首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A. S. Baluev 《Geotectonics》2006,40(3):183-196
The nearly parallel northwest-trending Onega-Kandalaksha, Kerets-Leshukonsky, and Barents paleorift zones located in the northeastern part of the East European Platform are interpreted as a common structural assemblage that was formed in the Middle-Late Riphean as a result of horizontal extension of the continental margin. Therefore, it is reasonable to combine these paleorift structural features into the common White Sea Rift System instead of subdividing them into two or more systems as done previously. The White Sea Rift System originated owing to the breakup of the ancient Paleopangea supercontinent 1300–1240 Ma ago. The latter event occurred as a result of the divergence of the Baltia and Laurentia continental plates that most probably was caused by mantle spreading within the hot equatorial belt of the Earth. The diffuse rifting of that time occurred in the form of near-parallel rifts developing progressively from the inner part of the continental plate toward its margin. A pericratonic sedimentary basin eventually formed at the passive margin of Baltia as a system of roughly parallel rift zones. The geologic and geophysical data show that the passive margin of the East European Platform formed in the Riphean, a phenomenon that corresponds with a model of large-scale extension of the lithosphere after the stage of early ocean-floor spreading. In the course of this process, the brittle upper crust was detached from the ductile lower crust. The geodynamic regime of the Riphean passive margin of the East European Platform probably was similar to the regime of the present-day Atlantic-type passive margins. The White Sea Rift System differs from the transverse Mid-Russian Paleorift System both in origin and age. The Mid-Russian Paleorift System is considered to have formed in the Late Riphean as a result of transtension along a mobile zone in the ancient basement. The lithosphere of northeastern Fennoscandia has experienced horizontal extension since the Middle Riphean, a phenomenon that is closely related to the evolution of the White Sea Rift System, i.e., to the formation of the passive margin of the Baltia continent.  相似文献   

2.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   

3.
We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the eastern Korean margin that led to the separation of the southwestern Japan Arc. The eastern Korean margin is rimmed by fundamental elements of rift architecture comprising a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau that is a continental fragment extended and partially segmented from the Korean Peninsula. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau are bounded by major synthetic and smaller antithetic faults, creating wide and considerably symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Analysis of rift fault patterns suggests that rifting at the Korean margin was primarily controlled by normal faulting resulting from extension rather than strike-slip deformation. Two extension directions for rifting are recognized: the Onnuri and Hupo Basins were rifted in the east-west direction; the Bandal Basin in the east–west and northwest–southeast directions, suggesting two rift stages. We interpret that the east–west direction represents initial rifting at the inner margin; while the Japan Basin widened, rifting propagated southeastward repeatedly from the Japan Basin toward the Korean margin but could not penetrate the strong continental lithosphere of the Korean Shield and changed the direction to the south, resulting in east–west extension to create the rift basins at the Korean margin. The northwest–southeast direction probably represents the direction of rifting orthogonal to the inferred line of breakup along the base of the slope of the Korea Plateau; after breakup the southwestern Japan Arc separated in the southeast direction, indicating a response to tensional tectonics associated with the subduction of the Pacific Plate in the northwest direction. No significant volcanism was involved in initial rifting. In contrast, the inception of sea floor spreading documents a pronounced volcanic phase which appears to reflect asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin, although it is in a back-arc setting, can be explained by the processes occurring at the passive continental margin with magmatism influenced by asthenospheric upwelling.  相似文献   

4.
南海南、北陆缘中生代构造层序及其沉积环境   总被引:1,自引:0,他引:1  
新生代海底扩张,使南海陆缘分为南、北两部分。南部礼乐地块与南海北缘在扩张之前构成了统一的活动陆缘。通过对南、北陆缘的钻井研究和井旁地震剖面解释,发现二者的中生界均具有4 个地震层序及3 个构造层。南北陆缘构造层序及物源分析表明,早白垩世礼乐地块与南海北缘曾发生碰撞拼贴。早白垩世的南海北缘地区沉积环境由海陆过渡相向陆相演化,相应的礼乐地区是由浅海相向滨海相演化,二者反映出相同的向上变浅旋回,说明在南、北陆缘拼贴之后,两者具有了统一的构造沉积背景。到晚白垩世末,两区均隆升为陆,且遭受剥蚀; 南海北缘地区上白垩统部分被剥蚀,而距俯冲边界更近的礼乐地区上白垩统则被剥蚀殆尽。  相似文献   

5.
梁光河 《地学前缘》2022,29(4):293-306
南海的形成和演化得到了广泛研究,前人提出了超过5种成因模式,当前流行是海底扩张模式,但它难以合理解释南海洋壳上的洋中脊跳跃和南海中央海盆上的大陆残片。本文首先基于南海中央海盆中的两条高精度地震勘探剖面,在深入剖析洋壳的分层结构基础上,对这两条地震勘探剖面进行了新的构造地质解释。然后通过伸展构造的形成过程,发展了地幔上涌和陆壳重力滑移双驱动大陆漂移模型,最后深入研究了南海的形成和演化过程。结果说明,南海的形成是一种“构造挤出+主动漂移”模式。构造挤出是印度-欧亚大陆碰撞造成的欧亚东南缘微陆块大规模被动挤出,而主动漂移是微陆块在被挤出后发生了主动裂解漂移。南海中央海盆上残留的地震反射特征,是微陆块主动漂移后造成的海底被扩张现象。并进一步恢复了南海演化过程中周边陆块的运动演化历史。所提出的新模式能够合理解释南海的洋中脊跳跃现象及大陆残片的成因机制。新大陆漂移模型为板块运动提供了一个新的动力模式。  相似文献   

6.
西太平洋边缘海盆地的扩张过程和动力学背景   总被引:34,自引:0,他引:34  
任建业  李思田 《地学前缘》2000,7(3):203-213
西太平洋集中发育了全球 75%的边缘海盆地 ,这些盆地形成于始新世、渐新世—中新世和晚中新世—第四纪 3个边缘海扩张幕。文中介绍了边缘海盆地的基本特征和发育模式 ,详细讨论了西北太平洋边缘海盆地周缘板块构造时空格架及其对边缘海盆地形成、演化和关闭过程的控制作用。太平洋板块的俯冲及俯冲带的后退 ,印度—亚洲大陆碰撞的远程效应以及澳洲与印度尼西亚的碰撞是边缘海盆地的 3个重要的区域性控制因素。印度—亚洲大陆的碰撞所形成的向东和东南的地幔流可能推动了东亚大陆东侧和南侧俯冲带的后退 ,并引发弧后扩张作用。同时 ,由这一碰撞引起的东亚大陆边缘NE或NNE向断裂的右旋走滑 ,进一步影响和控制了边缘海盆地的几何学特征及演化。澳大利亚和印度尼西亚的碰撞阻碍了俯冲带的后退 ,导致了南海、Sulu海和Celebes海盆地的扩张终止。同时这一碰撞推动菲律宾海板块向北运移 ,并使Bonin弧与中央日本碰撞 ,导致日本海关闭  相似文献   

7.
The morphotectonics of the Lower Amur region is controlled by the marginal-continental areal rifting and its interaction with the general uplifting and moderate tectonic stacking on the margin of the “stable” continent. The marginal-continental rifts represent an element of the general evolutionary system of forms in the continent-toocean transition zone and morphotectonically reflect the initial stage of the thinning and transformation of the continental lithosphere. The rim of the stable continent in the southern Far East is characterized by a complex configuration bordered by large continuous or composite scarps, which coincide spatially with high-gradient gravity zones.  相似文献   

8.
Doklady Earth Sciences - Analysis of the latest seismic data has shown that thick sedimentary basins are developed in the western part of the Laptev Sea and on the continental margin of the...  相似文献   

9.
The paper is focused on the two tectonic-geodynamic factors that made the most appreciable contribution to the transformation of the lithospheric and hydrocarbon potential distribution at the Barents Sea continental margin: Jurassic-Cretaceous basaltic magmatism and the Cenozoic tectonic deformations. The manifestations of Jurassic-Cretaceous basaltic magmatism in the sedimentary cover of the Barents Sea continental margin have been recorded using geological and geophysical techniques. Anomalous seismic units related to basaltic sills hosted in terrigenous sequences are traced in plan view as a tongue from Franz Josef Land Archipelago far to the south along the East Barents Trough System close to its depocentral zone with the transformed thinned Earth’s crust. The Barents Sea igneous province has been contoured. The results of seismic stratigraphy analysis and timing of basaltic rock occurrences indicate with a high probability that the local structures of the hydrocarbon (HC) fields and the Stockman-Lunin Saddle proper were formed and grew almost synchronously with intrusive magmatic activity. The second, no less significant multitectonic stress factor is largely related to the Cenozoic stage of evolution, when the development of oceanic basins was inseparably linked with the Barents Sea margin. The petrophysical properties of rocks from the insular and continental peripheries of the Barents Sea shelf are substantially distinct as evidence for intensification of tectonic processes in the northwestern margin segment. These distinctions are directly reflected in HC potential distribution.  相似文献   

10.
洋-陆过渡带是理解大陆岩石圈破裂和海底初始扩张的关键位置,但是在南海北部地区仍然存在关于相关地质过程的诸多疑问.通过近年开展的国际大洋发现计划航次以及深部地质地球物理探测,取得以下4个方面的认识.(1)南海北部的洋-陆边界一般与自由空间重力异常的正-负值过渡位置对应,而更加准确地限定需要结合反射、折射地震资料.稳定大洋岩石圈生成与大陆岩石圈最终破裂之间的洋-陆过渡边界的位置比以往认为的还应往深海盆方向移动.(2)洋-陆过渡带代表了远端带构造作用减弱和岩浆作用逐渐增强的区域.陆坡地壳发育扩张后岩浆底侵、洋-陆过渡带发育同破裂期岩浆喷出结构和侵入反射体.(3)在中生代的古俯冲带弧前区域,新生代的断裂沿着早期的构造开始活动,岩石圈多处发生强烈的共轭韧性剪切作用.随着大陆岩石圈的进一步拉伸减薄,部分靠陆一侧的裂谷中心停止张裂,成为夭折裂谷,以台西南盆地南部凹陷、白云凹陷、西沙海槽为代表,而南海陆缘异常伸展和最终破裂的地方集中在南侧裂谷中心.夭折裂谷下亦发现地幔蛇纹石化,进一步反映了较弱的同破裂岩浆活动.(4)南海初始洋壳的增生沿着大陆边缘走向具有显著的变化,南海东北部洋-陆过渡带下伏地幔明显抬升和部分蛇纹石化,地震纵、横波速度以及折射波衰减特征都支持此观点,反映南海东北部是一个贫岩浆型大陆边缘.未来,南海北部洋-陆过渡带有望成为南海“莫霍钻”的理想备选钻探区.   相似文献   

11.
深地震探测揭示的华南地区莫霍面深度   总被引:15,自引:2,他引:13  
从20世纪70年代以来, 在华南地区进行了大量的深地震探测研究。本文通过对华南地区的深地震探测研究的总结和梳理, 探讨了华南大陆及其邻近海域的莫霍面变化情况, 结果表明: 华南大陆莫霍面形态变化较大, 总体变化趋势是由西部向东部呈逐渐抬升; 华南大陆最深的莫霍面出现在攀西地区北缘, 最浅的莫霍面出现在衢州盆地, 两者差35 km; 华南地区周缘断裂均存在莫霍面错断; 华南加里东造山带莫霍面深度浅于台湾造山带; 东海边缘海与南海北缘地壳厚度明显不同。这些特征可能指示了不同区域所经历的岩石圈及地壳演化过程不同, 其中攀西地区的莫霍面较厚可能同青藏高原物质东流有关, 华南造山带的地壳减薄缘于后期遭受的伸展作用, 东海及南海的莫霍面深度反映了两者处于不同的陆缘位置, 前者为活动大陆边缘, 后者为被动大陆边缘。  相似文献   

12.
Accompanied with rifting and detaching of the north continental margin of the South China Sea,the ernst and the lithosphere become thinner away from the continental margin resulting from the tectonic activities,such as tensile deformation,thermal uplift,and cooling subsidence,etc..Integrated with thermal,gravimetric,and isostatic analysis techniques,based on the seismic interpretation of the deep penetration seismic soundings across the northern margin of the South China Sea,we reconstructed the lithospheric thermal structure and derived the variation of the crust boundary in the east and west parts of the seismic profde by using gravity anomaly data.We mainly studied the thermal isostasy problems using the bathymetry of the profiles and calculated the crust thinning effect due to the thermal variety in the rifting process.The results Indicate that the thermal isostasy may reach 2.5 kin,and the compositional variations in the ilthospheric density and thickness may produce a variation of 4.0 kin.Therefore,the compositional isostatic correction is very important to recover the relationship between surface heat flow and topography.Moreover,because of the high heat flow characteristic of the continental margin,building the model of lithospheric geotherm in this region is of great importan for studying the Cenozoic tectonic thermal evolution of the north passive continental margin of the South China Sea.  相似文献   

13.
南海北部陆缘位于大华南地块洋陆过渡带南段的关键核心段落,曾处于特提斯洋构造域与(古)太平洋构造域交接地带,是印度洋构造动力系统与太平洋构造动力系统波及的共同地区。然而,以往研究和勘探程度较低,特提斯构造域与太平洋构造域交接转换区域的大地构造背景、过程、机制始终不够明确。基于南海北部陆缘地震剖面,不仅关注该区新生代盆地结构构造,以服务该区油气精准勘探,并且试图以此解剖、揭示该区中生代基底结构特征,进而探索新生代南海海盆打开、扩张、停滞到消亡过程的前生今世。对珠江口盆地地震剖面解析和华南陆缘野外构造研究表明:华南地块洋陆过渡带先后经历了中生代印支期碰撞造山、燕山早期增生造山、燕山晚期压扭造山三个过程;随后进入新生代,又经历了早期北东东—南西西走向正断层主控下的弥散性裂解成盆、中期北东—北北东走向张扭断裂主控下的右行走滑拉分成盆、晚期北西—北西西向张扭断裂主控下的左行走滑拉分成盆三期伸展构造叠加。总体上,该区特提斯洋构造体系向太平洋构造体系的转换过程经历了四个阶段:古特提斯洋构造体系向新特提斯洋构造体系转换、新特提斯洋构造体系向古太平洋构造体系转换、新特提斯洋构造体系向太平洋构造体系转换及古太平洋构造体系向太平洋构造体系的转换。东亚洋陆过渡带的构造转换折射出地球深浅部动力系统驱动“东亚大汇聚”的长期机制,即东南亚环形俯冲驱动体系、太平洋LLSVP和非洲LLSVP的深部动力系统(统称为海底“三极”)的重要性,其中,东南亚环形俯冲驱动体系是地球板块运动的重要动力引擎之一。   相似文献   

14.
In this paper we compare four types of stratigraphic architectures around the continental margins in the South China Sea (SCS) based on a plentiful of seismic profiles. The results indicate that stratigraphic patterns are not only related closely to structure regimes of peripheral of the SCS, but also are restrained by crust structure from continental crust to oceanic crust. In the extensional setting, depositional centres during the syn‐spreading stage are located in the strong extensional area. A wedge‐decrease continental crust represented by the Pearl River Mouth type is characterized by high deposition and subsidence rate during the syn‐rifting and syn‐spreading stages in the distal zone. And in the Zhongjiannan type with a continental ribbon, high deposition and subsidence rate during the syn‐rifting and syn‐spreading stages are present in the proximal zone. However, in the southern and eastern margins with compressional setting, the Liyue and Zengmu microcontinent blocks are separated from the South China with the seafloor spreading of SCS, in which a confined or relative thin syn‐spreading deposits are presence. High deposition and subsidence rate is closely related to the collision or subduction condition during the post‐spreading stage in the Liyue bank type and the Zengmu type, a huge progradational clinoforms are present along the subduction and collision margin. Therefore, this study shows distinct stratigraphic architecture in different continental rifted margins, distinct depositional and subsidence characteristics formed during the process of lithospheric rupture can provide an effective method for the study on the continental marginal sea in the western Pacific.  相似文献   

15.
We present results from a 484 km wide-angle seismic profile acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 km. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oceanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 km/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 km. The Zhongsha Massif in between is extremely stretched with only 6–10 km continental crust left. Crustal velocity is below 6.5 km/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.  相似文献   

16.
A number of basins are observed to extend inland from the coasts on both sides of the Gulf of Aden. The basins are orientated at approximately right angles to the spreading direction and intersect the coasts at the meeting of sheared and rifted continental margins. They appear to be grabens, one wall of which is continuous with the half graben of the neighbouring rifted margin. It is suggested that these were once parts of a number of discrete rifts arranged en-echelon along a zone of lithospheric weakness during the early opening of the Gulf of Aden, which became redundant when transform faults formed. The proposed development of rifts and transform faults is similar to that of a spreading centre, transform fault, spreading centre pattern developed in the freezing wax model of Oldenburg and Brune (1975). The Gulf of Suez at the northern end of the Red Sea is interpreted in a similar way since it has a number of features in common with the basins in the continents adjacent to the Gulf of Aden.  相似文献   

17.
Three basic tectonic styles are described from structural trends and sedimentary sequences within sedimentary basins in the Australian continental slope and shelf. These tectonic styles are related to sea-floor spreading events and plate-tectonic movements within the adjacent ocean floor. The same tectonic styles occur within sedimentary basins of different ages; Mesozoic and early Tertiary basins contain rift valley sequences and late Cainozoic basins contain geosynclinal sedimentary suites.Northwestern, western and southern continental margins reflect spreading events explained by an Atlantic-type model in which there are rift-valley sedimentary sequences. The oldest rift valleys in the northwest and the youngest rifts in the south formed ahead of Gondwanaland break-up. After sea-floor spreading commenced, the rate of continental margin collapse varied from place to place. The eastern and northeastern slopes and shelves border marginal seas and do not contain recognizable rift-valley sequences, except for tensional splays (triple junctions) in the Tasman Sea. Short-lived spreading within marginal seas started in the Late Cretaceous in the south and in the Paleocene in the northeast. The tectonism of the northern margin is mainly recorded on land in Timor, Irian Jaya and Papua New Guinea, where, in the Neogene to Holocene, the Australian continent collided with the Asian Plate at the Banda Arc and the sub-plates of the western Pacific at the Louisiade and Bismarck Arcs.  相似文献   

18.
Large areas of north-east Africa were dominated by regional extension in the Late Phanerozoic. Widespread rifting occurred in the Late Jurassic, with regional extension culminating in the Cretaceous and resulting in the greatest areal extent and degree of interconnection of the west, central and north African rift systems. Basin reactivation continued in the Paleocene and Eocene and new rifts probably formed in the Red Sea and western Kenya. In the Oligocene and Early Miocene, rifts in Kenya, Ethiopia and the Red Sea linked and expanded to form the new east African rift system.This complex history of rifting resulted in failed rift basins with low to high strain geometries, a range of associated volcanism and varying degrees of interaction with older structures. One system, the Red Sea rift, has partially attained active seafloor spreading. From a comparison of these basins, a general model of three-dimensional rift evolution is proposed. Asymmetrical crustal geometries dominated the early phases of these basins, accompanied by low angle normal faulting that has been observed at least locally in outcrop. As rifting progressed, the original fault and basin forms were modified to produce larger, more through-going structures. Some basins were abandoned, others experienced reversals in regional dip and, in general, extension and subsidence became focused along narrower zones near the rift axes. The final transition to oceanic spreading was accomplished in the Red Sea by a change to high angle, planar normal faulting and diffuse dike injection, followed by the organization of an axial magma chamber.  相似文献   

19.
Jakob Skogseid 《Tectonophysics》1994,240(1-4):225-247
The distribution of Cenozoic subsidence across Northeast Atlantic volcanic margins have been evaluated to define the width of the rift zone and magnitude of extensional deformation. The subsidence profiles are corrected for the effects of lower-crustal magmatic bodies emplaced during continental break-up. The dimensions of the bodies have been derived from the crustal velocity structure. The width of the Late Cretaceous-Paleocene Northeast Atlantic rift zone was more than 300 km, and the lithospheric extension factor increases gradually towards the line of continental separation. A large number of high-quality seismic reflection data tied to scientific and commercial wells reveals that the initiation of extensional deformation preceded continental separation by ˜ 18 m.y. on the Vøring margin, off Norway. These results show that the Northeast Atlantic volcanic margins, commonly considered as typical volcanic margins indeed, have similar dimensions as non-volcanic margins, and as continental rifts. Thus, these margins contrast significantly with previously suggested evolutionary models based on narrow rift zones and formation during rapid lithospheric failure. The wide rift is compatible with volume of igneous rocks observed along these margins, and with a thermal anomaly similar to that associated with production of Northeast Atlantic oceanic lithosphere.  相似文献   

20.
罗盼  任建业  雷超 《地质学报》2024,98(4):1101-1113
为了阐明南海由陆向洋的过渡带内构造活动的时间 空间迁移过程,本文以两条跨南海东部共轭被动陆缘和南海西南部共轭陆缘的两条长剖面为基础,进行精细的构造解释和分析,在南海洋陆转换带内确定了出Tb、SD、PD和Bi四个一级层序界面,并以这4个一层序界面为界,将南海陆缘划分为:早期断陷盆地(Tb—SD)、晚期拆离盆地(SD—PD)和断坳转换盆地(PD—Bi)。通过对同一剖面不同构造单元带内同构造地层的分析,发现构造活动时代由陆向洋逐渐变年轻;通过对比不同剖面同一构造单元带内的同构造地层发现,构造活动时代沿着海底扩张迁移的方向逐渐变年轻。因此,在南海扩张期间,岩石圈的伸展变形不仅表现为向洋方向的迁移,同时表现为向海底扩张方向的迁移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号