首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Context

The planets magnetic field has been explained based on the dynamo theory, which presents as many difficulties in mathematical terms as well as in predictions. It proves to be extremely difficult to calculate the dipolar magnetic moment of the extrasolar planets using the dynamo theory.

Objective

The aim is to find an empirical relationship (justifying using first principles) between the planetary magnetic moment, the mass of the planet, its rotation period and the electrical conductivity of its most conductive layer. Then this is applied to Hot Jupiters.

Method

Using all the magnetic planetary bodies of the solar system and tracing a graph of the dipolar magnetic moment versus body mass parameter, the rotation period and electrical conductivity of the internal conductive layer is obtained. An empirical, functional relation was constructed, which was adjusted to a power law curve in order to fit the data. Once this empirical relation has been defined, it is theoretically justified and applied to the calculation of the dipolar magnetic moment of the extra solar planets known as Hot Jupiters.

Results

Almost all data calculated is interpolated, bestowing confidence in terms of their validity. The value for the dipolar magnetic moment, obtained for the exoplanet Osiris (HD209458b), helps understand the way in which the atmosphere of a planet with an intense magnetic field can be eroded by stellar wind. The relationship observed also helps understand why Venus and Mars do not present any magnetic field.  相似文献   

2.

Context

Current planet search programs are detecting extrasolar planets at a rate of 60 planets per year. These planets show more diverse properties than was expected.

Aims

We try to get an overview of possible gas giant (proto-) planets for a full range of orbital periods and stellar masses. This allows the prediction of the full range of possible planetary properties which might be discovered in the near future.

Methods

We calculate the purely hydrostatic structure of the envelopes of proto-planets that are embedded in protoplanetary disks for all conceivable locations: combinations of different planetesimal accretion rates, host star masses, and orbital separations. At each location all hydrostatic equilibrium solutions to the planetary structure equations are determined by variation of core mass and pressure over many orders of magnitude. For each location we analyze the distribution of planetary masses.

Results

We get a wide spectrum of core-envelope structures. However, practically all calculated proto-planets are in the planetary mass range. Furthermore, the planet masses show a characteristic bimodal, sometimes trimodal, distribution. For the first time, we identify three physical processes that are responsible for the three characteristic planet masses: self-gravity in the Hill sphere, compact objects, and a region of very low adiabatic pressure gradient in the hydrogen equation of state. Using these processes, we can explain the dependence of the characteristic masses on the planet’s location: orbital period, host star mass, and planetesimal accretion rate (luminosity). The characteristic mass caused by the self-gravity effect at close proximity to the host star is typically one Neptune mass, thus producing the so-called hot Neptunes.

Conclusions

Our results suggest that hot Jupiters with orbital period less than 64 days (the exact location of the boundary depends on stellar type and accretion rate) have quite distinct properties which we expect to be reflected in a different mass distribution of these planets when compared to the “normal” planetary population. We use our theoretical survey to produce an upper mass limit for embedded planets: the maximum embedded equilibrium mass (MEEM). This naturally explains the lack of high mass planets between 3 and 64 days orbital period.  相似文献   

3.
In a previous publication (1977) the author has constructed a family () of long-periodic orbits in the Trojan case of the restricted problems of three bodies. Here he constructs the domain of the analytical solution of the problem of the motion, excluding the vicinity of thecritical divisor which vanishes at the exact commensurability of the natural frequencies 1 and 2. In terms of thecritical masses mj(2), or the associatedcritical energies j 2 (m), is the intersection of the intervals ofshallow resonance, of the form. Inasmuch as the intervals |2j 2 |<j ofdeep resonance aredisjoint, it follows that (1) the disjointed family () embraces the tadpole branch, 021, lying in: and (2) despite the clustering of j 2 (m) atj=, the family () includes, for 2=1, an asymptoticseparatrix that terminates the branch in the vicinity of the Lagrangian pointL 3.In a similar manner, the family () can be extended to the horseshoe branch 1<2 2 2 .  相似文献   

4.
5.
Tangential discontinuities in the solar wind   总被引:3,自引:0,他引:3  
This paper considers six discontinuity surfaces which were observed by magnetometers on 3 spacecraft in the solar wind. It is shown that the actual surface orientations, determined from the measured time delays and solar wind speed, are consistent with the theoretical orientations which were computed from the relation , where is the normal to the surface of a hydromagnetic tangential discontinuity across which the magnetic field direction changes from to . The plasma and magnetic field data for these discontinuities are consistent with the pressure balance condition, and the magnetic field vectors in the associated current sheets are parallel to the discontinuity surface, as required theoretically. The 6 discontinuity surfaces extended without much distortion over ∼ 0.002 AU. A seventh surface is discussed which satisfies the condition but which extended without much distortion over 0.01 AU. This latter is not a typical surface, however, and its curvature is larger than average. Most of the surfaces tended to lie along the spiral direction, but one was nearly perpendicular to the spiral direction.  相似文献   

6.
A linear correlation between the ratio of the[CII( $^{\text{2}}$ P A linear correlation between the ratio of the[CII( P P )] line intensity to the [ CO(J:1 →0)] line emission, I /I and the equivalent width (EW) is found, over the range 2–71 ? in EW, for a sample of 21late-Type= galaxies. The latter is comprised of an optically selected sample of 12 normal Virgo Cluster spiral galaxies with [CII] detections obtained by us with ISOLWS, plus nine late-Type= galaxies with higher star formation rates (SFRs), for which [CII] data and, especially, EW data are available in the literature. As a result we infer I /I to be a reliable tracer of the current mass-normalized global SFR for non-starburst spiral galaxies. Moreover, the ratio of the [CII] line to the total far-infrared (FIR) continuum intensity, I /I , is found to decrease from ∼0.5% to ∼0.1% with decreasing SFR which we propose is due to a `[CII]-quiet' component of I from dust heated by the general interstellar radiation field (ISRF). The more `quiescent' galaxies in the sample have values of I /I different from those observed in `compact' Galactic interstellar regions. Their [CII]-emission is interpreted to be dominated by diffuse regions of the interstellar medium (ISM). For normal `star-forming' galaxies the diffuse component of the [CII] emission is estimated to account for at least 50% of the total. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Analysis of Titan’s hemispheric brightness asymmetry from mapped Cassini images reveals an axis of symmetry that is tilted with respect to the rotational axis of the solid body. Twenty images taken from 2004 through 2007 show a mean axial offset of 3.8 ± 0.9° relative to the solid body’s pole, directed 79 ± 24° to the west of the sub-solar longitude. These values are consistent with recent measurements of an implied atmospheric spin axis determined from isothermal mapping by [Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A., 2008. Icarus 197, 549-555].  相似文献   

8.
We present the results of our photoelectric observations of HD 51585 (OY Gem), a B[e] star with an infrared excess and a candidate for protoplanetary nebulae, obtained with a 60-cm telescope at the Crimean Station of the Sternberg Astronomical Institute in 1992–2005. The star exhibited rapid irregular brightness variations with amplitudes from We present the results of our photoelectric observations of HD 51585 (OY Gem), a B[e] star with an infrared excess and a candidate for protoplanetary nebulae, obtained with a 60-cm telescope at the Crimean Station of the Sternberg Astronomical Institute in 1992–2005. The star exhibited rapid irregular brightness variations with amplitudes from in the V band to in U band within the observing season as well as slow systematic variations with amplitudes from in the V band to in the U band and with a quasi-period of ∼2800 days. The B-V color index varied within and did not follow the slow systematic brightness variations, while U-B correlated with the U brightness and varied between at maximum light and at minimum light. Our low-resolution spectroscopy performed in 1994–2005 has revealed significant variability of the Balmer and Paschen hydrogen emission lines as well as the He I and O I lines. Equivalent widths are given for the H I, He I, O I, and Fe II lines; a correlation has been found between the star’s photometric variability and the hydrogen line intensities. Our joint analysis of the photometric and spectroscopic data suggests that variations in a strong stellar wind are responsible for the variability of the star. Original Russian Text ? V.P. Arkhipova, N.P. Ikonnikova, G. V. Komissarova, V. F. Esipo, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 9, pp. 662–671.  相似文献   

9.
The European Space Agency Rosetta Spacecraft passed within 803 km of the main belt asteroid (2867) Steins on 5 September 2008. The Rosetta Spacecraft carries a number of scientific instruments including a millimeter and submillimeter radiometer and spectrometer. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.53 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients. A 4096 channel CTS (chirp transform spectrometer) having 180 MHz total bandwidth and ∼44 kHz resolution is also connected to the submillimeter receiver. We present the continuum observations of asteroid (2867) Steins obtained during the fly-by with the MIRO instrument. Spectroscopic data were also collected during the fly-by using the MIRO spectrometer fixed-tuned to rotational lines of several molecules. Results of the spectroscopic investigation will be the topic of a separate publication.Comparative thermal models and radiative transfer calculations for Steins are presented. Emissivities of Steins were determined to be 0.6-0.7 and 0.85-0.9 at wavelengths of 0.53 and 1.6 mm, respectively. The thermal inertia of Steins was estimated to be in the range 450-850 J/(m2 s0.5 K). Assuming that the emissivity of Steins is determined by the Fresnel reflection coefficients of the surface material, the area-averaged dielectric constant of the surface material is in the range 4-20. These values are rock-like, and are unlike the powdered-regolith surface of the Moon.  相似文献   

10.
Using TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the Gemini North 8-m telescope we have mapped the spatial variation of H2, CH4, C2H2 and C2H6 thermal-infrared emission of Neptune. These high-spectral-resolution, spatially resolved, thermal-infrared observations of Neptune offer a unique glimpse into the state of Neptune’s stratosphere in October 2007, LS = 275.4° just past Neptune’s southern summer solstice (LS = 270°). We use observations of the S(1) pure rotational line of molecular hydrogen and a portion of the ν4 band of methane to retrieve detailed information on Neptune’s stratospheric vertical and meridional thermal structure. We find global-average temperatures of 163.8 ± 0.8, 155.0 ± 0.9, and 123.8 ± 0.8 K at the 7.0 × 10−3-, 0.12-, and 2.1-mbar levels with no meridional variations within the errors. We then use the inferred temperatures to model the emission of C2H2 and C2H6 in order to derive stratospheric volume mixing ratios (hence forth, VMR) as a function of pressure and latitude. There is a subtle meridional variation of the C2H2 VMR at the 0.5-mbar level with the peak abundance found at −28° latitude, falling off to the north and south. However, the observations are consistent within error to a meridionally constant C2H2 VMR of at 0.5 mbar. We find that the VMR of C2H6 at 1-mbar peaks at the equator and falls by a factor of 1.6 at −70° latitude. However, a meridionally constant VMR of at the 1-mbar level for C2H6 is also statistically consistent with the retrievals. Temperature predictions from a radiative-seasonal climate model of Neptune that assumes the hydrocarbon abundances inferred in this paper are lower than the measured temperatures by 40 K at 7 × 10−3 mbar, 30 K at 0.12 mbar and 25 K at 2.1 mbar. The radiative-seasonal model also predicts meridional temperature variations on the order of 10 K from equator to pole, which are not observed. Assuming higher stratospheric CH4 abundance at the equator relative to the south pole would bring the meridional trends of the inferred temperatures and radiative-seasonal model into closer agreement.We have also retrieved observations of C2H4 emission from Neptune’s stratosphere using TEXES on the NASA Infrared Telescope Facility (IRTF) in June 2003, LS = 266°. Using the observations from the middle of the planet and an average of the middle three latitude temperature profiles from the 2007 observations (9.5° of LS later, the seasonal equivalent of 9.5 Earth days within Earth’s seasonal cycle), we infer a C2H4 VMR of at 1.5 × 10−3 mbar, a value that is 3.25 times that predicted by global-average photochemical models.  相似文献   

11.
We present a time-resolved differential photometric study and time series analysis of the nova-like cataclysmic variable star LQ Peg. We discover three periodicities in the photometry, one with a period of 3.42 ± 0.03 h, and another with a period of 56.8 ± 0.01 h. We interpret these to be the apsidal superhump and precessional periods of the accretion disk, respectively, and predict that the orbital period of LQ Peg is 3.22 ± 0.03 h. The third periodicity, with a period of 41.3 ± 0.01 h, we interpret to be the nodal precessional period of the accretion disk. We also report a flare that lasted four minutes and had an energy in visible light of (1.2 ± 0.3) × 1036 ergs, or 104-5 times more energetic than the largest solar flares, comparable to the most energetic visible-light stellar flares known. We calculate the absolute magnitude of LQ Peg to be MJ = 4.78 ± 0.54, and its distance to be 800 ± 200 pc.  相似文献   

12.
Zhang  Hongqi  Zhang  Mei 《Solar physics》2000,196(2):269-277
Simultaneous observations of chromospheric (H) and photospheric (Fei 5324.19 Å) magnetograms in quiet solar regions enable us to study the spatial configuration of the magnetic field in the solar atmosphere. With the typical spatial resolution of the Huairou magnetograph, the photospheric and chromospheric magnetic structures of the quiet Sun maintain a very similar pattern. Moreover, the vertical magnetic flux is almost the same from the photosphere to the chromosphere. As an intermediate step, we analyze the formation of the working lines used by the Huairou video magnetograph of the Beijing Astronomical Observatory. The Stokes V contribution function of H and Fei 5324.19 Å are calculated. It is found that our H magnetograms provide the distribution of the chromospheric magnetic field at a height some 1000–1500 km above the photosphere.  相似文献   

13.
The abundance of carbon monoxide in the Venus’ dayside atmosphere above the clouds was measured by ground-based 2.3 μm spectroscopy for 4 days. The hemispherical distributions found show no significant latitudinal or longitudinal structure. The disc-averaged mixing ratio of 58 ± 17 ppm found at a representative height of 62-67 km is consistent with previous measurements. Such a flat distribution of CO abundance above the clouds seems to be controlled by an efficient horizontal eddy diffusion with a time scale of 30 days or shorter although the CO distribution below the clouds seems to be controlled by the meridional circulation. The pole-ward wind speed of the meridional circulation above the clouds is estimated to be 0.2 m s−1 or less based on the difference between the CO mixing ratios above and below the clouds.  相似文献   

14.
Titan has a surface temperature of 94 K and a surface pressure of 1.4 atmospheres. These conditions make it possible for liquid methane solutions to be present on the surface. Here, we consider how Titan could have liquid methane while orbiting around an M4 red dwarf star, and a special case of Titan orbiting the red dwarf star Gliese 581. Because light from a red dwarf star has a higher fraction of infrared than the Sun, more of the starlight will reach the surface of Titan because its atmospheric haze is more transparent to infrared wavelengths. If Titan was placed at a distance from a red dwarf star such that it received the same average flux as it receives from the Sun, we calculate the increased infrared fraction, which will warm surface temperatures by an additional ∼10 K. Compared to the Sun, red dwarf stars have less blackbody ultraviolet light but can have more Lyman α and particle radiation associated with flares. Thus depending on the details, the haze production may be much higher or much lower than for the current Titan. With the haze reduced by a factor of 100, Titan would have a surface temperature of 94 K at a distance of 0.23 AU from an M4 star and at a distance of 1.66 AU, for Gliese 581. If the haze is increased by a factor of 100 the distances become 0.08 and 0.6 AU for the M4-star and Gliese 581, respectively. As a rogue planet, with no incident stellar flux, Titan would need 1.6 W/m2 of geothermal heat to maintain its current surface temperature, or an atmospheric opacity of 20× its present amount with 0.1 W/m2 of geothermal heat. Thus Titan-like worlds beyond our solar system may provide environment supporting surface liquid methane.  相似文献   

15.
16.
The scientific rationale of the ROY multi-satellite mission addresses multiscale investigations of plasma processes in the key magnetospheric regions with strong plasma gradients, turbulence and magnetic field annihilation in the range from electron inertial length to MHD scales.The main scientific aims of ROY mission include explorations of:
(a)
turbulence on a non-uniform background as a keystone for transport processes;
(b)
structures and jets in plasma flows associated with anomalously large concentration of kinetic energy; their impact on the energy balance and boundary formation;
(c)
transport barriers: plasma separation and mixing, Alfvenic collapse of magnetic field lines and turbulent dissipation of kinetic energy;
(d)
self-organized versus forced reconnection of magnetic field lines;
(e)
collisionless shocks, plasma discontinuities and associated particle acceleration processes.
In the case of autonomous operation, 4 mobile spacecrafts of about 200 kg mass with 60 kg payload equipped with electro-reactive plasma engines will provide 3D measurements at the scales of 100-10000 km and simultaneous 1D measurements at the scales 10-1000 km. The latter smaller scales will be scanned with the use of radio-tomography (phase-shift density measurements within the cone composed of 1 emitting and 3 receiving spacecrafts).We also discuss different opportunities for extra measurement points inside the ROY mission for simultaneous measurements at up to 3 scales for the common international fleet.Combined influence of intermittent turbulence and reconnection on the geomagnetic tail and on the nonlinear dynamics of boundary layers will be explored in situ with fast techniques including particle devices under development, providing plasma moments down to 30 ms resolution.We propose different options for joint measurements in conjunction with the SCOPE and other missions:
simultaneous sampling of low- and high-latitudes magnetopause, bow shock and geomagnetic tail at the same local time;
tracing of magnetosheath streamlines from the bow shock to near-Earth geomagnetic tail;
passing “through” the SCOPE on the inbound orbit leg;
common measurements (with SCOPE and other equatorial spacecraft) at distances of ∼ few thousand km for durations of ∼several hours per orbit.
The orbit options and scientific payload of possible common interest are discussed in this work, including FREGAT cargo opportunities for extra payload launching and the “Swarm” campaigns with ejection of nano- and pico-satellites.  相似文献   

17.
Anderson and Schubert [2007. Saturn's Gravitational field, internal rotation, and interior structure. Science 317, 1384-1387 (paper I)] proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10 h 32 m 35 s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9 h 54 m 29.7 s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9 h 55 m 30 s and 10 h 32 m 35 s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn.We derive Jupiter and Saturn rotation periods using equilibrium theory to explain the difference between equatorial and polar radii. Rotation periods of 9 h 55 m 20 s and 10 h 31 m 49 s are found for Jupiter and Saturn, respectively. We show that both Jupiter's and Saturn's shapes can be derived using solid-body rotation, suggesting that zonal winds have a minor effect on the planetary shape for both planets.The agreement in the values of Saturn's rotation period predicted by the different approaches supports the conclusion that the planet's period of rotation is about 10 h 32 m.  相似文献   

18.
The motion of Hyperion is an almost perfect application of second kind and second genius orbit, according to Poincaré’s classification. In order to construct such an orbit, we suppose that Titan’s motion is an elliptical one and that the observed frequencies are such that 4n H−3n T+3n ω=0, where n H, n T are the mean motions of Hyperion and Titan, n ω is the rate of rotation of Hyperion’s pericenter. We admit that the observed motion of Hyperion is a periodic motion such as . Then, .N H, N T, kN +. With that hypothesis we show that Hyperion’s orbit tends to a particular periodic solution among the periodic solutions of the Keplerian problem, when Titan’s mass tends to zero. The condition of periodicity allows us to construct this orbit which represents the real motion with a very good approximation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In this paper we have taken an attempt to study the feasibility of scale invariant theory (Wesson, 1981a,b) in Bianchi type VIII and IX space-times with a time dependent gauge function (Dirac Gauge i.e. βα )and a matter field in the form of a perfect fluid. It is found that Bianchi type VIII (δ=1) space-time is feasible in this theory whereas Bianchi type IX (δ=-1) space-time is not feasible. In this feasible case a radiating model is constructed and its physical behaviour is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A survey of 62 small near-Earth asteroids was conducted to determine the rotation state of these objects and to search for rapid rotation. Since results for 9 of the asteroids were previously published (Pravec, P., Hergenrother, C.W., Whiteley, R.J., Šarounová, L., Kušnirák, P., Wolf, M. [2000]. Icarus 147, 477-486; Pravec, P. et al. [2005] Icarus 173, 108-131; Whiteley, R.J., Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154; Hergenrother, C.W., Whiteley, R.J., Christensen, E.J. [2009]. Minor Planet Bull. 36, 16-18.), this paper will present results for the remaining 53 objects. Rotation periods significantly less than 2 h are indicative of intrinsic strength in the asteroids, while periods longer than 2 h are typically associated with gravitationally bound aggregates. Asteroids with absolute magnitude (H) values ranging from 20.4 to 27.4 were characterized. The slowest rotator with a definite period is 2004 BW18 with a period of 8.3 h, while 2000 DO8 and 2000 WH10 are the fastest with periods of 1.3 min. A minimum of two-thirds of asteroids with H > 20 are fast rotating and have periods significantly faster than 2.0 h. The percentage of rapid rotators increases with decreasing size and a minimum of 79% of H ? 24 objects are rapid rotators. Slowly-rotating objects, some with periods as long as 10-20 h, make up a small though significant fraction of the small asteroid population. There are three fast rotators with relatively large possible diameters (D): 2001 OE84 with 470 ? D ? 820 m (Pravec, P., Kušnirák, P., Šarounová, L., Harris, A.W., Binzel, R.P., Rivkin, A.S. [2002b]. Large coherent Asteroid 2001 OE84. In: Warmbein, B. (Eds.), Proceedings of Asteroids, Comets, Meteors - ACM 2002. Springer, Berlin, pp. 743-745), 2001 FE90 with 265 ? D ? 594 m (Hicks, M., Lawrence, K., Rhoades, H., Somers, J., McAuley, A., Barajas, T. [2009]. The Astronomer’s Telegrams, # 2116), and 2001 VF2 with a possible D of 145 ? D ? 665 m. Using the diameters derived from nominal absolute magnitudes and albedos, the remainder of the fast rotating population is completely consistent with D ? 200 m. Even when taking into account the largest possible uncertainties in the determination of diameters, the remainder must all have D ? 400 m. With the exceptions of 2001 OE84, this result agrees with previous upper diameter limits for fast rotators in Pravec and Harris (Pravec, P., Harris, A.W. [2000]. Icarus 148, 589-593) and Whiteley et al. (Whiteley, R.J, Tholen, D.J., Hergenrother, C.W. [2002a]. Icarus 157, 139-154.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号