首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We studied the long-period ground motions in the Osaka sedimentary basin, Japan, which contains a 1- to 3-km thickness of sediments and is the site of many buildings or construction structures with long-natural period. We simulated the broadband ground motions likely to be produced by the hypothetical Nankai earthquake: the earthquake expected to give rise to the most severe long-period ground motion within the basin. For the simulation, we constructed multiscale heterogeneous source models based on the Central Disaster Management Council of Japan (CDMC) source model and adopted a hybrid computation method in which long-period motion and short-period motion are computed using a 3-D finite difference method and the stochastic Green’s function method, respectively. In computing long-period motions, we used a 3-D structure model of the crust and the Osaka sedimentary basin. The ground motions are estimated to have peak velocities of 50–90 cm/s, prolonged durations exceeding 300 s, and long predominant periods of 5–10 s in the area with great thickness of sediments. The predominant periods are in agreement with an approximate evaluation by 4 H/V s where H and V s are the thickness of the sediment and the average S wave velocity, respectively.  相似文献   

2.
There is a high possibility of reoccurrence of the Tonankai and Nankai earthquakes along the Nankai Trough in Japan. It is very important to predict the long-period ground motions from the next Tonankai and Nankai earthquakes with moment magnitudes of 8.1 and 8.4, respectively, to mitigate their disastrous effects. In this study, long-period (>2.5 s) ground motions were predicted using an earthquake scenario proposed by the Headquarters for Earthquake Research Promotion in Japan. The calculations were performed using a fourth-order finite difference method with a variable spacing staggered-grid in the frequency range 0.05–0.4 Hz. The attenuation characteristics (Q) in the finite difference simulations were assumed to be proportional to frequency (f) and S-wave velocity (V s) represented by Q = f · V s / 2. Such optimum attenuation characteristic for the sedimentary layers in the Osaka basin was obtained empirically by comparing the observed motions during the actual M5.5 event with the modeling results. We used the velocity structure model of the Osaka basin consisting of three sedimentary layers on bedrock. The characteristics of the predicted long-period ground motions from the next Tonankai and Nankai earthquakes depend significantly on the complex thickness distribution of the sediments inside the basin. The duration of the predicted long-period ground motions in the city of Osaka is more than 4 min, and the largest peak ground velocities (PGVs) exceed 80 cm/s. The predominant period is 5 to 6 s. These preliminary results indicate the possibility of earthquake damage because of future subduction earthquakes in large-scale constructions such as tall buildings, long-span bridges, and oil storage tanks in the Osaka area.  相似文献   

3.
We performed three-dimensional (3-D) finite difference simulations of long-period ground motions (2–10 s) in the Kanto basin using the Japan Seismic Hazard Information Station (J-SHIS 2009), Yamada and Yamanaka (Exploration Geophysics 65(3):139–150, 2012) (YY), and Head Quarter for Earthquake Research Promotion (HERP 2012) velocity models for two intermediate depth (68–80 km) moderate earthquakes (Mw 5.8–5.9), which occurred beneath the Kanto basin. The models primarily differ in the basic data set used in the construction of the velocity models. The J-SHIS and HERP models are the results of integration of mainly geological, geophysical, and earthquake data. On the other hand, the YY model is oriented towards the microtremor-array-observation data. We obtained a goodness of fit between the observed and synthetic data based on three parameters, peak ground velocities (PGVs), smoothed Fourier spectra (FFT), and cross-correlations, using an algorithm proposed by Olsen and Mayhew (Seism Res Lett 81:715–723, 2010). We found that the three models reproduced the PGVs and FFT satisfactorily at most sites. However, the models performed poorly in terms of cross-correlations especially at the basin edges. We found that the synthetics using the YY model overestimate the observed waveforms at several sites located in the areas having V s 0.3 km/s in the top layer; on the other hand, the J-SHIS and HERP models explain the waveforms better at the sites and perform similarly at most sites. We also found that the J-SHIS and HERP models consist of thick sediments beneath some sites, where the YY model is preferable. Thus, we have concluded that the models require revisions for the reliable prediction of long-period ground motions from future large earthquakes.  相似文献   

4.
We constructed a prototype of the basin and crustal structure model for the Kinki area, southwest of Japan, for the simulation of strong ground motions of hypothetical crustal and subduction earthquakes. We collected results of the deep seismic velocity profiles obtained by the reflection experiments and seismic imaging results, which were conducted in the Kinki area. The obtained profiles give underground velocity structures of the crust, from the surface to the subducting slab. We also gather the basin velocity structure information of the Osaka, Kyoto, Nara, and Ohmi basins. To examine the applicability of the constructed velocity structure model to the ground motion simulation, we simulated waveforms of an intermediate size event occurred near the source area of the hypothetical subduction earthquakes. Simulated ground motions using the basin and crustal velocity structure model are fairly well reproducing the observations at most of stations, and the constructed basin and crustal velocity structure model is applicable for the long-period ground motion simulations.  相似文献   

5.
Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation (QP and QS) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1?10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0?500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 MW4.9 Wen'an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average vP and vS of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high vP/vS ratio of 4.3. We also modeled surface reflected wave with propagating matrix method to constrain QS and the near surface velocity structure. Our modeling indicates that QS is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q (~10), but consistent with QS modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0?50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borehole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.  相似文献   

6.
The construction of 3-D basin velocity structures is ongoing in many regions of Japan. The structure models are constructed mainly for the prediction of long-period ground motions from future large earthquakes. In this paper, we validate the 3-D velocity structure model of the Tokachi basin, a deep sedimentary basin located in eastern Hokkaido, Japan, based on 3-D simulation of long-period (2–20 s) ground motions from three nearby intermediate-depth earthquakes; this model was constructed by the National Research Institute for Earth Science and Disaster Prevention (NIED). We make comparisons between the observed and synthetic long-period ground motions for the basin-induced surface waves as well as the direct S-wave. We also try to revise the 3-D velocity structure in the western part of the Tokachi basin based on 1-D velocity structures estimated using long-period S-wave modeling and the microtremor survey method. We then perform the 3-D simulation again to validate the revised model. Based on quantitative comparisons of the long-period ground motions from these simulations with those observed, we conclude that the NIED and revised velocity structure models are generally good at the central basin sites, but that both models require modification at the basin edges to explain the details of the observed basin-induced surface waves.  相似文献   

7.
High-frequency (≥2 Hz) Rayleigh wave phase velocities can be inverted to shear (S)-wave velocities for a layered earth model up to 30 m below the ground surface in many settings. Given S-wave velocity (VS), compressional (P)-wave velocity (VP), and Rayleigh wave phase velocities, it is feasible to solve for P-wave quality factor QP and S-wave quality factor QS in a layered earth model by inverting Rayleigh wave attenuation coefficients. Model results demonstrate the plausibility of inverting QS from Rayleigh wave attenuation coefficients. Contributions to the Rayleigh wave attenuation coefficients from QP cannot be ignored when Vs/VP reaches 0.45, which is not uncommon in near-surface settings. It is possible to invert QP from Rayleigh wave attenuation coefficients in some geological setting, a concept that differs from the common perception that Rayleigh wave attenuation coefficients are always far less sensitive to QP than to QS. Sixty-channel surface wave data were acquired in an Arizona desert. For a 10-layer model with a thickness of over 20 m, the data were first inverted to obtain S-wave velocities by the multichannel analysis of surface waves (MASW) method and then quality factors were determined by inverting attenuation coefficients.  相似文献   

8.
The aim of this paper is to show the application of short-period surface waves recorded during deep seismic sounding experiment for constraining shallow velocity structure of the crust. Phase velocity of fundamental mode Rayleigh waves, observed along the CELEBRATION 2000 experiment profile CEL09, were obtained by a p-ω method and has been subsequently inverted for one-dimensional shear velocity models for the top 2 km. Multiple filter technique applied to one shot gather was used to carry out a joint inversion of phase and group velocity data and to provide γR data to be used for Qβ inversion. Validity of obtained VS and Qβ models was confirmed by the reflectivity method. Noticeably, no clear dispersive wawes were observed in the Tepla-Barrandian Unit. Quasi-2D model based on the individual 1D VS models is well correlated with the surface geology. Lower VS are observed in the Saxothuringian Zone in comparison to the Moldanubian Zone. In the vicinity of the Central Bohemian and Moldanubian Plutons, the near-surface VS values are relatively low, but below 1 km depth, they are higher than in surrounding areas. We interpret it as the result of the weathering and cracks within the granitoid rocks.  相似文献   

9.
A series of relatively long-period velocity pulses appearing in the later part of ground motion, which is the characterization of far-source long-period ground motions in basin (“long-period ground motion” for short), is mainly influenced by focal mechanism, basin effect, and dispersion. It was supposed that the successive low-frequency velocity pulses in long-period ground motion caused the resonance of long-period structures in basin, which are of special concern to designers of super high-rise buildings. The authors proposed a wavelet-based successive frequency-dependent pulse extraction (WSFPE) method to identify and extract these pulses with dominant period of interest from long-period ground motions. The pulses extracted by using two frequently used methods (zero-crossing analysis, empirical mode decomposition) were compared to the pulses extracted by using WSFPE. The results demonstrate that the WSFPE provides higher resolution in time–frequency domain than the other two methods do. The velocity pulses extracted by using WSFPE are responsible for the resonance and maximum response of structure subjected to long-period ground motions. WSFPE can be used to make a better understanding of long-period ground motions and to promote the formation of long-period ground motion model which will help the seismic design of long-period structures built in sedimentary basin.  相似文献   

10.
In order to understand and simulate site effects on strong ground motion records of recent earthquakes in Mexico City, it is fundamental to determine the in situ elastic and anelastic properties of the shallow stratigraphy of the basin. The main properties of interest are the shear wave velocities and Q-quality factors and their correlation with similar parameters in zones of the city. Despite population density and paved surfaces, it is feasible to gather shallow refraction data to obtain laterally homogeneous subsoil structures at some locations. We focused our analysis in the Texcoco Lake region of the northeastern Mexico City basin. This area consists of unconsolidated clay sediments, similar to those of the lake bed zone in Mexico City, where ground motion amplification and long duration disturbances are commonly observed. We recorded Rayleigh and Love waves using explosive and sledgehammer sources and 4.5 Hz vertical and horizontal geophones, respectively. Additionally, for the explosive source, we recorded three-component seismograms using 1 Hz seismometers. We obtained phase velocity dispersion curves from ray parameter-frequency domain analyses and inverted them for vertical distribution of S wave velocity. The initial model was obtained from a standard first-break refraction analysis. We also obtained an estimation of the QS shear wave quality factor for the uppermost stratigraphy. Results compare well with tilt and cone penetrometer resistance measurements at the same test site, emphasizing the importance of these studies for engineering purposes.  相似文献   

11.
The 2003 Tokachi-oki earthquake (M w 8.0) in northern Japan generated large-amplitude long-period (4–8 s) ground motions in the Yufutsu sedimentary basin, causing severe damage to seven large oil storage tanks with floating roof structures because of severe sloshing of oil. The 30,000–40,000-m3 tanks having suffered the severe damage such as fires and sinking of floating roofs experienced the sloshing with large amplitudes exceeding 3 m in which the fundamental mode was predominant. The second mode of sloshing was also excited in the 110,000-m3 tanks in which their floating roofs sank into oil, indicating that the higher modes of sloshing as well as the fundamental mode should be considered in damage prediction. The strong ground motion recordings demonstrated the earthquake dependency of predominant periods and the substantial spatial variation of the long-period shaking observed within the Yufutsu basin, meaning the necessity of source- and site-specific prediction of long-period strong ground motions. The two-dimensional numerical modeling suggested the importance of detailed structures of soft near-surface sediments as well as deep basin structure for accurate prediction of long-period strong ground motions in deep sedimentary basins.  相似文献   

12.
土体剪切波速是进行土层地震反应分析的动力学参数,对场地地震动参数确定具有重要意义。基于地质地貌分析,将大同盆地划分为5类典型地质单元。对盆地1429个钻孔剪切波速资料进行分析,探讨VS30与VS20的相关性,研究土体埋深、岩性、地质单元、标贯击数及密实度等地质特征对VS的影响,并基于地质单元、剪切波速比、密实度系数及第四系上部覆盖层厚度相关性分析给出土体VS30预测模型。研究结果表明,基于典型地质特征的VS30预测模型拟合优度R2>0.90,预测精度很高,对于离散性较大、直接拟合估算较差及无剪切波速场地来说,以区分地质单元及土体类型的方式进行VS30分解预测是良好的研究思路。首次在区分地质单元及土体类型的前提下提出剪切波速比及密实度系数,并将其与第四系上部覆盖层厚度综合应用于VS30预测研究。研究结果可为大同盆地城市防震减灾规划、震害预测、区域性地震安全评价提供重要技术支撑。  相似文献   

13.
2021年5月22日,青海省果洛州玛多县发生7.4级地震,中国强震动观测网络在主震中捕获16组强震动数据。对48条三分向加速度记录进行基线校正、滤波等常规处理,计算相应的地震动参数,发现位于断层破裂前向位置的63DAW台NS向记录的地震动速度波形具有长周期分量丰富的特征。分析6个典型台站的单自由度加速度反应谱,并与我国建筑抗震设计谱比较,分析此次地震的频谱特性。将实际观测到的PGA、PGV和S_a(T=0.1 s、T=1.0 s、T=2.0 s、T=5.0 s)与国内广泛使用的几种地震动预测模型对比,研究此次地震的影响场。通过分析S_a-S_d曲线,探讨此次地震靠近断层区域地面运动大位移与桥梁落梁震害间可能存在的关系。  相似文献   

14.
A companion paper has investigated the effects of intensity measure (IM) selection in the prediction of spatially distributed response in a multi‐degree‐of‐freedom structure. This paper extends from structural response prediction to performance assessment metrics such as probability of structural collapse; probability of exceeding a specified level of demand or direct repair cost; and the distribution of direct repair loss for a given level of ground motion. In addition, a method is proposed to account for the effect of varying seismological properties of ground motions on seismic demand that does not require different ground motion records to be used for each intensity level. Results illustrate that the conventional IM, spectral displacement at the first mode, Sde(T1), produces higher risk estimates than alternative velocity‐based IM's, namely spectrum intensity, SI, and peak ground velocity, PGV, because of its high uncertainty in ground motion prediction and poor efficiency in predicting peak acceleration demands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
在分析已有资料的基础上划分了兰州盆地与建设工程分布密切相关的T0、T1、T2、T3和T4级黄河阶地,建立201个土层地震反应模型。通过一维等效线性化计算和反应谱分析,得出兰州盆地沉积阶地50年超越概率10%地表地震动参数,分析阶地高度和vS≤500 m/s覆盖层厚度特征与地震动参数峰值加速度Am和加速度反应谱特征周期Tg的相关性。表明兰州盆地T0~T2阶地覆盖层厚度与50年超越概率10%Am呈正相关,T3及以上阶地覆盖层厚度对Am增大有明显的减小作用。Tg值随T0~T3阶地覆盖层厚度的增加而变大,当覆盖层厚度进一步变大,Tg值不再同步增大,阶地覆盖层厚度对Tg的影响是有限的,阶地海拔高度与地表50年超越概率10%地震动参数没有关系。  相似文献   

16.
In this study, the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions. The simulation was conducted with a hybrid methodology, combining a stochastic high-frequency simulation with a low-frequency ground motion simulation, from the regional 1-D velocity structure model and the Wang WM et al. (2022) source rupture model, respectively. We found that the three-component waveforms simulated for specific stations matched the waveforms recorded at those stations, in terms of amplitude, duration, and frequency content. The validation results demonstrate the ability of the hybrid simulation method to reproduce the main characteristics of the observed ground motions for the 2021 Maduo earthquake over a broad frequency range. Our simulations suggest that the official map of macroseismic intensity tends to overestimate shaking by one intensity unit. Comparisons of simulations with empirical ground motion models indicate generally good consistency between the simulated and empirically predicted intensity measures. The high-frequency components of ground motions were found to be more prominent, while the low-frequency components were not, which is unexpected for large earthquakes. Our simulations provide valuable insight into the effects of source complexity on the level and variability of the resulting ground motions. The acceleration and velocity time histories and corresponding response spectra were provided for selected representative sites where no records were available. The simulated results have important implications for evaluating the performance of engineering structures in the epicentral regions of this earthquake and for estimating seismic hazards in the Tibetan regions where no strong ground motion records are available for large earthquakes.  相似文献   

17.
It is fact that the severe ground motions of shear waves have a strong effect on the dynamic behavior of buildings and civil structures. We simulate near source strong motions of a pure shear wave and synthesize small motions, using the parameters based on the recorded accelerograms at the site that is regarded as a base rock in the Osaka basin, Japan. By making use of a stochastic technique, we can easily introduce higher frequency contents in the motions and apply the technique to the synthesis of small waves regarding as a green function. We also introduce to the analysis the useful relationships among the time duration Td, the seismic moment M0, the corner frequency fc and the high cutoff frequency fmax which were regressed by a simple representation scheme. Considering two active faults that may affect severe damage on buildings and civil structures, we try to predict strong ground motions in Osaka basin and show the characteristics of them.  相似文献   

18.
Radiative characteristics in a forested drainage basin during the snowmelt season were examined in order to better understand and predict snowmelt runoff in the basin. A method for estimating net radiation in a forest (Rnf) was presented using the total sky view factor (P) and the sun path sky view factor (Q). Solar radiation, albedo, atmospheric radiation and air temperature observed at an open site were also required. The total and the sun path sky view factors were determined from all‐sky photographs. Q was expressed as a linear function of P for 0·15<P<0·86 regardless of forest type. For P<0·15, Q was set to zero, and for P>0·86, Q was equal to unity. The short‐wave radiation budget at the forest floor (Snf) increased with P, whereas the long‐wave radiation budget (Lnf) decreased with P. Rnf increased with P for 0·15<P<0·86, and changed little with P for P<0·15 and P>0·86, as the increase in Snf was offset by the decrease in Lnf . The forest effect on Rnf was diminished under cloudy or high albedo conditions, because Snf was easily offset by Lnf . This estimation method was extended to the whole basin, and Rnf was obtained over a watershed covered by trees. At the beginning of the snowmelt season when the albedo remained high, the forest effect became null because the decrease in Snf was balanced by the increase in Lnf . As the albedo gradually lowered with the advance of the snowmelt season, the decrease in Snf owing to forest covers exceeded the increase in Lnf , and the forest effect to decrease Rnf became evident. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Statistical methods are available which predict the maximum response of simple oscillators given the peak acceleration (Ap), peak velocity (Vp) or peak displacement (Dp) of seismic ground motions. An alternative parameter, namely an ordinate (or ordinates) of the Fourier amplitude spectrum of ground motion acceleration, FS(f), may in fact be a preferred predictor of peak response, especially in a frequency range close to f. Other statistical methods (attenuation laws) use distance R and other parameters such as magnitude (M), Modified Mercalli epicentral Intensity (Io) and Modified Mercalli site Intensity (MMI or Is) to predict spectral velocity (Sv(f)), etc. In using such approaches, it is most desirable to know the total uncertainty in the predicted peak response of the system given the starting parameter values. An extensive strong motion data set is used to study these questions, The most direct prediction models are found to be preferable (have lower prediction dispersion) but data may not be available in all regions to permit their use.  相似文献   

20.
Delineation of the top sedimentary structure and its Qs vs. Qp relationship using the travel-time difference of direct S and converted Sp phase is key to understanding the seismic hazard of any sedimentary basin area. We constructed filtered displacement waveforms from local ETNA Episensor acceleration recordings as well as local velocity recordings of aftershocks of the 2001 Bhuj earthquake recorded by the Kachchh seismological network of the National Geophysical Research Institute (NGRI), Hyderabad, India during 2001–2004. Stations are within 15–70km of epicenters, and the resulting displacement waveforms are generally simple, displaying prominent P, Sp, and S wave pulses. Particle motion of P and S waves suggest near-vertical raypaths consistent with preliminary depth estimates. The direct S wave on the horizontal component is characterized by lower frequency content than the converted Sp phase on the vertical component. This difference in frequency content between S and Sp phases can be explained in terms of different attenuation effects for P and S waves in the unconsolidated sediments. The Sp phase is generated by S-to-P phase conversion at the base of Mesozoic sediments of the Kachchh basin. Travel-time inversion (VELEST) of 2565 P and 2380 S arrivals from 658 well located aftershocks recorded at 8–14 three-component local seismic stations led to 1 D velocity models indicated very slow sediments in the upper 0–2 km depth range (Vp: 2.92 km/s and Vs: 0.90 km/s) and an increasing trend of velocities with depth at 2–40 km depth. The estimated sediment thicknesses beneath 12 accelerograph and 6 seismograph sites from the estimated velocity model and the travel-time difference between S and converted Sp phases reaches a maximum of (1.534 ± 0.117) km beneath Bandri (near the location of 2001 Bhuj mainshock) and attains a minimum sediment thickness of (0.858 ± 0.104) km beneath Ramvav and Burudia. The spectral ratios between Sp and S from 159 three-component accelerograms have been used to study seismic wave attenuation in the Kachchh rift basin. The estimated Qs vs. Qp relations for 12 accelerograph sites vary from Qs = 0.184 Qp (at Chobari) to Qs = 0.505 Qp (at Dudhai). For stations Chobari, Chopdwa, Jahawarnagar, Vondh and Tapar, the spectral ratio slopes and hence the calculated Qs vs. Qp relations are effectively the same, and the correlation coefficients are quite high (0.91–0.93). Stations Adhoi, Manfara, New Dudhai, Dudhai and Sikara have similar Qs vs. Qp relationships to each other and also have high correlation coefficients (0.78–0.87). The spectral ratios for stations Anjar and Ramvav are small and poorly constrained, resulting in less reliable Qs vs. Qp relations. This could be due to noisy data, fewer available waveforms, or scattering due to velocity heterogeneities and/or interface irregularities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号