首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
The observations of electron inverted ‘V’ structures by the MGS and MEX spacecraft, their resemblance to similar events in the auroral regions of the Earth, and the discovery of strong localized magnetic field sources of the crustal origin on Mars, raised hypotheses on the existence of Martian aurora produced by electron acceleration in parallel electric fields. Following the theory of this type of structures on Earth we perform a scaling analysis to the Martian conditions. Similar to the Earth, upward field-aligned currents necessary for the generation of parallel potential drops and peaked electron distributions can arise, for example, on the boundary between ‘closed’ and ‘open’ crustal field lines due to shears of the flow velocity of the magnetosheath or magnetospheric plasmas. A steady-state configuration assumes a closure of these currents in the Martian ionosphere. Due to much smaller magnetic fields as compared to the Earth case, the ionospheric Pedersen conductivity is much higher on Mars and auroral field tubes with parallel potential drops and relatively small cross scales to be adjusted to the scales of the localized crustal patches may appear only if the magnetosphere and ionosphere are decoupled by a zone with a strong E. Another scenario suggests a periodic short-circuit of the magnetospheric electric fields by a coupling with the conducting ionosphere.  相似文献   

2.
F. Duru  D.A. Gurnett  R. Frahm 《Icarus》2010,206(1):74-82
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft is capable of measuring ionospheric electron density by the use of two main methods: remote radar sounding and from the excitation of local plasma oscillations. The frequency of the locally excited electron plasma oscillations is used to measure the local electron density. However, plasma oscillations are not observed when the plasma flow velocity is higher than about 160 km/s, which occurs mainly in the solar wind and magnetosheath. As a consequence, in many passes, there is a sudden disappearance of the plasma oscillations as the spacecraft enters into the magnetosheath. This fact allows us to identify a flow velocity boundary on the dayside, between the ionosphere of Mars and the shocked solar wind. This paper summarizes the results of the measurement of 552 orbits mostly over a period from August 4, 2005 to August 17, 2007. The boundary points found using MARSIS have been verified by measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) instrument on Mars Express. The average position of the flow velocity boundary is compared to flow velocity simulations computed using hybrid model and other boundaries. The boundary altitude is slightly lower than the magnetic pile-up boundary determined using Phobos 2 and Mars Global Surveyor (MGS) crossings, but it is in good agreement with the induced magnetospheric boundary determined by ASPERA-3. Investigation of the effect of the crustal magnetic field revealed that the flow velocity boundary is raised at the locations with strong crustal magnetic fields.  相似文献   

3.
An axisymmetric model for approximate solution of the magnetospheric Alfvén wave problem at latitudes above the plasmapause is proposed, in which a realistic dipole geometry is combined with finite anisotropic ionosphere conductivities, thus bringing together various ideas of previous authors. It is confirmed that the axisymmetric toroidal and poloidal modes interact via the ionospheric Hall effect, and an approximate method of solution is suggested using previously derived closed solutions of the uncoupled wave equations.A solution for zero Hall conductivity is obtained, which consists of sets of independent shell oscillations, regardless of the magnitude of the Pedersen conductivity. One set reduces to the classical solutions for infinite Pedersen conductivity, while another predicts a new set of harmonics of a quarter-wave fundamental, with longer eigenperiods than the classical solutions for a given L-shell.  相似文献   

4.
D. Ravat 《Icarus》2011,214(2):400-412
Using model studies, the total gradient (TG) of the Z-component magnetic field is shown to be a useful quantity for delineating sources of satellite-altitude magnetic anomalies; this field is used to constrain the location and lateral boundaries of sources of high amplitude magnetic anomalies of southern highlands of Mars. The TG field suggests two parallel linear and oppositely magnetized sources of 1000 and 1800 km length separated by 1000 km of region of intervening non-parallel sources. The simplest interpretation of the long, linear features is that they are zones of multitudinous crustal scale dikes formed in separate episodes of rifting, and not features associated with the mechanism of seafloor spreading. Forward modeling with uniformly magnetized sources suggests that magnetizations of the order of 10-50 A/m (40 km thickness) over ∼100 km width in the case of the southern source and of 12.5-27.5 A/m (40 km thickness) and ∼200 km width for the northern source are necessary to explain the Z-component amplitudes and features of the TG field. If the crustal magnetization on Mars were to be distributed fractally as on Earth, magnetizations matching the largest amplitude features on Mars may be spatially correlated from a 50-100 km distance range (β ∼ 3) to approaching nearly uniform magnetization (β ∼ 5) values. To keep magnetization intensity as small as possible, the higher end of β values are preferred, whereas, small amplitude anomaly features could be generated from sources with β ∼ 3. Many of the Mars anomaly features could be coalescence effects similar to the coalescence of anomaly features observed on http://icarus.cornell.edu/information/keywords.html.Earth.  相似文献   

5.
J.S. Halekas  D.A. Brain 《Icarus》2010,206(1):64-73
We present the results of the first systematic survey of current sheets encountered by Mars Global Surveyor in its ∼400 km mapping orbit. We utilize an automated procedure to identify over 10,000 current sheet crossings during the ∼8 year mapping mission. The majority of these lie on the nightside and in the polar regions, but we also observe over 1800 current sheets at solar zenith angle <60°. The distribution and orientation of current sheets and their dependence on solar wind drivers suggests that most magnetotail current sheets have a local induced magnetospheric origin caused by magnetic field draping. On the other hand, most current sheets observed on the day side likely result from solar wind discontinuities advected through the martian system. However, the clustering of low altitude dayside current sheet crossings around the perimeters of strongly magnetized crustal regions, and the smaller than expected rotations in the IMF draping direction, suggest that crustal magnetic fields may also play an indirect role in their formation. The apparent thicknesses of martian current sheets, and the characteristics of electrons observed in and around the current sheets, suggest one of two possibilities. Martian current sheets at low altitudes are either stationary, with thicknesses of a few hundred km and currents carried by low energy (<10 eV) electrons, or they move at tens of km/s, with thicknesses of a few thousand km and currents carried by ions.  相似文献   

6.
Enhancement of conductivity tensor modification within the ionospheric plasma by electron density modulation through the temperature dependence of the recombination rates of different ionspecies caused due to electron temperature modulation during high-power wave propagation is studied. Variation of Hall and Pedersen conductivities of the ionosphere has been investigated in the height range between 85 km to 250 km. The generation of waves at the modulation frequency and its harmonics in the ELF, VLF bands in the process is discussed.  相似文献   

7.
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the Mars Express spacecraft has occasionally displayed surprising features. One such feature is the occurrence of a series of broadband, low-frequency echoes at equally spaced delay times after the sounder transmitter pulse. The interval between the echoes has been shown to be at the cyclotron period of electrons orbiting in the local magnetic field. The electrons are believed to be accelerated by the large voltages applied to the antenna by the sounder transmitter. Measurements of the period of these “electron cyclotron echoes” provide a simple technique for determining the magnitude of the magnetic field near the spacecraft. These measurements are particularly useful because Mars Express carries no magnetometer, so this is the only method available for measuring the magnetic field magnitude. Using this technique, results are presented showing the large scale structure of the draped field inside the magnetic pile-up boundary. The magnitude of the draped field is shown to vary from about 40 nT at a solar zenith angle of about 25°, to about 25 nT at a solar zenith angle of 90°. The results compare favorably with similar results from the Mars Global Surveyor spacecraft. A fitting technique is developed to derive the vector direction and magnitude of the draped magnetic field in cases where the spacecraft passes through regions with significant variation in the crustal field. The magnetic field directions are consistent with current knowledge of the draping geometry of the magnetic field around Mars.  相似文献   

8.
The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question whether these fields can put the dense ionospheric plasma into motion. If so, the transterminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20 eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5 km/s for O+ ions at Venus above 300 km altitude at the terminator ( [Knudsen et al., 1980] and [Knudsen et al., 1982]). At Venus the transterminator flow is sufficient to sustain a permanent nightside ionosphere, at Mars a nightside ionosphere is observed only sporadically. We here report on new measurements of the transterminator ion flow at Mars by the ASPERA-3 experiment on board Mars Express with support from the MARSIS radar experiment for some orbits with fortunate observation geometry. We observe a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5 km/s and fluxes of 0.8×109/cm2 s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1±0.5×1025/s half of which is expected to escape from the planet. This escape flux is significantly higher than previously observed on the tailside of Mars. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime. We discuss the implication of these new observations for ion escape and possible extensions of the analysis to dayside observations which may allow us to infer the flow structure imposed by the induced magnetic field.  相似文献   

9.
The lack of distinct magnetic signatures observed by Mars Global Surveyor (MGS) over the impact craters and impact-related Quasi-Circular-Depressions (QCDs) with diameters greater than 200 km located on South Province, south of 30S and from almost the west of Hellas to Argyre basins, implies a weakly magnetized crust. Using MOLA topography and the recent JPL gravity model of Mars we determine the structure of the crust beneath the craters and impact-related QCDs, and show that the impacts that have created these features were capable of strongly disturbing the crust directly beneath. On the basis of theoretical magnetic anomaly modeling and shock demagnetization models, we demonstrate that the impacts are capable of demagnetizing the entire crust beneath and creating distinct magnetic anomalies at the satellite altitude of 400 km in case the crust was appreciably magnetized prior to the impacts. We derive the magnetic anomalies of these features using the radial component of the high-altitude nighttime MGS data. An upper limit of <2 × 104 A for the bulk magnetization of the crust beneath South Province is estimated, which is about 30 times less than that underlying Terra Cimmeria and Terra Sirenum. Similar weak bulk magnetization is obtained for part of the crust surrounding Hellas, Isidis, and Argyre basins.  相似文献   

10.
Experimental results from Arecibo indicate that on the average the height integrated F-region Pedersen conductivity is slightly greater than the height integrated E-region Pedersen conductivity, while the height integrated Hall conductivity exceeds either of the Pedersen conductivities by a factor of about 2. However, the conductivities can differ substantially from the average values on any given night.  相似文献   

11.
Using minimum variance analysis of the circular mapping data from the Mars Global Surveyor (MGS) spacecraft during four selected weeks of observation, we identify 360 magnetic field structures in the Martian topside ionosphere with characteristic signatures of flux ropes. Physical parameters including size, peak field strength, helicity, orientation, and external conditions at the time of each observation are compiled for the events in each population. We observe that Martian flux ropes typically have a peak field amplitude of ∼15 nT and a diameter of ∼80–100 km assuming they are stationary. Flux ropes tend to be aligned approximately parallel to the planetary surface, and perpendicular to the direction from which the solar wind flows. They are more frequently observed during times of low solar wind pressure, but do not show a clear preference for a particular Interplanetary Magnetic Field (IMF) draping direction. Flux rope characteristics of peak field amplitude, diameter, and helicity vary with solar zenith angle. Amplitudes tend to be higher during periods of high solar wind pressure. The events are sorted into three populations based on the location at which they were observed, possibly corresponding to distinct formation mechanisms. Flux ropes observed in eclipse tend to have smaller peak amplitudes and are larger than those observed in sunlight, and are less likely to be oriented parallel to the planetary surface. Proximity to crustal fields does not appear to influence the characteristics of flux ropes observed at the 400 km spacecraft altitude. The frequent observation of flux rope structures near Mars in a variety of locations suggests that the low-altitude plasma environment is quite dynamic, with magnetic shear playing a prominent role in determining magnetic field structure near the planet.  相似文献   

12.
Recent work has been concerned with calculating the three-dimensional ion concentrations and Pedersen and Hall conductivities within the auroral region of Jupiter for varying conditions of incident electron precipitation. Using the jovian ionospheric model, we present results that show the auroral ionospheric response to changing the incoming flux of precipitating electrons (for constant initial energy) and also the response to changing the initial energy (for both constant flux and constant energy flux). The results show that, for expected energy fluxes of precipitating particles, the average auroral integrated Pedersen conductivity attains values in excess of 1 mho. In addition, it is shown that electrons with an initial energy of around 60 keV are particularly effective at generating auroral conductivity: Particles of this energy penetrate most effectively to the layer of the jovian ionosphere at which the auroral conductivity is at a maximum.  相似文献   

13.
Maps of the vector components of the martian crustal magnetic field over the strongly magnetized Terra Cimmeria/Sirenum region are constructed using Mars Global Surveyor magnetometer data. Although pronounced east-west trending anomalies are present on the radial and north field component maps at the mapping altitude (∼360-380 km), these trends are much less prominent at the lower aerobraking altitude (∼90-150 km). Comparisons with similar maps produced using artificial data at the aerobraking altitude indicate that elongated sources in this region may have maximum lengths along the martian surface of ∼500 km and maximum aspect ratios of ∼2. Iterative forward modeling of several relatively isolated anomalies in the mapped region yields paleomagnetic pole positions consistent with those estimated in previous studies of other anomalies using mapping phase and science phasing orbit data. On this basis, it is inferred that sources in the studied region are most probably magnetized primarily in northward or southward directions. Using this additional constraint, iterative forward modeling is then applied to determine a magnetization distribution that is consistent with data at both the aerobraking altitude and the mapping altitude. The model magnetization distribution, which includes 41 discrete sources, again indicates no highly elongated sources. An examination of surface geology in the region as well as a consideration of the global distribution of anomalies suggests that magmatic intrusions (e.g., subsurface dike swarms), cooling in the presence of water, are the most likely sources of the magnetic anomalies.  相似文献   

14.
Maps of the vector components of the Mars crustal magnetic field are constructed at the mapping altitude (360 to 410 km) using a selected set of data obtained with the Mars Global Surveyor magnetometer during 2780 orbits of the planet in 1999. Forward modeling calculations are then applied to six relatively strong and isolated, dominantly dipolar, magnetic anomalies for the primary purpose of estimating bulk directions of magnetization. Assuming that the magnetizing field was a (dipolar) core dynamo field centered in the planet, paleomagnetic pole positions are calculated for the six primary source bodies together with that for a seventh anomaly analyzed earlier. In agreement with several previous studies, it is found that six of the seven pole positions are clustered in what is now the northern lowlands in a region centered northwest of Olympus Mons (mean pole position: 34°±10° N, 202°±58° E). Assuming that the dynamo dipole moment vector was approximately parallel to the rotation axis, the modeling results therefore suggest a major reorientation of Mars relative to its rotation axis after magnetization was acquired. Such a reorientation may have been stimulated by internal mass redistributions associated with the formation of the northern lowlands and Tharsis, for example. A comparison of the mean paleo (magnetic) equator to the global distribution of crustal fields shows that magnetic anomalies tend to occur at low paleolatitudes. The same appears to be true for the Noachian-aged valley networks, which exhibit a broad spatial correlation with the magnetic anomalies. A possible interpretation is that the formation of magnetic anomalies and the valley networks was favored in the tropics where melting of water ice and snow was a stronger source of both surface valley erosion and groundwater recharge during the earliest history of the planet. This would be consistent with models in which hydrothermal alteration of crustal rocks played a role in producing the unusually strong martian magnetic anomalies.  相似文献   

15.
The technique of electron reflectometry, a method for remote estimation of planetary magnetic fields, is expanded from its original use of mapping crustal magnetic fields at the Moon to achieving the same purpose at Mars, where the presence of a substantial atmosphere complicates matters considerably. The motion of solar wind electrons, incident on the martian atmosphere, is considered in detail, taking account of the following effects: the electrons' helical paths around the magnetic field lines to which they are bound, the magnetic mirror force they experience due to converging field lines in the vicinity of crustal magnetic anomalies, their acceleration/deceleration by electrostatic potentials, their interactions with thermal plasma, their drifts due to magnetic field line curvature and perpendicular electric fields and their scattering off, and loss of energy through a number of different processes to, atmospheric neutrals. A theoretical framework is thus developed for modeling electron pitch angle distributions expected when a spacecraft is on a magnetic field line which is connected to both the martian crust and the interplanetary magnetic field. This framework, along with measured pitch angle distributions from the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER) experiment, can be used to remotely measure crustal magnetic field magnitudes and atmospheric neutral densities at ∼180 km above the martian datum, as well as estimate average parallel electric fields between 200 and 400 km altitude. Detailed analysis and full results, concerning the crustal magnetic field and upper thermospheric density of Mars, are left to two companion papers.  相似文献   

16.
Magnetohydrodynamic resonance theory is used to model the structure of the magnetospheric and ionospheric electric and magnetic fields associated with Pc5 geomagnetic pulsations. In this paper the variation of the fields across the invariant latitude of the resonance are computed. The results are combined with calculations of the variation along a field line to map the fields down to the ionosphere. In one case the results are compared with measurements obtained by the STARE auroral radar and show good agreement. The relationship between the width of the resonance region and ionospheric height-integrated Pedersen conductivity is computed and it is shown how auroral radar measurements of Pc5 oscillations could be used to determine ionospheric height-integrated Pedersen conductivity. It is pointed out that from these calculations it would be possible to identify the field line on which a satellite was located by comparing a Pc5 pulsation observed by the satellite, and the same pulsation observed by STARE.  相似文献   

17.
We have performed a numerical simulation to analyze the energy spectra of escaping planetary O+ and O2+ ions at Mars. The simulated time-energy spectrograms were generated along orbit no. 555 (June 27, 2004) of Mars Express when its Ion Mass Analyzer (IMA)/ASPERA-3 ion instrument detected escaping planetary ions. The simulated time-energy spectrograms are in general agreement with the hypothesis that planetary O+ and O2+ ions far from Mars are accelerated by the convective electric field. The HYB-Mars hybrid model simulation also shows that O+ ions originating from the ionized hot oxygen corona result in a high-energy (E>1 keV) O+ ion population that exists very close to Mars. In addition, the simulation also results in a low-energy (E<0.1 keV) planetary ion population near the pericenter. In the analyzed orbit, IMA did not observe a clear high-energy planetary ion or a clear low-energy planetary ion population near Mars. One possible source for this discrepancy may be the Martian magnetic crustal anomalies because MEX passed over a strong crustal field region near the pericenter, but the hybrid model does not include the magnetic crustal anomalies.  相似文献   

18.
The distant effects of the field-aligned currents (FAC) observed by TRIAD are computed for conditions of low and moderate activity. The systems of total ionospheric currents (both Hall and Pedersen) generated by corresponding FAC are also examined and the contribution of the distant effects and the ionospheric currents into the total equivalent current system is estimated. The conclusions are as follows. In cases of low magnetic activity the magnetic effects produced by Pedersen currents are mainly cancelled by the FAC distant effect in accord with Fukushima's theorem. In cases of moderate activity when the zone of high ionospheric conductivity and the two-sheet FAC structure are present the FAC distant effect is too small to cancel the effect of Pedersen currents. For these conditions the system of total ionospheric currents shows the best correspondence with the experimental equivalent current system. Effects produced by the IMF azimuthal component are also analysed.  相似文献   

19.
We apply improved kinetic modeling of electron transport in the martian thermosphere to fit pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER), together with appropriate filtering, binning, averaging and error correction techniques, to create the most reliable ER global map to date of crustal magnetic field magnitude at 185 km altitude, with twice the spatial resolution and considerably higher sensitivity to crustal fields than global maps of magnetic field components produced with MAG data alone. This map compares favorably to sparsely sampled dayside MAG data taken at similar altitudes, insofar as a direct comparison is meaningful. Using this map, we present two case studies. The first compares the magnetic signatures of two highland volcanoes, concluding that the comparatively greater thermal demagnetization at Syrtis Major compared with Tyrrhena Patera is likely due to a higher ratio of intruded to extruded magmas. The second uses the map along with topographic data to compare the magnetic signatures and crater retention ages of the demagnetized Hellas impact basin and magnetized Ladon impact basin. From this comparison, we determine that the martian global dynamo magnetic field went from substantial to very weak or nonexistent in the absolute model age time interval 4.15±0.05 to 4.07±0.05 Ga ago.  相似文献   

20.
Stephen D. Eckermann  Jun Ma 《Icarus》2011,211(1):429-442
Using a Curtis-matrix model of 15 μm CO2 radiative cooling rates for the martian atmosphere, we have computed vertical scale-dependent IR radiative damping rates from 0 to 200 km altitude over a broad band of vertical wavenumbers ∣m∣ = 2π(1-500 km)−1 for representative meteorological conditions at 40°N and average levels of solar activity and dust loading. In the middle atmosphere, infrared (IR) radiative damping rates increase with decreasing vertical scale and peak in excess of 30 days−1 at ∼50-80 km altitude, before gradually transitioning to scale-independent rates above ∼100 km due to breakdown of local thermodynamic equilibrium. We incorporate these computed IR radiative damping rates into a linear anelastic gravity-wave model to assess the impact of IR radiative damping, relative to wave breaking and molecular viscosity, in the dissipation of gravity-wave momentum flux. The model results indicate that IR radiative damping is the dominant process in dissipating gravity-wave momentum fluxes at ∼0-50 km altitude, and is the dominant process at all altitudes for gravity waves with vertical wavelengths ?10-15 km. Wave breaking becomes dominant at higher altitudes only for “fast” waves of short horizontal and long vertical wavelengths. Molecular viscosity plays a negligible role in overall momentum flux deposition. Our results provide compelling evidence that IR radiative damping is a major, and often dominant physical process controlling the dissipation of gravity-wave momentum fluxes on Mars, and therefore should be incorporated into future parameterizations of gravity-wave drag within Mars GCMs. Lookup tables for doing so, based on the current computations, are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号