首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ∼0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions.  相似文献   

2.
P.C. Thomas  P.B. James  R. Haberle 《Icarus》2009,203(2):352-798
The residual south polar cap (RSPC) of Mars includes a group of different depositional units of CO2 ice undergoing a variety of erosional processes. Complete summer coverage of the RSPC by ∼6-m/pixel data of the Context Imager (CTX) on Mars Reconnaissance Orbiter (MRO) has allowed mapping and inventory of the units in the RSPC. Unit maps and estimated thicknesses indicate the total volume of the RSPC is currently <380 km3, and represents less than 3% of the total mass of the current Mars atmosphere. Scarp retreat rates in the CO2 ice derived from comparison of High Resolution Imaging Science Experiment (HiRISE) data with earlier images are comparable to those obtained for periods up to 3 Mars years earlier. These rates, combined with sizes of depressions suggest that the oldest materials were deposited more than 125 Mars years ago. Most current erosion is by backwasting of scarps 1-12 m in height. This backwasting is initiated by a series of scarp-parallel fractures. In the older, thicker unit these fractures form about every Mars year; in thinner, younger materials they form less frequently. Some areas of the older, thicker unit are lost by downwasting rather than by the scarp retreat. A surprising finding from the HiRISE data is the scarcity of visible layering of RSPC materials, a result quite distinct from previous interpretations of layers in lower resolution images. Layers ∼0.1 m thick are exposed on the upper surfaces of some areas, but their timescale of deposition is not known. Late summer albedo changes mapped by the CTX images indicate local recycling of ice, although the amounts may be morphologically insignificant. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data show that the primary material of all the different forms of the RSPC is CO2 ice with only small admixtures of water ice and dust.  相似文献   

3.
The origin of the martian gullies has been much debated since their discovery by the Mars Orbiter Camera (MOC, Malin, M.C., Edgett, K.S. [2000]. Science 288, 2330-2335). Several previous studies have looked at slope gradients in and around gullies, but none have used Digital Elevation Models (DEMs) from the High Resolution Imaging Science Experiment (HiRISE, McEwen, A.S., and 14 colleagues [2007]. J. Geophys. Res. 112 (E05), E0505S02), which has a pixel scale down to 25 cm/pixel. We use five 1 m/post HiRISE DEMs to measure gully apex slopes, the local channel gradient at the upslope extent of the gully debris apron, which marks a shift from erosion to deposition. The apex slope provides information about whether a flow was likely a typical dry granular flow (begins depositing on slopes ∼21°) or fluidized by some extra mechanism (depositing on shallower slopes). We find that 72% of the 75 gully fans studied were likely emplaced by fluidized flows. Relatively old gullies appear more likely to have hosted fluidized flows than relatively fresh gullies. This suggests a time and location dependent fluidizing agent, possibly liquid water produced in a different climate as previously proposed. Our results do not provide evidence for water-rich flows in gullies today.  相似文献   

4.
N. Thomas  G. Portyankina 《Icarus》2011,212(1):66-85
The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes on Mars and, in particular, the jet-like activity which may result from the process described by Kieffer (Kieffer, H.H. [2007]. J. Geophys. Res. (Planets) 112, E08005. doi:10.1029/2006JE002816) involving translucent CO2 ice. In this work, we concentrate on attempting to model the dusty CO2 gas jets using a computational fluid dynamics code. Models that included surface slopes of up to 20° (as an analogy to the jet activity seen in “Inca City”, 81°S, 296°E), wind (from 0 to 6 m s−1), variable vent cross-section and length, particles (including a particle size distribution) and mass loading (with dust to gas ratios exceeding 1) were investigated. The structure of the resulting gas jets, the particle distribution within the jets, the deposition patterns (including their dependence on particle size), and the appearance of jets when viewed from different orientations (including from a nadir-pointing camera) have been investigated for a range of input parameters. The results provide predictions for the size-dependency of altitudes of particles within a plume and the distribution of particle sizes in the deposition fans. Where slopes are a dominant influence, larger particles are expected to be seen furthest from the vent. Where wind is dominant, smaller particles should travel to larger distances. Models producing deposition patterns consistent in length (∼80 m) and form with fans observed by HiRISE on MRO have been demonstrated. The models also suggest that downward flow of gas produced by drag effects from particles falling from the jet under gravity could provide a mechanism for the production of bright haloes which are observed to surround dark fan deposits in MOC, HiRISE and CRISM.  相似文献   

5.
We describe and interpret the surface terrain types associated with a widely-reported ∼4 km long, mid-latitude martian viscous flow feature (VFF). The feature is located in the southern hemisphere, on the poleward-facing rim of a ∼60 km-diameter crater in eastern Hellas Planitia. High Resolution Imaging Science Experiment (HiRISE) images, analysed in both 2D and 3D, reveal that the upper margin of the feature is bounded by steep (∼30°) headwalls, typically some tens of metres high, that are formed from unconsolidated material and characterised by a series of slope-parallel linear incisions. Below these incised headwalls, the feature flows at a general angle of ∼10° from a broad upper basin to a confined lower tongue that is bounded by a nested sequence of elongate raised ridges. These characteristics are typical of several VFFs in the region and are strikingly similar to moraine-bounded valley glaciers on Earth, and we sub-classify this feature as a ‘glacier-like form’ (GLF)1. The GLF comprises five distinctive surface terrain types that contrast sharply with surface characteristics outside its bounding moraines. Four of these terrains (scaly terrain, polygonized terrain, linear terrain and mound-and-tail terrain) are located within the GLF’s innermost bounding moraine, while the fifth (rectilinear-ridge terrain) is located between its frontal moraines. These terrains are mapped, characterised and associated with possible mechanisms of formation to draw inferences about the GLF’s glaciology and glacial history. This analysis suggests that the GLF reached its maximal extent in the geologically-recent past, and that it may have been partially wet-based at that time. Subsequent to this phase, the GLF experienced an extended period of general recession that has been punctuated by several episodes of still-stand or advance. Currently, the GLF’s basin appears to be composed of a lower zone that is dominated by an exposed former glacier bed and an upper zone that may still contain a now-degraded and dust-mantled viscous mass, similar to many partially-glacierized basins on Earth.  相似文献   

6.
Scalloped depressions are a unique martian surface morphology found in the northern and southern hemisphere latitude-dependent dust and ice-rich surface mantles. These features exhibit a distinct asymmetric north-south slope profile, characterized by steep pole-facing scarps, flat floors and gentle equator-facing slopes. We examined High Resolution Stereo Camera (HRSC) images of the southern hemisphere to determine their longitudinal distribution, which revealed that a majority of scalloped terrain is located in the region of the southern wall of the Hellas Basin and northern Malea Planum. A detailed map of this area was produced where scallops were found to contour the southern wall of the basin, and where the ice-rich mantle was seen to be thickest. Scalloped terrain is concentrated along the topographic highs near the Amphitrites and Peneus Paterae and areal extent and depth decreases with increasing depth into the basin. We also examined existing hypothesis for the formation and evolution of scalloped depressions using High Resolution Imaging Science Experiment (HiRISE) images and data from the Thermal Emission Imaging System-Infrared (THEMIS-IR) and the Thermal Emission Spectrometer (TES). Our approach provides regional context for the development of scalloped terrains within the southern hemisphere, and offers detailed evidence of scallop depressions forming around small cracks, presumably caused by thermal contraction. Morphometric measurements show that scalloped depressions can be as much as 40 m deep, with typical depths of between 10 and 20 m. Our observations of scallop formation and development in the southern hemisphere support a solar-insolation model proposed by previous researchers (e.g. [Morgenstern, A., Hauber, E., Reiss, D., van Gasselt, S., Grosse, G., Schirrmeister, L., 2007. J. Geophys. Res. 112, CiteID E06010; Lefort, A., Russell, P.S., Thomas, N., McEwen, A.S., Dundas, C.M., Kirk, R.L., 2009a. J. Geophys. Res. 114, E04005; Lefort, A., Russell, P.S., Thomas, N., 2009b. Icarus, in press]). Observations made using HiRISE images suggest that scalloped depressions most likely form from small cracks in the mantle, which become larger and deeper through sublimation of interstitial ice from within the mantle. Sublimation is likely enhanced on equator-facing slopes because of increased solar insolation, which accounts for the asymmetric slope profile and hemispherical orientation and is demonstrated by THEMIS-IR images. We suggest that sublimation lag deposits can possibly be removed by dust devils or strong slope winds related to the Hellas Basin, offering an explanation as to why scalloped terrain is so abundant only in this area of the southern hemisphere. Daytime maximum summer temperatures suggest that sublimation in the study area of Malea Planum is possible under current conditions if the sublimation lag is removed. While it cannot be ruled out that scalloped terrain in Malea Planum is presently evolving, we attribute the extensive distribution to geologically recent obliquity excursions when conditions were more conducive to mesoscale modification of the ice-rich mantle.  相似文献   

7.
Mars Orbiter Camera (MOC) images of the whiter areas of the residual North Polar Cap (P. C. Thomas et al. 2000, Nature404, 161-164) show a gentle hummocky pitted surface that has been popularly called “cottage cheese” terrain. The pits are 1 or 2 m deep and tens of meters across. They are typically joined in roughly linear strings or long depressions and these features are referred to here as “lineations.” The lineations tend to have one or occasionally two preferred directions. We have examined the MOC imagery for the North Cap and using high-resolution images that have good wide-angle context images were able to determine the lineation angles for 31 sites scattered over most of the ice cap.We propose a process that will produce linear features in the white areas, then relate the orientation of the lineations over much of the North Cap to these processes and the inferred ice flow direction. There is first-order agreement between the measured sign of the lineation angles and those predicted assuming ice flow. Higher accumulations and velocities are predicted in the catchment for ice that flows into Chasma Boreale. This comes from the indications that katabatic winds are concentrated in this catchment.  相似文献   

8.
HiRISE images of Mars with ground sampling down to 25 cm/pixel show that the dust-rich mantle covering the surfaces of the Tharsis Montes is organized into ridges whose form and distribution are consistent with formation by aeolian saltation. Other dusty areas near the volcanoes and elsewhere on the planet exhibit a similar morphology. The material composing these “reticulate” bedforms is constrained by their remote sensing properties and the threshold curve combined with the saltation/suspension boundary, both of which vary as a function of elevation (atmospheric pressure), particle size, and particle composition. Considering all of these factors, dust aggregates are the most likely material composing these bedforms. We propose that airfall dust on and near the volcanoes aggregates in situ over time, maybe due to electrostatic charging followed by cementation by salts. The aggregates eventually reach a particle size at which saltation is possible. Aggregates on the flanks are transported downslope by katabatic winds and form linear and “accordion” morphologies. Materials within the calderas and other depressions remain trapped and are subjected to multidirectional winds, forming an interlinked “honeycomb” texture. In many places on and near the volcanoes, light-toned, low thermal inertia yardangs and indurated surfaces are present. These may represent “duststone” formed when aggregates reach a particle size below the threshold curve, such that they become stabilized and subsequently undergo cementation.  相似文献   

9.
S.W. Hobbs  C.F. Pain 《Icarus》2011,214(1):258-264
The study of hillslopes is a primary element of geomorphology and has successfully been used in many terrestrial arenas. In this study we take advantage of High Resolution Imaging Science Experiment (HiRISE) imagery as well as Mars Orbiter Camera (MOC) derived DEMs of the Pathfinder landing site to study regional hillslopes at resolutions many times greater than previously available and compare them with Mars Pathfinder lander images. This site was thought to be modified by massive flooding 1.8-3.5 byr ago and although evidence of flood activity was not obvious at the finer scale of this study, possible lee deposits and terracing were seen in some of the features. Evidence of post flood processes of ice related creep, aeolian and dry mass wasting were observed at the site and have likely obscured flood related morphology present in these features. Regional slopes were found to vary with aspect and suggest processes intensities operating at different orientations, possibly related to the prevailing wind direction, as well as the origin of the ancient flood event.  相似文献   

10.
A. Lefort  P.S. Russell  N. Thomas 《Icarus》2010,205(1):259-268
The Peneus and Amphitrites Paterae region of Mars displays large areas of smooth, geologically young terrains overlying a rougher and older topography. These terrains may be remnants of the mid-latitude mantle deposit, which is thought to be composed of ice-rich material originating from airfall deposition during a high-obliquity period less than 5 Ma ago. Within these terrains, there are several types of potentially periglacial features. In particular, there are networks of polygonal cracks and scalloped-shaped depressions, which are similar to features found in Utopia Planitia in the northern hemisphere. This area also displays knobby terrain similar to the so-called “basketball terrains” of the mid and high martian latitudes. We use recent high resolution images from the High Resolution Imaging Science Experiment (HiRISE) along with data from previous Mars missions to study the small-scale morphology of the scalloped terrains, and associated polygon network and knobby terrains. We compare these with the features observed in Utopia Planitia and attempt to determine their formation process. While the two sites share many general features, scallops in Peneus/Amphitrites Paterae lack the diverse polygon network (i.e. there is little variation in the polygon sizes and shapes) and large curvilinear ridges observed in Utopia Planitia. This points to a more homogeneous ice content within the substrate in the Peneus/Amphitrites Paterae region and implies that scallop formation is independent of polygon formation. This work shows that, as in Utopia Planitia, sublimation of interstitial ice is a likely process explaining the formation of the scalloped depressions in the region of Peneus/Amphitrites Paterae. Therefore, we provide a simplified scallop formation model based on sublimation of interstitial ice as proposed for Utopia Planitia. We also show that the differences in scallop morphologies between the two regions may be explained by differences in near-surface ice content, sublimation rates and age of formation of the scalloped terrains.  相似文献   

11.
McEwen et al. (McEwen, A.S., Preblich, B.S., Turtle, E.P., Artemieva, N.A., Golombek, M.P., Hurst, M., Kirk, R.L., Burr, D.M., Christensen, P. [2005]. Icarus 176, 351-381) developed a useful test for the internal consistency of crater-count chronometry systems. They argued that certain multi-kilometer, fresh-looking martian craters with prominent rays should be the youngest or near-youngest craters in their size range. The “McEwen et al. test” is that the ages determined from crater densities of the smallest superimposed craters (typically diameter D ∼ 5-20 m) should thus be comparable to the expected formation intervals of the host primary. McEwen et al. concluded from MOC data that crater chronometry failed this test by factors of 700-2000. We apply HiRISE and other imagery to eight different young craters in order to re-evaluate their arguments. We use existing crater chronology systems as well as the reported observed production rate of 16 m craters (Malin, M.C., Edgett, K., Posiolova, L., McColley, S., Noe Dobrea, E. [2006]. Science 314, 1573-1557; Hartmann, W.K., Quantin, C., Mangold, N. [2007]. Icarus 186, 11-23; Kreslavsky [2007]. Seventh International Conference on Mars, 3325). Every case passes the McEwen et al. test. We conclude that the huge inconsistencies suggested by McEwen et al. are spurious. Many of these craters show evidence of impact into ice-rich material, and appear to have ice-flow features and sublimation pits on their floors. As production rate data improve, decameter-scale craters will provide a valuable way of dating these young martian geological formations and the processes that modify them.  相似文献   

12.
Self-organised patterns of stone stripes, polygons, circles and clastic solifluction lobes form by the sorting of clasts from fine-grained sediments in freeze-thaw cycles. We present new High Resolution Imaging Science Experiment (HiRISE) images of Mars which demonstrate that the slopes of high-latitude craters, including Heimdal crater - just 25 km east of the Phoenix Landing Site - are patterned by all of these landforms. The order of magnitude improvement in imaging data resolution afforded by HiRISE over previous datasets allows not only the reliable identification of these periglacial landforms but also shows that high-latitude fluviatile gullies both pre- and post-date periglacial patterned ground in several high-latitude settings on Mars. Because thaw is inherent to the sorting processes that create these periglacial landforms, and from the association of this landform assemblage with fluviatile gullies, we infer the action of liquid water in a fluvio-periglacial context. We conclude that these observations are evidence of the protracted, widespread action of thaw liquids on and within the martian regolith. Moreover, the size frequency statistics of superposed impact craters demonstrate that this freeze-thaw environment is, at least in Heimdal crater, less than a few million years old. Although the current martian climate does not favour prolonged thaw of water ice, observations of possible liquid droplets on the strut of the Phoenix Lander may imply significant freezing point depression of liquids sourced in the regolith, probably driven by the presence of perchlorates in the soil. Because perchlorates have eutectic temperatures below 240 K and can remain liquid at temperatures far below the freezing point of water we speculate that freeze-thaw involving perchlorate brines provides an alternative “low-temperature” hypothesis to the freeze-thaw of more pure water ice and might drive significant geomorphological work in some areas of Mars. Considering the proximity of Heimdal crater to the Phoenix Landing Site, the presence of such hydrated minerals might therefore explain the landforms described here. If this is the case then the geographical distribution of martian freeze-thaw landforms might reflect relatively high temperatures (but still below 273 K) and the locally elevated concentration of salts in the regolith.  相似文献   

13.
The Mawrth Vallis region contains an extensive (at least 300 km × 400 km) and thick (?300 m), finely layered (at meter scale), clay-rich unit detected by OMEGA. We use OMEGA, HRSC DTMs derived from stereoscopic imagery, HRSC color imagery and high resolution imagery such as MOC, CTX and HiRISE to characterize the geometry and the composition of the clay-rich unit at the regional scale. Our results show that the clay-bearing unit can be divided into sub-units on the basis of differences in color and composition. In false-color visible imagery, alternating white/bluish and orange/red colored units correspond to a compositional succession of, respectively, Al- and Fe- or Mg-phyllosilicate rich material. Geological cross-sections are presented along the principal outcrops of the region in order to define the stratigraphy of these sub-units. This method shows that the dips of the sub-units are frequently close to the slopes of the present topography, except for scarps visible at the dichotomy boundary, inside impact craters walls, and outcrops inside Mawrth Vallis. In addition to the Al- and Fe- or Mg-phyllosilicate rich sub-units, an altered surface is identified as the lower basement unit. We propose two possible end-member scenarios to explain the derived stratigraphy: (1) alteration of volcaniclastic, aeolian or aqueous layered deposits of various compositions by groundwater, resulting in distinct altered rocks; or (2) Alteration coeval with the deposition of sediments under varying chemical conditions, in wet pedodiagenetic environment.  相似文献   

14.
HiRISE has been producing a large number of scientifically useful color products of Mars and other planetary objects. The three broad spectral bands, coupled with the highly sensitive 14 bit detectors and time delay integration, enable detection of subtle color differences. The very high spatial resolution of HiRISE can augment the mineralogic interpretations based on multispectral (THEMIS) and hyperspectral datasets (TES, OMEGA and CRISM) and thereby enable detailed geologic and stratigraphic interpretations at meter scales. In addition to providing some examples of color images and their interpretation, we describe the processing techniques used to produce them and note some of the minor artifacts in the output. We also provide an example of how HiRISE color products can be effectively used to expand mineral and lithologic mapping provided by CRISM data products that are backed by other spectral datasets. The utility of high quality color data for understanding geologic processes on Mars has been one of the major successes of HiRISE.  相似文献   

15.
16.
In order to investigate the formation of martian gullies and the stability of fluids on Mars, we examined about 120 gully images. Twelve HiRISE images contained a sufficient number of Transverse Aeolian Ridges (TARs) associated with the gullies to make the following measurements: overall gully length, length of the alcove, channel and apron, and we also measured the frequency of nearby TARs. Six of the 12 images examined showed a statistically significant negative correlation between overall gully length (alcove, channel and apron length) and TAR frequency. Previous experimental work from our group has shown that at temperatures below ∼200 K, evaporation rate increases by about an order of magnitude as wind speed increases from 0 to ∼15 m/s. Thus the negative correlations we observe between gully length and dune frequency can be explained by formation at temperatures below ∼200 K where wind speed/evaporation is a factor governing gully length. In these cases evaporation of the fluid carving the gully was a constraint on their dimensions. Cases where there is no correlation between gully length and TAR frequency, can be explained by formation at temperatures >200 K. The temperatures are consistent with Global Circulation Model and Thermal Emission Spectrometer (TES) data for these latitudes. The temperatures suggested by these trends are consistent with the fluid responsible for gully formation being a strong brine, such as Fe2(SO4)3 which has a eutectic temperature of ∼200 K. We also find that formation timescales for gullies are 105-106 years.  相似文献   

17.
Neutron currents measured using the Mars Odyssey Neutron Spectrometer, seasonally varying temperatures measured using the Thermal Emission Spectrometer, and visible images measured using the High Resolution Imaging Science Experiment (HiRISE) are studied to determine the water content and stratigraphy of Olympia Undae. Both the neutron and thermal infrared data are best represented by a two-layered model having a water-ice equivalent hydrogen content of 30±5% in a lower semi-infinite layer, buried beneath a relatively desiccated upper layer that is 9±6 g/cm2 thick (about 6 cm depth at a density of 1.5 g/cm3). A model that is consistent with all three data sets is that the dunes contain a top layer that is relatively mobile, which overlays a niveo-aeolian lower layer. The geomorphology shown by the HiRISE images suggests that the bottom layer may be cemented in place and therefore relatively immobile.  相似文献   

18.
The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) has imaged the sublimation of Mars’ seasonal CO2 polar cap with unprecedented detail for one complete martian southern spring. In some areas of the surface, beneath the conformal coating of seasonal ice, radially-organized channels are connected in spidery patterns. The process of formation of this terrain, erosion by gas from subliming seasonal ice, has no earthly analog. The new capabilities (high resolution, color, and stereo images) of HiRISE enable detailed study of this enigmatic terrain. Two sites are analyzed in detail, one within an area expected to have translucent seasonal CO2 ice, and the other site outside that region. Stereo anaglyphs show that some channels grow larger as they go uphill - implicating gas rather than liquid as the erosive agent. Dark fans of material from the substrate are observed draped over the seasonal ice, and this material collects in thin to thick layers in the channels, possibly choking off gas flow in subsequent years, resulting in inactive crisscrossing shallow channels. In some areas there are very dense networks of channels with similar width and depth, and fewer fans emerging later in the season are observed. Subtle variations in topography affect the channel morphology. A new terminology is proposed for the wide variety of erosional features observed.  相似文献   

19.
The Medusae Fossae Formation (MFF) is an extensive deposit (2.2 × 106 km2, Bradley, B.A., Sakimoto, S.E.H., Frey, H., Zimbelman, J.R. [2002]. J. Geophys. Res. 107, 5058) of wind-eroded material of widely debated origin, which unconformably overlies a considerable area of the crustal dichotomy boundary on Mars. The MFF shows a variety of layering patterns, erosional styles and channel-like forms and has been mapped into five main outcrops and three geological members according to exposure and stratigraphy (Scott, D.H., Tanaka, K.L., 1986. USGS Map I-1802-A; Greeley, R., Guest, J.E., 1987. Map I-1802-B; Zimbelman, J.R., Crown, D., Jenson, D., 1996. Lunar Planet. Sci. XXVII. Abstract #1748.). Away from the three main lobes are numerous outliers of MFF materials. These have mainly been reported in the northern lowlands regions (Keszthelyi, L., Jaeger, W.L., and HiRISE team, 2008. Lunar Planet. Sci. XXXIX. Abstract #2420.) but few studies have examined the possibility of MFF outliers on high ground south of the dichotomy boundary. We have searched Mars Orbiter Camera Narrow Angle (MOC NA) images for outliers in this region. Our observations show that there are many MFF outliers on the southern highlands. The characteristics of the outliers indicate materials which overlie the underlying terrain for they appear widely in dips, craters and topographic lows. The surfaces are typified by yardang fields and have a similar patchy and discontinuous nature to materials of the upper member of the MFF. Most have consistent lineation orientations across the wider area which match the dominant orientation of yardangs in the main MFF outcrops. Furthermore, elevation data shows that the maximum, minimum and mean elevations of these newly discovered outliers are closest to those of the upper member of the MFF. We therefore conclude that these deposits are MFF outliers and that they probably represent remnant upper member material. We suggest that there might be two possible explanations for these outliers: (1) the MFF had a much greater pre-erosional extent than previously estimated, or (2) materials from the main outcrops were eroded and then blown south to accrue in the highland areas, where they were subsequently reworked. We suggest that the topography of the region favors the first option. We outline an “overflowing” layer-cake deposition model, in which layers of sediment stacked up against the dichotomy boundary until they reached the topographic level of the highlands. Further materials (that went onto become upper-member MFF material and outliers) were then deposited across a wider area, including south of the dichotomy boundary. Severe erosion subsequently removed much of this material.  相似文献   

20.
N. Thomas  C.J. Hansen 《Icarus》2010,205(1):296-310
The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the jet-like activity which may result from the process described by Kieffer (JGR, 112, E08005, doi:10.1029/2006JE002816, 2007) involving translucent CO2 ice. In this work, we mostly concentrate on observations of the Inca City (81°S, 296°E) and Manhattan (86°S, 99°E) regions in the southern spring of 2007. Two companion papers, [Hansen et al. this issue] and [Portyankina et al. this issue], discuss the surface features in these regions and specific models of the behaviour of CO2 slab ice, respectively. The observations indicate rapid on-set of activity in late winter initiating before HiRISE can obtain adequately illuminated images (Ls < 174° at Inca City). Most sources become active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO2 [Titus et al., 2007. AGU (abstract P41A-0188)]. These deposits originate from araneiform structures (spiders), boulders on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans are observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that outgassing was in progress at the time of HiRISE image acquisition and estimate a total particulate emission rate of >30 g s−1 from a single typical jet feature. Brighter deposits at Inca City become increasingly hard to detect after Ls = 210°. In the Inca City region, the orientations of surficial deposits are topographically controlled. The deposition of dark material also appears to be influenced by local topography suggesting that the ejection from the vents is at low velocity (<10 m s−1) and that a ground-hugging flow process (a sort of “cryo-fumarole”) may be occurring. The failure up to this point to obtain a clear detection of outgassing though stereo imaging is consistent with low level transport. The downslope orientation of the deposits may result from the geometry of the vent or from catabatic winds. At many sites, more than one ejection event appears to have occurred suggesting re-charging of the sources. Around Ls = 230°, the brightness of the surface begins to drop rapidly on north-facing slopes and the contrast between the dark deposits and the surrounding surface reduces. This indicates that the CO2 ice slab is being lost completely in some areas at around this time. By Ls = 280°, at Inca City, the ice slab has effectively gone. CRISM band ratios and THEMIS brightness temperature measurements are consistent with this interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号