeled on the basis of the calculated DEMs. The systematic discrepancies between the calculated and measured line intensities are discussed.  相似文献   

8.
The helioseismological experiment onboard the CORONAS-PHOTON satellite is intended for the study of characteristics and the internal structure of the Sun using the solar eigenmodes spectrum obtained by the measurement of fluctuations of the solar radiation intensity. This experiment is the continuation of investigations of solar global oscillations started onboard artificial satellites CORONAS-I and CORONAS-F. Measurements of fluctuations of the solar radiation intensity in seven optical ranges—from the near ultraviolet to infrared spectral regions—are carried out by the solar photometer SOKOL (SOlnechnye KOLebaniya (Solar Oscillations)) developed at IZMIRAN. Over an instrument operation period of more than 9 months, a large volume of the scientific information (more than 500 MB) has been obtained. The primary processing of obtained data was performed, and spectra of fluctuations of the solar radiation intensity were constructed. On the basis of part of the processed information obtained by the photometer SOKOL, and data of the experiment DIFOS (Differential Oscillations of the Sun) onboard the artificial satellite CORONAS-F, the dependence of the relative amplitude of oscillations on the wavelength of the observation was determined.  相似文献   

9.
The solar flare of November 4, 2001, at 16.03–16.57 UT (GOES soft X-ray class X1.0, optical importance 3B, and coordinates N06W180) is used as an example to investigate the relationship between sporadic VHF radio bursts and charged particle fluxes (of both solar and magnetospheric origins) at an altitude of 500 km. The radio background intensity was recorded at frequencies of 280, 300, 151, and 500 MHz by nondirectional ground-based mid-latitude radio antennas spaced ~700 km apart. The results of our radio measurements are compared with the dynamics of 0.2–12 MeV electron and 1–5 MeV proton fluxes based on data from the MKL instrument onboard the CORONAS-F satellite (the orbit altitude and inclination are 500 km and 82.5°, respectively).  相似文献   

10.
Observational data on solar irradiance oscillations from the VIRGO (SOHO) and DIFOS-F (CORONAS-F) experiments are used to obtain stratifications of perturbed hydrogen concentrations that produce isothermal oscillations in the solar photosphere. The study reveals the nodes and antinodes of the oscillations in the solar photosphere. A simulation of long-period isothermal oscillations from the DIFOS data shows that the nodes and antinodes of Δn/n tend to shift towards lower photosphere layers with a decrease in the oscillation frequency.  相似文献   

11.
We discuss the results of our simultaneous observations of interplanetary and geomagnetic field fluctuations as well as solar wind parameters and meter radio emission in near-Earth space at mid-latitudes (near Kharkov) based on ground measurements before and during a unique magnetic storm on October 22, 1999. The electron flux dynamics in interplanetary space, geostationary orbit, and the magnetosphere is analyzed to find the interconnection with UHF radio background bursts at a frequency of 151 MHz. We conclude that the acceleration processes in the inner magnetospheric layers affect the generation processes of high-frequency radio bursts and that this phenomenon should be studied further using the SINP (MSU) instruments onboard the CORONAS-F satellite.  相似文献   

12.
The relative intensities of FeXI-Fe XIII lines in the range 176–207 Å have been measured for various plasma structures of the solar corona using data from the XUV spectroheliograph of the SPIRIT instrumentation onboard the CORONAS-F satellite with an improved spectral sensitivity calibration. Electron density diagnostics of a plasma with temperatures 0.8–2.5 MK has been carried out in active regions, quiet-Sun and off-limb areas, and, for the first time, in extremely intense solar flares. The density range is (1.6–8) × 109 cm?3 for flares, (0.6–1.6) × 109 cm?3 for active regions, and ~5 × 108 cm?3 for quiet-Sun areas. The calibration accuracy of the spectral sensitivity for the spectroheliograph has been analyzed based on spectral lines with density-independent intensity ratios.  相似文献   

13.
A theory for the brightness fluctuations of the Sun as a star under the effect of its global oscillations has been developed. Formulas for the darkening and visibility of p-modes are derived and their calculations are performed in the local approximation for adiabatic oscillations. Observational data from the DIFOS multichannel photometer onboard the CORONAS-F satellite are used to solve the inverse problem of determining the amplitude of the five-minute temperature fluctuations in the solar photosphere as a function of the height. Analysis of the solution and comparison with the results of other authors suggest that the predicted temperature waves resulting from a linear transformation of p-modes in the photosphere exist in the photosphere. The wavelength and phase velocity of the temperature waves are considerably smaller than those of acoustic waves. It turns out that the solar brightness fluctuations should be produced mainly by the temperature waves in the photosphere, not by the p-modes themselves. The darkening function for the brightness fluctuations is oscillatory in behavior, while the visibility function can differ markedly from that for the Doppler shifts of spectral lines produced by p-modes. These properties are important for interpreting the observations of stellar oscillations based on stellar brightness fluctuations.  相似文献   

14.
The fluxes of energetic particles under the radiation belts are studied using data obtained in the experiments onboard the CORONAS-I and CORONAS-F satelites. The spatial structure of the distributions of proton fluxes with E p > 1 MeV both near the geomagnetic equator on L ≤ 1.2 and at high latitudes on L ~ 3.5–6.5 as well as the particle flux variations with geomagnetic activity are analyzed. The scattering processes that lead to particle precipitation and, in particular, the scattering of protons as they interact with VLF emission and the scattering when the particle motion becomes nonadiabatic are considered. We compare the data on particle dynamics during geomagnetic disturbances of various kinds to determine whether the physical processes that lead to particle precipitation are a manifestation of the geoefficiency of a given magnetic storm or they are controlled by internal magnetospheric conditions.  相似文献   

15.
Based on CORONAS-F/SPIRIT images of the Sun in the MgXII 0.84-nm line, we have performed photometric measurements and investigated the time dependence of the surface brightness for fragments of ten active regions. Continuous observations were carried out on March 3–4, 2002, for about 19 h when the satellite moved in shadowless orbits. The interval between the images was, on average, about 1 min. A time correlation has been found between the brightness variations in some pairs of high-temperature regions spaced from 10° to 106° apart. We have analyzed the statistical characteristics of the temporal distribution of bursts: the observed nonuniformity of the distribution was found to be impossible for a random Poisson process. To identify sympathetic (induced) bursts, we have studied the connections in the form of magnetic loops between active regions using CORONAS-F/SPIRIT and SOHO/EIT solar images. The most probable delays between events (X-ray bursts) in various active regions have been estimated. By assuming that the disturbance propagates along the coronal loops connecting active regions, we have estimated the propagation velocity of the disturbance, ~1700 km s?1. In the period under study, the active regions in which a large number of bursts were observed lay along the periphery of a developing equatorial coronal hole. We have concluded that the simultaneous emergence of new magnetic fluxes in the photosphere was responsible for most of the quasi-synchronous events on March 3–4, 2002. We have calculated the physical conditions in coronal loops by assuming that the propagation of magnetohydrodynamic waves in the corona could be responsible for the appearance of connected events.  相似文献   

16.
A technique for analyzing periodic processes based on the introduction of an analytical signal is described. This technique allows the instantaneous frequency, amplitude, and phase of oscillations to be obtained. The data on solar brightness fluctuations collected with the DIFOS multichannel photometer onboard the CORONAS-F satellite are processed. The p-mode spectral lines are broadened mainly by amplitude fluctuations, while the frequency stability appears to be high (~10?4). A method for separating signals with close frequencies is developed. The p-mode with l = 0 and n = 21 is used as an example to show that the separation of signals with close frequencies is possible when the conventional spectral methods are inefficient. Analysis of the phase shifts between the oscillations observed in various optical channels of the DIFOS photometer has revealed that the five-minute oscillations travel from the upper and deep photospheric layers toward the middle photospheric layers. This effect directly proves that the evanescent p-modes in the photosphere are nonadiabatic.  相似文献   

17.
Dramatic extensions of experimental possibilities (spacecraft RHESSI, CORONAS-F and others) in solar gamma-ray astronomy call for urgent, detailed theoretical consideration of a set of physical problems of solar activity and solar-terrestrial relationships that earlier may have only been outlined. Here we undertake a theoretical analysis of issues related to the production of gamma-radiation in the processes of interactions of energetic (accelerated) heavy and middle nuclei with the nuclei of the solar atmosphere (the so-called i-j interactions). We also make an estimate of the contribution of these interactions to the formation of nuclear and isotopic abundances of the solar atmosphere in the range of light and rare elements. The analysis is carried out for solar flares in the wide range of their intensities. We compare our theoretical estimates with RHESSI observations for the flare of 2002 July 23. It was shown that the 24Mg gamma-ray emission in this event was produced by the newly generated Mg nucle  相似文献   

18.
The SONG instrument onboard the CORONAS-F satellite recorded gamma-ray emission with energy above 500 keV in 28 solar flares over three years of its in-orbit operation. According to the GOES classification, the X-ray importance of these flares lay within the range M1.4-X28. The gamma-ray energy recorded by SONG exceeded 4 MeV in 16 flares. Gamma-ray emission with energy up to 100 MeV was recorded in three events, more specifically, on August 25, 2001, October 28, 2003, and November 4, 2003. Increases in the count rate in the SONG channels that recorded neutrons with energies above 20 MeV were found during these three events. The energies of the recorded neutrons were estimated for the neutron increases. The time dependence of the neutron increases was compared with data from high-altitude ground-based neutron monitors that could, in principle, record the arrival of high-energy neutrons from the Sun. It should be noted that we detected series of flares with gamma-ray emission generated by the same active region (AR). The series in the last decade of August 2002 (AR NOAA 0069), the end of May 2003 (AR NOAA 0365), and the famous period of extreme solar activity in October–November 2003 associated with AR NOAA 0486 and AR NOAA 0501 are quite revealing. The catalog can be of use for future statistical and correlation analyses of solar flares.  相似文献   

19.
This is the first of four companion papers, which comprehensively analyze a complex eruptive event of 18 November 2003 in active region (AR) 10501 and the causes of the largest Solar Cycle 23 geomagnetic storm on 20 November 2003. Analysis of a complete data set, not considered before, reveals a chain of eruptions to which hard X-ray and microwave bursts responded. A filament in AR 10501 was not a passive part of a larger flux rope, as usually considered. The filament erupted and gave origin to a coronal mass ejection (CME). The chain of events was as follows: i) a presumable eruption at 07:29 UT accompanied by a not reported M1.2 class flare probably associated with the onset of a first southeastern CME (CME1), which most likely is not responsible for the superstorm; ii) a confined eruption (without a CME) at 07:41 UT (M3.2 flare) that destabilized the large filament; iii) the filament acceleration around 07:56 UT; iv) the bifurcation of the eruptive filament that transformed into a large “cloud”; v) an M3.9 flare in AR 10501 associated to this transformation. The transformation of the filament could be due to the interaction of the eruptive filament with the magnetic field in the neighborhood of a null point, located at a height of about 100 Mm above the complex formed by ARs 10501, 10503, and their environment. The CORONAS-F/SPIRIT telescope observed the cloud in 304 Å as a large Y-shaped darkening, which moved from the bifurcation region across the solar disk to the limb. The masses and kinematics of the cloud and the filament were similar. Remnants of the filament were not clearly observed in the second southwestern CME (CME2), previously regarded as a source of the 20 November geomagnetic storm. These facts do not support a simple scenario, in which the interplanetary magnetic cloud is considered as a flux rope formed from a structure initially associated with the pre-eruption filament in AR 10501. Observations suggest a possible additional eruption above the bifurcation region close to solar disk center between 08:07 and 08:17 UT, which could be the source of the 20 November superstorm.  相似文献   

20.
Based on data from the SONG and SPR-N multichannel hard electromagnetic radiation detectors onboard the CORONAS-F space observatory and the X-ray monitors onboard GOES satellites, we have distinguished the thermal and nonthermal components in the X-ray spectrum of an extreme solar flare on January 20, 2005. In the impulsive flare phase determined from the time of the most efficient electron and proton acceleration, we have obtained parameters of the spectra for both components and their variations in the time interval 06:43–06:54 UT. The spectral index in the energy range 0.2–2 MeV for a single-power-law spectrum of accelerated electrons is shown to have been close to 3.4 for most of the time interval under consideration. We have determined the time dependence of the lower energy cutoff in the energy spectrum of nonthermal photons E γ0(t) at which the spectral flux densities of the thermal and nonthermal components become equal. The power deposited by accelerated electrons into the flare volume has been estimated using the thick-target model under two assumptions about the boundary energy E 0 of the electron spectrum: (i) E 0 is determined by E γ0(t) and (ii) E 0 is determined by the characteristic heated plasma energy (≈5kT (t)). The reality of the first assumption is proven by the fact that plasma cooling sets in at a time when the radiative losses begin to prevail over the power deposited by electrons only in this case. Comparison of the total energy deposited by electrons with a boundary energy E γ0(t) with the thermal energy of the emitting plasma in the time interval under consideration has shown that the total energy deposited by accelerated electrons at the beginning of the impulsive flare phase before 06:47 UT exceeds the thermal plasma energy by a factor of 1.5–2; subsequently, these energies become approximately equal and are ~(4–5) × 1030 erg under the assumption that the filling factor is 0.5–0.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号