首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Multiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of <1.5 m2 (Falcon 20). Identification of an effective anesthetic regime is particularly important because inhalant anesthesia cannot be used in-flight.

Methods

After ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed.

Results

The mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic stability through an IV route (within multiple transport vehicles and differing gravitational environments). Standardization and pre-packaging of anesthesia, emergency pharmaceuticals, and consumables were found to facilitate the interchange of the veterinary anesthesia team members between flights. This operational process was extremely challenging.

Conclusions

With careful organization of caregivers, equipment and protocols, providing anesthesia and life support in weightlessness is theoretically possible. Unfortunately, human resource costs are extensive and likely overwhelming. Comprehensive algorithms for extended spaceflight must recognize these costs prior to making assumptions or attempting to provide critical care in space.  相似文献   

2.
The impact of the space environment upon living organisms is profound. Its effects range from alterations in sub-cellular processes to changes in the structure and function of whole organ systems. As the number of astronaut and cosmonaut crews flown in space has grown, so to has our understanding of the effects of the space environment upon biological systems. There are many parallels between the physiology of space flight and terrestrial disease processes, and the response of astronaut crews themselves to long-duration space deployment is therefore of central interest. In the next 15 years the International Space Station (ISS) will serve as a permanently manned dedicated life and physical sciences platform for the further investigation of these phenomena. The European Space Agency's Columbus module will hold the bulk of the ISS life science capability and, in combination with NASA's Human Research Facility (HRF) will accommodate the rack mounted experimental apparatus. The programme of experimentation will include efforts in fundamental biology, human physiology, behavioural science and space biomedical research. In the four decades since Yuri Gagarin first orbited the Earth, space life science has emerged as a field of study in its own right. The ISS takes us into the next era of human space exploration, and it is hoped that its programme of research will yield new insights, novel therapeutic interventions, and improved biotechnology for terrestrial application. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The design of spacecraft trajectories is a crucial part of a space mission design. Often the mission goal is tightly related to the spacecraft trajectory. A geostationary orbit is indeed mandatory for a stationary equatorial position. Visiting a solar system planet implies that a proper trajectory is used to bring the spacecraft from Earth to the vicinity of the planet. The first planetary missions were based on conventional trajectories obtained with chemical engine rockets. The manoeuvres could be considered 'impulsive' and clear limitations to the possible missions were set by the energy required to reach certain orbits. The gravity-assist trajectories opened a new way of wandering through the solar system, by exploiting the gravitational field of some planets. The advent of other propulsion techniques, as electric or ion propulsion and solar sail, opened a new dimension to the planetary trajectory, while at the same time posing new challenges. These 'low thrust' propulsion techniques cannot be considered 'impulsive' anymore and require for their study mathematical techniques which are substantially different from before. The optimisation of such trajectories is also a new field of flight dynamics, which involves complex treatments especially in multi-revolution cases as in a lunar transfer trajectory. One advantage of these trajectories is that they allow to explore regions of space where different bodies gravitationally compete with each other. We can exploit therefore these gravitational perturbations to save fuel or reduce time of flight. The SMART-1 spacecraft, first European mission to the Moon, will test for the first time all these techniques. The paper is a summary report on various activities conducted by the project team in these areas.  相似文献   

4.
We describe in detail the procedures used for the ground testing and calibration of the flight model of the TAUVEX space telescope. We present the measurements done for this purpose, the various assumptions adopted during the ground calibration process, the results obtained, and provide a first approximation to the real performance of the experiment. The results of the ground-based calibration are that the system complies with the predicted performance in all aspects except for the total throughput, which is a factor of ∼5 smaller than expected. However, the instrument sensitivity measurement is highly uncertain due to known limitations of the available equipment and a more accurate calibration will be performed in orbit.  相似文献   

5.
The design of detector systems for flight applications requires the consideration of a number of issues unique to space instrumentation. Flight detectors must endure hostile radiation environments and thermal extremes. Paramount importance is given to reliability since inflight replacement is at best difficult and usually impossible. Flight detectors are also significant cost and design drivers since they often determine key requirements for flight instruments such as volume, mass, power consumption, heat dissipation and communications budgets. In this paper we describe the primary concerns in developing flight detector systems, and review the challenges posed by future NASA and ESA space science missions for detector development.  相似文献   

6.
The United Kingdom government has decided to be part of the European Space Agency’s Aurora programme, but so far it has declared an intention only to participate in aspects of the programme which do not involve human space flight. Personally, we believe this to be a mistake, mainly because of the inherent limitations of robots, especially in unforeseen circumstances. However the arguments we make are different to this and are focussed mainly upon the benefits to earth based science, medicine, technology and education which would accrue from a manned space flight programme.  相似文献   

7.
Human space flight represents a heady mix of bravery and drama which can be inspirational to nations and to humankind but at huge economic cost. Due to the current high launch costs only a handful of people have ventured beyond low Earth orbit and walked on the Moon, propelled by aspirations related more to the Cold War than to science. Problems with reusable launch vehicle development mean that severe launch cost limitations will exist for some time. Meanwhile, cheaper robotic probes have visited all the planets except Pluto, flown by comets, landed on Mars, Venus and an asteroid, have probed Jupiter's atmosphere and studied the Universe beyond our own solar system with telescopes. Using these data we are determining mankind's place in the Universe. Public interest in the historic Eros landing eclipsed a simultaneous space walk at the fledgling International Space Station and the Mars Pathfinder landing generated hundreds of millions of website hits in a few days. Given the fact that hundreds of Mars missions could be flown for the still-escalating cost of the International Space Station, the unsuitability of human bodies for deep space exploration, and the advances in 3-d and virtual reality techniques, we discuss whether human exploration needs a place in a realistic, useful and inspirational space programme. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In order to meet the practical priority of the mass detection of hazardous celestial bodies (HCBs) during the creation of a system to counteract space hazards (asteroids, comet hazards and space debris), we need clear technical requirements for the detection instruments designed (created). Specially targeted astronomical investigations into the basic properties of the HCB ensemble were conducted to specify such requirements (limitations). The paper presents these findings. As to asteroid and comet hazards, quantitative limitations on the HCB size (50 m) have been introduced and quantitative definitions of threatening and collisional HCB orbits have been proposed for the first time. It is shown that at a lead time of 30 days, it is necessary to detect HCBs at distances of about 1 AU, which corresponds to a telescope’s resolving power of V ~ 23 m . This entails the necessity to design wide-angle large-aperture telescopes. For detecting and monitoring space debris objects and meteoroids in the near-earth space at a time scale of about several days, faster instruments with smaller apertures but larger vision fields are efficient. An example is given of a basic design of a space-based system that takes into account the astronomical requirements discussed.  相似文献   

9.
The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India’s Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.  相似文献   

10.
Plasma science is rich in distinguishable scales ranging from the atomic to the galactic to the meta-galactic, i.e., themesoscale. Thus plasma science has an important contribution to make in understanding the connection between microscopic and macroscopic phenomena. Plasma is a system composed of a large number of particles which interact primarily, but not exclusively, through the electromagnetic field. The problem of understanding the linkages and couplings in multi-scale processes is a frontier problem of modern science involving fields as diverse as plasma phenomena in the laboratory to galactic dynamics.Unlike the first three states of matter, plasma, often called the fourth state of matter, involves the mesoscale and its interdisciplinary founding have drawn upon various subfields of physics including engineering, astronomy, and chemistry. Basic plasma research is now posed to provide, with major developments in instrumentation and large-scale computational resources, fundamental insights into the properties of matter on scales ranging from the atomic to the galactic. In all cases, these are treated as mesoscale systems. Thus, basic plasma research, when applied to the study of astrophysical and space plasmas, recognizes that the behavior of the near-earth plasma environment may depend to some extent on the behavior of the stellar plasma, that may in turn be governed by galactic plasmas. However, unlike laboratory plasmas, astrophysical plasmas will forever be inaccessible to in situ observation. The inability to test concepts and theories of large-scale plasmas leaves only virtual testing as a means to understand the universe. Advances in in computer technology and the capability of performing physics first principles, fully three-dimensional, particle-in-cell simulations, are making virtual testing a viable alternative to verify our predictions about the far universe.The first part of this paper explores the dynamical and fluid properties of the plasma state, plasma kinetics, and the radiation emitted from plasmas. The second part of this paper outlines the formulation for the particle-in-cell simulation of astrophysical plasmas and advances in simulational techniques and algorithms, as-well-as the advances that may be expected as the computational resource grows to petaflop speed/memory capabilities.Dedicated to the memories of Hannes Alfvén and Oscar Buneman; Founders of the Subject.  相似文献   

11.
12.
Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the macroscopic picture of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

13.
At the focal plane of the ISO 60 cm telescope, ISOCAM will take images of the sky in the wavelength range 2.5 to 17 m. It features two independent channels, containing each a 32×32 array detector. The long wavelength (4–17 m) detector, developed by LIR-LETI specifically for ISOCAM, is a Si:Ga array bonded with indium bumps to a DV readout circuit. The short wavelength (2.5–5.5 m) detector, developed by SAT, is an InSb array with a CID readout.Only one channel operates at a time. The channel selection is obtained with two field mirrors supported by a wheel. The field mirror in operation is in the focal plane of the telescope, covering the 3 arcmin field of view, and reflecting the light into one or into the other channel.In each channel, 10 or 12 discrete band pass filters and CVFs with resolution 45 are mounted on a wheel. A second wheel supports a set of lenses, which reimage the focal plane of the telescope on the array, with a pixel field of view of 1.5, 3, 6 or 12 arcsec.Two integrating spheres, illuminated through small holes by black body sources, are mounted on the selection wheel, for flat fielding and calibration purposes.The flight model of ISOCAM, fully tested and calibrated, has been, delivered to ESA and is ready to be integrated in the satellite, whose expected launch date is September 1995.  相似文献   

14.
Robotic platforms are essential for future human planetary and lunar exploration as they can operate in more extreme environments with a greater endurance than human explorers. In this era of space exploration, a terrestrial analog that can be used for development of the coordination between manned and robotic vehicles will optimize the scientific return of future missions while concurrently minimizing the downtime of both human explorers and robotic platforms. This work presents the use of underwater exploratory robots - autonomous underwater vehicles (AUV), remotely operated vehicles (ROV), and manned submersibles - as analogues for mixed human-robot exploration of space. Subaqueous settings present diverse challenges for navigation, operation and recovery that require the development of an exploration model of a similar complexity as required for space exploration. To capitalize on the strengths of both robotic and human explorers this work presents lessons learnt with respect to the fields of human-robotic interface (HRI) and operator training. These are then used in the development of mission evaluation tools: (1) a task efficiency index (TEI), (2) performance metrics, and (3) exploration metrics. Although these independent evaluations were useful for specific missions, further refinement will be required to fully evaluate the strengths and capabilities of multiple platforms in a human-robotic exploration campaign in order to take advantage of unforeseen science opportunities in remote settings.  相似文献   

15.
In this paper, we present the final report of the data obtained from the Space Dust (SPADUS) instrument on the Earth-orbiting Advanced Research and Global Observation Satellite (ARGOS). The University of Chicago's SPADUS instrument on the US Air Force's Advanced Research and Global Observation Satellite has been operating in a nearly polar orbit, at an altitude of approximately 850 km, since soon after its launch on day 54, 1999 (23 February) until termination of the SPADUS operations on day 248, 2001 (5 September).The instrument consists of a polyvinylidene fluoride (PVDF) dust trajectory system, which includes two planar arrays of PVDF sensors (a total of 16 sensors per array) separated by 20.25 cm to provide time of flight (TOF) measurements. The trajectory system measures dust particle flux, mass distribution, velocity and trajectory. The instrument also includes the SPADUS Ancillary Diagnostic Sensor (ADS) subsystem, which measured energetic charged particles (electrons, protons, etc).The PVDF dust trajectory system detected a total of 368 dust impacts over the SPADUS live-time interval of 739 days, yielding an average particle flux of 0.50 impacts/day. Of these 368 impacts, 35 were D1-D2 type events—where particles impacted and penetrated a D1 sensor, then impacted a D2 rear array sensor—allowing for time-of-flight measurements. Of the 35 D1-D2 impacts on SPADUS, we identified 19 D1-D2 impacts yielding TOF values. Of these 19 events, 14 were ambiguous (either bound or interplanetary) and 5 were unambiguous interplanetary impacts. Examples of particle orbits for debris particles as well as D1-D2 impacts are detailed. We also describe transient particle streams detected by the SPADUS trajectory system, resulting from the passage of ARGOS through streams of debris particles in Earth orbit. One of the streams was shown to result from detection by SPADUS of the debris generated by the explosion of a Chinese booster rocket.The SPADUS flight data accumulated over the 30-month mission shows that PVDF-based dust instruments utilizing two planar arrays of PVDF dust sensors in a TOF arrangement—can provide useful measurements of particle velocity, mass distribution, flux, trajectory and particle orbital elements.  相似文献   

16.
《New Astronomy》2003,8(5):371-390
We have proposed to test the equivalence principle (EP) in low Earth orbit with a rapidly rotating differential accelerometer (made of weakly coupled concentric test cylinders) whose rotation provides high frequency signal modulation and avoids severe limitations otherwise due to operation at room temperature [PhRvD 63 (2001) 101101]. Although the accelerometer has been conceived for best performance in absence of weight, we have designed, built and tested a variant of it at 1-g. Here we report the results of measurements performed so far. Losses measured with the full system in operation yield a quality factor only four times smaller than the value required for the proposed high accuracy EP test in space. Unstable whirl motions, which are known to arise in the system and might be a matter of concern, are found to grow as slowly as predicted and can be stabilized. The capacitance differential read-out (the mechanical parts, electronics and software for data analysis) is in all similar to what is needed in the space experiment. In the instrument described here the coupling of the test masses is 24 000 times stiffer than in the one proposed for flight, which makes it 24 000 times less sensitive to differential displacements. With this stiffness it should detect test masses separations of 1.5·10−2 μm, while so far we have achieved only 1.5 μm, because of large perturbations—due to the motor, the ball bearings, the non-perfect verticality of the system—all of which, however, are absent in space. The effects of these perturbations should be reduced by 100 times in order to perform a better demonstration. Further instrument improvements are underway to fill this gap and also to reduce its stiffness, thus increasing its significance as a prototype of the space experiment.  相似文献   

17.
Space experiments to test the Equivalence Principle (EP) are affected by a systematic radiometer effect having the same signature as the target signal. In [PhRvD 63 (2001) 101101(R)] we have investigated this effect for the three proposed experiments currently under study by space agencies: μSCOPE, STEP and GG, setting the requirements to be met—on temperature gradients at the level of the test masses—for each experiment to reach its goal. We have now re-examined the radiometer effect in the case of μSCOPE and carried out a quantitative comparative analysis, on this issue, with the proposed heliocentric LISA mission for the detection of gravity waves. We find that, even assuming that the μSCOPE spacecraft and payload be built to meet all the challenging requirements of LISA, temperature gradients along its test masses would still make the radiometer effect larger than the target signal of an EP violation because of flying in the low geocentric orbit required for EP testing. We find no way to separate with certainty the radiometer systematic disturbance from the signal. μSCOPE is designed to fly a second accelerometer whose test masses have the same composition, in order to separate out systematic effects which—not being composition dependent like the signal—must be detected by both accelerometers. We point out that this accelerometer is in fact insensitive to the radiometer effect, just as it is to an EP violation signal, and therefore even having it onboard will not allow this disturbance to be separated out. μSCOPE is under construction and it is scheduled to fly in 2004. If it will detect a signal to the expected level, it will be impossible to establish with certainty whether it is due to the well known classical radiometer effect or else to a violation of the equivalence principle—which would invalidate General Relativity. The option to increase the rotation speed of the spacecraft (now set at about 10−3 Hz) so as to average out the temperature gradients which generate the radiometer effect, is allowed in the GG design, not in that of STEP and μSCOPE.  相似文献   

18.
Microbial contamination monitoring and control during human space missions   总被引:2,自引:0,他引:2  
The ubiquity and resilience of microorganisms makes them unavoidable in most environments including space habitats. The impaired immune system of astronauts in flight raises the level of concern about disease risk during human space missions and additionally these biological contaminants may affect life support systems and hardware. In this review, the microbial contamination observed in manned space stations and in particular the International Space Station ISS will be discussed, demonstrating that it is a microbiologically safe working and living habitat. Microbial contamination levels were in general below the implemented quality standards, although, occasional contamination hazard reports indicate that the current prevention and monitoring strategies are the strict minimum.  相似文献   

19.
The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will also cool the focal plane instruments thus avoiding the use of consumables and giving the mission a long lifetime. SPICA’s large, cold aperture will provide a two order of magnitude sensitivity advantage over current far infrared facilities (>30 microns wavelength). We describe the scientific advances that will be made possible by this large increase in sensitivity and give details of the mission, spacecraft and focal plane conceptual design.
Bruce SwinyardEmail:
  相似文献   

20.
Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v?=?30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 Å ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号