首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The dynamical stability of a triple system composed of a binary or planetary system and a bound third body moving on a orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of planetary systems against disruption, component exchange or capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects. These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the third body initially increases the stability of the system then decreases stability as the eccentricity reaches higher values.The Hill stability criterion is applied to extrasolar planetary systems to determine the critical distances at which planets of the same mass as the observed extrasolar planet moving on a circular orbit could remain on a stable orbit. It was found that these distances were sufficiently short suggesting that the presence of further as yet unobserved stable extrasolar planets in observed systems was very likely.  相似文献   

2.
The dynamical interaction of a binary or planetary system and a third body moving on a parabolic orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in binary star disruption and exchange, in extrasolar planetary system disruption, exchange and capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. This makes exchange or disruption of the component masses more likely as does increasing the eccentricity of the binary.
The stability criteria are applied to determine possible disruption and capture distances for currently known extrasolar planetary systems.  相似文献   

3.
The dynamical interaction of a binary or planetary system and a third body moving on a hyperbolic orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in binary star disruption and exchange and planetary system exchange or capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the third body also produces similar effects. These type of changes make exchange or disruption of the component masses more likely as also does increasing the eccentricity of the binary.

The critical distances and Hill stability ranges associated with the possible formation of roughly equal mass trans-Neptunian binaries from three-body interactions are determined for a range of secondary component masses.  相似文献   


4.
Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star–planet–moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.  相似文献   

5.
The Hill stability of the low mass binary system in the presence of a massive third body moving on a wider inclined orbit is investigated analytically. It is found that, in the case of the third body being on a nearly circular orbit, the region of Hill stability expands as the binary/third body mass ratio increases and the inclination (i) decreases. This i-dependence decreases very quickly with increasing eccentricity (e 2) of the third body relative to the binary barycentre. In fact, if e 2 is not extremely small, the Hill stable region can be approximately expressed in a closed form by setting i = 90°, and it contracts with increasing e 2 as ${e_2^2}$ for sufficiently low mass binary. Our analytic results are then applied to the observed triple star systems and the Kuiper belt binaries.  相似文献   

6.
The dynamics of circumbinary planetary systems (the systems in which the planets orbit a central binary) with a small binary mass ratio discovered to date is considered. The domains of chaotic motion have been revealed in the “pericentric distance–eccentricity” plane of initial conditions for the planetary orbits through numerical experiments. Based on an analytical criterion for the chaoticity of planetary orbits in binary star systems, we have constructed theoretical curves that describe the global boundary of the chaotic zone around the central binary for each of the systems. In addition, based on Mardling’s theory describing the separate resonance “teeth” (corresponding to integer resonances between the orbital periods of a planet and the binary), we have constructed the local boundaries of chaos. Both theoretical models are shown to describe adequately the boundaries of chaos on the numerically constructed stability diagrams, suggesting that these theories are efficient in providing analytical criteria for the chaoticity of planetary orbits.  相似文献   

7.
We consider the coplanar planetary four-body problem, where three planets orbit a large star without the cross of their orbits. The system is stable if there is no exchange or cross of orbits. Starting from the Sundman inequality, the equation of the kinematical boundaries is derived. We discuss a reasonable situation, where two planets with known orbits are more massive than the third one. The boundaries of possible motions are controlled by the parameter c~2E. If the actual value of c~2E is less than or equal to a critical value(c~2 E)cr, then the regions of possible motions are bounded and therefore the system is stable.The criteria obtained in special cases are applied to the Solar System and the currently known extrasolar planetary systems. Our results are checked using N-body integrator.  相似文献   

8.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

9.
Benest  D.  Gonczi  R.  Gonczi  R. 《Earth, Moon, and Planets》2003,93(3):175-190
Cosmogonical theories as well as recent observations allow us to expect the existence of numerous exo-planets, including in binaries. Then arises the dynamical problem of stability for planetary orbits in double star systems. Modern computations have shown that many such stable orbits do exist, among which we consider orbits around one component of the binary (called S-type orbits). Within the framework of the elliptic plane restricted three-body problem, the phase space of initial conditions for fictitious S-type planetary orbits is systematically explored, and limits for stability had been previously established for four nearby binaries which components are nearly of solar type. Among stable orbits, found up to distance of their sun of the order of half the binarys periastron distance, nearly-circular ones exist for the three binaries (among the four) having a not too high orbital eccentricity. In the first part of the present paper, we compare these previous results with orbits around a 16 Cyg B-like binarys component with varied eccentricities, and we confirm the existence of stable nearly-circular S-type planetary orbits but for very high binarys eccentricity. It is well-known that chaos may destroy this stability after a very long time (several millions years or more). In a first paper, we had shown that a stable planetary orbit, although chaotic, could keep its stability for more than a billion years (confined chaos). Then, in the second part of the present paper, we investigate the chaotic behaviour of two sets of planetary orbits among the stable ones found around 16 Cyg B-like components in the first part, one set of strongly stable orbits and the other near the limit of stability. Our results show that the stability of the first set is not destroyed when the binarys eccentricity increases even to very high values (0.95), but that the stability of the second set is destroyed as soon as the eccentricity reaches the value 0.8.  相似文献   

10.
Our work deals with the dynamical possibility that in extrasolar planetary systems a terrestrial planet may have stable orbits in a 1:1 mean motion resonance with a Jovian like planet. We studied the motion of fictitious Trojans around the Lagrangian points L4/L5 and checked the stability and/or chaoticity of their motion with the aid of the Lyapunov Indicators and the maximum eccentricity. The computations were carried out using the dynamical model of the elliptic restricted three‐body problem that consists of a central star, a gas giant moving in the habitable zone, and a massless terrestrial planet. We found 3 new systems where the gas giant lies in the habitable zone, namely HD99109, HD101930, and HD33564. Additionally we investigated all known extrasolar planetary systems where the giant planet lies partly or fully in the habitable zone. The results show that the orbits around the Lagrangian points L4/L5 of all investigated systems are stable for long times (107 revolutions). (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.  相似文献   

12.
The Kozai mechanism often destabilizes high-inclination orbits. It couples changes in the eccentricity and inclination, and drives high inclination, circular orbits to low inclination, eccentric orbits. In a recent study of the dynamics of planetesimals in the quadruple star system HD 98800, there were significant numbers of stable particles in circumbinary polar orbits about the inner binary pair which are apparently able to evade the Kozai instability.
Here, we isolate this feature and investigate the dynamics through numerical and analytical models. The results show that the Kozai mechanism of the outer star is disrupted by a nodal libration induced by the inner binary pair on a shorter time-scale. By empirically modelling the period of the libration, a criteria for determining the high-inclination stability limits in general triple systems is derived. The nodal libration feature is interesting and, although affecting inclination and node only, shows many parallels to the Kozai mechanism. This raises the possibility that high-inclination planets and asteroids may be able to survive in multistellar systems.  相似文献   

13.
In this paper we estimate the likelihood to find habitable Earth-like planets on stable orbits for 86 selected extrasolar planetary systems, where luminosity, effective temperature and stellar age are known. For determining the habitable zone (HZ) an integrated system approach is used taking into account a variety of climatological, biogeochemical, and geodynamical processes. Habitability is linked to the photosynthetic activity on the planetary surface. We find that habitability strongly depends on the age of the stellar system and the characteristics of a virtual Earth-like planet. In particular, the portion of land/ocean coverages plays an important role. We approximated the conditions for orbital stability using a method based on the Hill radius. Almost 60% of the investigated systems could harbour habitable Earth-like planets on stable orbits. In 18 extrasolar systems we find even better prerequisites for dynamic habitability than in our own solar system. In general our results are comparable to those with an HZ determination based only on climatic constraints. However, there are remarkable differences for land worlds and for systems older than about 7 Gyr.  相似文献   

14.
Cosmogonical theories as well as recent observations allow us to expect the existence of planets around many stars other than the Sun. On an other hand, double and multiple star systems are established to be more numerous than single stars (such as the Sun), at least in the solar neighborhood. We are then faced to the following dynamical problem: assuming that planets can form in a binary early environment (I do not deal here with), does long-term stability for planetary orbits exist in double star systems.Although preliminary studies were rather pessimistic about the possibility of existence of stable planetary orbits in double or multiple star systems, modern computation have shown that many such stable orbits do exist (but possible chaotic behavior), either around the binary as a whole (P-type) or around one component of the binary (S-type), this latter being explored here.The dynamical model is the elliptic plane restricted three-body problem; the phase space of initial conditions is systematically explored, and limits for stability have been established. Stable S-type planetary orbits are found up to distance of their "sun" of the order of half the periastron distance of the binary; moreover, among these stable orbits, nearly-circular ones exist up to distance of their "sun" of the order of one quarter the periastron distance of the binary; finally, among the nearly-circular stable orbits, several stay inside the "habitable zone", at least for two nearby binaries which components are nearly of solar type.Nevertheless, we know that chaos may destroy this stability after a long time (sometimes several millions years). It is therefore important to compute indicators of chaos for these stable planetary orbits to investigate their actual very long-term stability. Here we give an example of such a computation for more than a billion years.  相似文献   

15.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

16.
The motion of a satellite around a planet can be studied by the Hill model, which is a modification of the restricted three body problem pertaining to motion of a satellite around a planet. Although the dynamics of the circular Hill model has been extensively studied in the literature, only few results about the dynamics of the elliptic model were known up to now, namely the equations of motion and few unstable families of periodic orbits. In the present study we extend these results by computing a large set of families of periodic orbits and their linear stability and classify them according to their resonance condition. Although most of them are unstable, we were able to find a considerable number of stable ones. By computing appropriate maps of dynamical stability, we study the effect of the planetary eccentricity on the stability of satellite orbits. We see that, even for large values of the planetary eccentricity, regular orbits can be found in the vicinity of stable periodic orbits. The majority of irregular orbits are escape orbits.  相似文献   

17.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   

18.
Possible configurations of the planetary systems of the binary stars α Cen A–BandEZAqr A–C are analyzed. The P-type orbits—circumbinary ones, i.e., the orbits around both stars of the binary, are studied. The choice of these systems is dictated by the fact that α Cen is closest to us in the Galaxy, while EZ Aqr is the closest system whose circumbinary planets, as it turns out, may reside in the “habitability zone.” The analysis has been performed within the framework of the planar restricted three-body problem. The stability diagrams of circumbinary motion have been constructed: on representative sets of initial data (in the pericentric distance–eccentricity plane), we have computed the Lyapunov spectra of planetary motion and identified the domains of regular and chaotic motion through their statistical analysis. Based on present views of the dynamics and architecture of circumbinary planetary systems, we have determined the most probable planetary orbits to be at the centers of the main resonance cells, at the boundary of the dynamical chaos domain around the parent binary star, which allows the semimajor axes of the orbits to be predicted. In the case of EZ Aqr, the orbit of the circumbinary planet is near the habitability zone and, given that the boundary of this zone is uncertain, may belong to it.  相似文献   

19.
The planetary dynamics of 4/3, 3/2, 5/2, 3/1 and 4/1 mean motion resonances is studied by using the model of the general three body problem in a rotating frame and by determining families of periodic orbits for each resonance. Both planar and spatial cases are examined. In the spatial problem, families of periodic orbits are obtained after analytical continuation of vertical critical orbits. The linear stability of orbits is also examined. Concerning initial conditions nearby stable periodic orbits, we obtain long-term planetary stability, while unstable orbits are associated with chaotic evolution that destabilizes the planetary system. Stable periodic orbits are of particular importance in planetary dynamics, since they can host real planetary systems. We found stable orbits up to 60° of mutual planetary inclination, but in most families, the stability does not exceed 20°–30°, depending on the planetary mass ratio. Most of these orbits are very eccentric. Stable inclined circular orbits or orbits of low eccentricity were found in the 4/3 and 5/2 resonance, respectively.  相似文献   

20.
The Hill stability criterion is applied to analyse the stability of a planet in the binary star system of HD 41004 AB, with the primary and secondary separated by 22 AU, and masses of 0.7 M and 0.4 M, respectively. The primary hosts one planet in an S‐type orbit, and the secondary hosts a brown dwarf (18.64 MJ) on a relatively close orbit, 0.0177 AU, thereby forming another binary pair within this binary system. This star‐brown dwarf pair (HD 41004 B+Bb) is considered a single body during our numerical calculations, while the dynamics of the planet around the primary, HD 41004 Ab, is studied in different phase‐spaces. HD 41004 Ab is a 2.6 MJ planet orbiting at the distance of 1.7 AU with orbital eccentricity 0.39. For the purpose of this study, the system is reduced to a three‐body problem and is solved numerically as the elliptic restricted three‐body problem (ERTBP). The Hill stability function is used as a chaos indicator to configure and analyse the orbital stability of the planet, HD 41004 Ab. The indicator has been effective in measuring the planet's orbital perturbation due to the secondary star during its periastron passage. The calculated Hill stability time series of the planet for the coplanar case shows the stable and quasi‐periodic orbits for at least ten million years. For the reduced ERTBP the stability of the system is also studied for different values of planet's orbital inclination with the binary plane. Also, by recording the planet's ejection time from the system or collision time with a star during the integration period, stability of the system is analysed in a bigger phase‐space of the planet's orbital inclination, ≤ 90°, and its semimajor axis, 1.65–1.75 AU. Based on our analysis it is found that the system can maintain a stable configuration for the planet's orbital inclination as high as 65° relative to the binary plane. The results from the Hill stability criterion and the planet's dynamical lifetime map are found to be consistent with each other. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号