首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a first attempt to assess a proposed climatic change feedback process involving cloud condensation nuclei (CCN) and cloud albedo, CCN concentrations N as a function of supersaturation S were measured on a voyage from latitude 43 to 65°S in October–November 1988. The usual relationship N=CSk, with k=0.5 and C a constant was a fair apprraximation for S in the range 0.3–0.7% implying that CCN concentrations should largely determine cloud drop concentrations and hence albedo for clouds with S in that range. South of latitude 50°S and at smaller S,k was 1 or larger on average, which would lead to reduced dependence of albedo on CCN for the relevant clouds. N varied very widely for separations of the order of 100 km or 6 hours in time, particularly when the sea was partly ice-covered, suggesting strong local influences. During a large increase in N 60°S, unaccompanied by an increase in condensation nuclei (CN), cloud drops grew more rapidly than usual. In a subsidiary experiment particles were collected and examined by transmission electron microscopy. For particles less than 0.2 μm diameter, 80–90% appeared to consist of ammonium sulfate, the remainder being sea salt or an unknown substance which was more liquid and heat-resistant. Dialysis showed that the sulfate particles contained a few percent of insoluble material. Particles which formed cloud drops in vapours other water, were also studied. Comparison of these and water CCN and the rates of droplet suggested that the water insoluble portion of the particles was ethanol-soluble and surface-active. CN concentrations decreased by a factor of about 2 between 43 and 65°S, a change closely paralleled by ethanol CCN concentrations.  相似文献   

2.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   

3.
山西云微物理特征的地面观测   总被引:3,自引:1,他引:2  
利用连续气流纵向热梯度云凝结核仪和激光降水粒子谱测量仪对山西地面的云凝结核和雨滴谱进行了观测研究.研究结果表明,云凝结核(CCN)数浓度具有明显的日变化特征,1天出现了两次峰值,数浓度日变化与气象因子、人类活动有关.降水对CCN具有冲刷作用.利用关系式NCCN=CSk拟合得到的地面CCN活化谱参数C值明显较大,k值较高,属于典型的大陆型核谱.对层状云、层积云降水雨滴微物理特征参量分析发现:3次层状云、层积云降水雨滴数密度变化范围分别为74~229 m-3、305~743 m-3,平均含水量量级分别为10-2 g/m3、10-1g/m3,最大雨滴直径分别为1.78 mm、4.7 mm.对层状云降水雨滴的数密度和雨强贡献较大的分别是小于1 mm、0.2~2 mm的雨滴;对层积云降水雨滴的数密度和雨强贡献较大的分别是0.2~2 mm、1~3 mm的雨滴.层积云出现稳定谱的比例高于层状云.从瞬时谱型分布看,层状云出现单、双、三峰多,第四、五峰值的频率比较少,层积云雨滴谱分布没有出现指数型,常有多峰.从平均谱分布看,层状云谱宽窄于层积云,层状云雨滴平均谱服从指数分布,层积云曲线呈向下弯曲的趋势.对汾阳2008年7月17日一次积层混合云降水雨滴谱资料分析发现积层混合云降水雨滴微物理量起伏大,降水雨强主要由雨滴数密度决定.相同雨强下,若有相对更多的大雨滴,雷达反射率会更大一些.随着强回波云块的过境,雨滴数浓度、雨滴谱峰值个数、谱宽均明显增大.  相似文献   

4.
During May-June of 1990 an extensive flight series to survey aerosol present in the upper-troposphere was undertaken aboard the NASA DC-8 as part of the CLObal Backscatter Experiment (GLOBE). About 50,000 km were characterized between 8–12 km altitude and between 70°N and 58°S. Aerosol with diameters greater than 3nm were counted and sized with a combination of condensation nuclei counters and optical particle counters. Aerosol number and mass concentrations were separately identified with regard to both refractory and volatile components. Regions of the free-troposphere with the lowest mass concentrations were generally found to have the highest number concentrations and appeared to be effective regions for new particle production. These new particle concentrations appear inversely related to available aerosol surface area and their volatility suggests a sulfuric acid composition. The long lifetime of these new particles aloft can result in their growth to sizes effective as CN and CCN that can be mixed throughout the troposphere.  相似文献   

5.
The Pacific Atmospheric Sulfur Experiment (PASE) was a comprehensive airborne study of the chemistry and dynamics of the tropical trade wind regime (TWR) east of the island of Kiritibati (Christmas Island, 157º, 20?? W, 2º 52?? N). Christmas Island is located due south of Hawaii. Geographically it is in the northern hemisphere yet it is 6?C12º south of the intertropical convergence zone (ITCZ) which places it in the southern hemisphere meteorologically. Christmas Island trade winds in August and September are from east south east at 3?C15 ms?1. Clouds, if present, are fair weather cumulus located in the middle layer of the TWR which is frequently labeled the buffer layer (BuL). PASE provided clear support for the idea that small particles (80 nm) were subsiding into the tropical trade wind regime (TWR) where sulfur chemistry transformed them to larger particles. Sulfur chemistry promoted the growth of some of these particles until they were large enough to activate to cloud drops. This process, promoted by sulfur chemistry, can produce a cooling effect due to the increase in cloud droplet density and changes in cloud droplet size. These increases in particle size observed in PASE promote additional cooling due to direct scattering from the aerosol. These potential impacts on the radiation balance in the TWR are enhanced by the high solar irradiance and ocean albedo of the TWR. Finally because of the large area involved there is a large factional impact on earth??s radiation budget. The TWR region near Christmas Island appears to be similar to the TWR that persists in August and September, from southwest of the Galapagos to at least Christmas Island. Transport in the TWR between the Galapagos and Christmas involves very little precipitation which could have removed the aerosol thus explaining at least in part the high concentrations of CCN (??300 at 0.5% supersaturation) observed in PASE. As expected the chemistry of sulfur in the trade winds was found to be initiated by the emission of DMS into the convective boundary layer (BL, the lowest of three layers). However, the efficiency with which this DMS is converted to SO2 has been brought into further question by this study. This unusual result has come about as result of our using two totally different approaches for addressing this long standing question. In the first approach, based on accepted kinetic rate constants and detailed steps for the oxidation of DMS reflecting detailed laboratory studies, a DMS to SO2 conversion efficiency of 60?C73% was determined. This range of values lies well within the uncertainties of previous studies. However, using a completely different approach, involving a budget analysis, a conversion value of 100% was estimated. The latter value, to be consistent with all other sulfur studies, requires the existence of a completely independent sulfur source which would emit into the atmosphere at a source strength approximately half that measured for DMS under tropical Pacific conditions. At this time, however, there is no credible scientific observation that identifies what this source might be. Thus, the current study has opened for future scientific investigation the major question: is there yet another major tropical marine source of sulfur? Of equal importance, then, is the related question, is our global sulfur budget significantly in error due to the existence of an unknown marine source of sulfur? Pivotal to both questions may be gaining greater insight about the intermediate DMS oxidation species, DMSO, for which rather unusual measurements have been reported in previous marine sulfur studies. The 3 pptv bromine deficit observed in PASE must be lost over the lifetime of the aerosol which is a few days. This observation suggests that the primary BrO production rate is very small. However, considering the uncertainties in these observations and the possible importance of secondary production of bromine radicals through aerosol surface reactions, to completely rule out the importance of bromine chemistry under tropical conditions at this time cannot be justified. This point has been brought into focus from prior work that even at levels of 1 pptv, the effect of BrO oxidation on DMS can still be quite significant. Thus, as in the case of DMS conversion to SO2, future studies will be needed. In the latter case there will need to be a specific focus on halogen chemistry. Such studies clearly must involve specific measurements of radical species such as BrO.  相似文献   

6.
利用中尺度WRF模式(V3.7),采用WDM6双参数微物理方案,对2014年7月26日12时—28日06时发生在华东地区的一次层状云降水天气进行数值模拟。通过改变模式中初始云凝结核(CCN)数浓度及参数化方案,进行敏感试验,对模拟结果进行对比分析。改变CCN数浓度的结果表明,CCN数浓度对降水的影响复杂、非线性,随着CCN数浓度的增大,降水量减小。云水、霰混合比始终增加,雨水混合比表现为先增加后减小再增加的趋势,冰晶混合比则与之相反,呈现先减小再增加再减小的趋势,雪晶混合比呈现先减小后增加的趋势;改变CCN参数化方案的结果表明,两者模拟降水落区有差别,三参数方案更接近实际;降水产生后,三参数方案的CCN浓度一直高于双参数方案,且数值变化不大;双参数方案的结果显示暖云降水加强,冷云降水略弱,三参数方案则显示暖云降水较弱,冷云降水较强。  相似文献   

7.
This study incorporated the Weather Research and Forecasting (WRF) model double-moment 6-class (WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_Meso). A rainfall event that occurred during 3–5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme (WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei (CCN) number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration (Nc) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration (Nr), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.  相似文献   

8.
南京不同天气和能见度下云凝结核的观测分析   总被引:3,自引:1,他引:2  
王惠  刘晓莉  安俊琳  丁伟 《气象科学》2016,36(6):800-809
利用美国DMT公司生产的云凝结核(Cloud Condensation Nuclei,CCN)计数器(DMTCCNC),对2013年4—12月南京地区CCN进行观测。对不同天气条件下CCN活化谱拟合,霾天C值最高,为13 085 cm-3,雨后C值降至8 054 cm-3,属于大陆性核谱。不同能见度条件下CCN活化谱特征有明显差异,南京地区不同程度霾天CCN数浓度均远高于轻雾天,浓雾时期CCN数浓度显著偏高。CCN数浓度受到气象要素和天气状况、气溶胶源排放等因素影响。南京地区气溶胶凝结核(Condensation Nuclei,CN)数浓度和CCN数浓度的拟合结果显示出较好的相关性。CCN数浓度值:冬季春季秋季夏季,春季CCN数浓度日变化有三峰趋势,夏季基本呈单峰型,秋季、冬季双峰特征突出。气溶胶源排放、环境气象条件和气溶胶理化特性均会影响CCN数浓度的季节变化。  相似文献   

9.
An experimental and theoretical study has been carried out to investigate the rate of desorption of SO2 from water drops falling at terminal velocity in air. The experiments were carried out in the Mainz vertical wind tunnel in which water drops of various sizes containing S(IV) in various concentrations were freely suspended in the vertical airstream of the tunnel. The results of these experiments were compared with the predictions of three theoretical models, and with the experiments of Walceket al. This comparison shows that the predictions of the diffusion model of Kronig and Brink in the formulation given by Walcek and Pruppacher agree well with the experimental results for all relevant large and small rain-drop sizes, and for all considered concentrations of S(IV) inside the drops. In contrast, the predictions of the diffusion model which assumes complete internal mixing inside a drop agrees with the experimental results only if the concentration of S(IV) inside the drop is less than that equivalent of an equilibrium SO2 concentration of 15 ppbv. At larger concentrations, the theoretical predictions of the model for complete internal mixing progressively deviate from the experimental results. It is further shown that Barrie's double film model can be used to interpret the resistance to diffusion inside a drop in terms of a diffusion boundary layer inside the drop which increases in thickness with decreasing concentration of S(IV). Applying our results to the desorption of SO2 from small and large rain drops falling below an assumed cloud base, shows that for typical contents of S(IV) inside the drops substantial amounts of SO2 will desorb from these drops unless H2O2 is present in the surrounding air.  相似文献   

10.
Using a DMT (Droplet Measurement Technologies) continuous flow streamwise thermal gradient cloud condensation nuclei (CCN) counter mounted on a Cheyenne IIIA aircraft, about 20 flights for aircraft mea- surements of CCN over North China were conducted in the autumn of 2005 and spring of 2006. According to the design for aircraft observation, the method of spiral ascent or descent in the troposphere was used for the vertical measurement of CCN, and some certain levels were chosen for horizontal measurement. The vertical distributions of CCN concentrations show that most CCN particles are concentrated in the low level of troposphere and CCN concentration decreased with height increasing. It suggests that the main source of CCN is from the surface. This result is consistent with former studies during 1983-1985 in China with a static thermal gradient CCN counter. The comparison of vertical observations between polluted rural area near Shijiazhuang and non-polluted rural area near Zhangjiakou shows that there is about five times difference in CCN concentration. But over two polluted cities, Shijiazhuang and Handan, there is no notable difference in CCN concentration. The horizontal flight measurements for penetrating the cumulus clouds experiment show the apparent decrease of CCN in clouds. It confirms that cloud has a definite consumptive effect on CCN particles because some CCN particles can form cloud droplets. The surface measurements of CCN in Shijiazhuang City were made during June-August 2005. The statistical CCN data show the great difference in concentration at the same supersaturation (S) in Shijiazhuang summertime. The minimum CCN concentrations were 584, 808, and 2431 cm-3, and the maximum concentrations were 9495, 16332, and 21812 cm-3 at S=0.1%, 0.3%, and 0.5%, respectively. CCN has a diurnal variation cycle. From 0600 BT, the concentration began to increase and reached the maximum at about noon. Then it generally decreased throughout the afternoon. The reason maybe is related to the onset o  相似文献   

11.
黄山地区不同高度云凝结核的观测分析   总被引:2,自引:0,他引:2  
李力  银燕  顾雪松  陈魁  谭稳  杨磊  袁亮 《大气科学》2014,38(3):410-420
为研究华东高山地区云凝结核(Cloud Condensation Nuclei,CCN)沿山峰的垂直变化特征,2011年6月利用云凝结核计数器(Cloud Condensation Nuclei Counter,CCNC)在黄山三个不同高度处对CCN进行观测。观测结果表明,不同高度的CCN浓度随时间的变化趋势基本一致,CCN浓度随高度的升高而减小,过饱和度为0.8%时山顶、山腰、山底CCN浓度平均值分别为1105.62、1218.39和1777.78 cm-3,山底的高CCN浓度(大于1000 cm-3)出现频率大于山腰和山顶,表明山底受周边污染源的影响较山顶和山腰大。山顶和山底的日变化曲线均为双峰型,两个峰值分别出现在午前和午后,与大气边界层高度及山谷风变化有关。利用公式N=CSk拟合了山顶在不同天气条件下CCN活化谱,并分析了其变化特征。结果显示,晴天、雨天和雾天的C值分别为2798、384、765,小于一些污染城市,属于清洁大陆型核谱。本文结果有助于改进对华东背景地区云凝结核时空分布的认识,为该地区云雾核化在数值模式中的表达提供观测依据和参数化方案。  相似文献   

12.
We propose a climate stabilizing feedback loop involving biogenic sulfur. The mechanism is similar to the "CLAW" hypothesis (Charlson et al., 1987) but does not require the active participation of the ocean biota. The magnitude of the feedback response in this loop is derived by convective transport of biogenic sulfur over tropical oceans into the middle and high troposphere. Once aloft, the sulfur is oxidized into low-volatile species which nucleate new particles that later subside back into the subtropical marine boundary layer (MBL) and serve as cloud condensation nuclei (CCN). The MBL clouds are susceptible to albedo modification by changes in CCN concentrations (Platnick and Twomey, 1995). We envision that as global temperatures rise the sea surface warms, convective mass transport of sulfur will rise and the increased mass of sulfur in the upper troposphere will lead to higher numbers of particles or a shift in the particle size distribution to larger sizes. In either case, there is an increase in the number of particles large enough to act as CCN in the air subsiding backinto the MBL. The increase in CCN increases the cloud albedo, decreases the solar input to the surface and the temperature decreases. More measurements are needed to confirm whether the magnitude of increased sulfur carried through the loop as a function of increased sea surface temperature is sufficient to close the loop and regulate the climate.  相似文献   

13.
Ozone production efficiencies (EN), which can be defined as the netnumber of ozone molecules produced per molecule of NOxoxidised, have been calculated from measurements taken during three intensive field campaigns (one in the spring, EASE 96, and two in the summer, EASE 97 and TIGER 95), at two European coastal sites (Mace Head, Ireland (EASE) and Weybourne, Norfolk (TIGER)) impacted by polluted air masses originating from both the U.K. and continental Europe, as well as relatively clean oceanic air masses from the Arctic and Atlantic. From a detailed wind sector analysis of the EASE 96 and 97 data it is clear that two general types of pollution regime were encountered at Mace Head. The calculated ozone production efficiency in clean oceanic air masses was approximately 65, which contrasted to more polluted air, from the U.K. and the continental European plume, where the efficiency decreased to between 4 and 6. The latter values of ENagree well with literature measurements conducted downwind of various urban centres in the U.S. and Europe, which are summarised in a wide-ranging review table. The EN value calculated for clean oceanic air is effectivelyan upper limit, owing to the relatively rapid deposition of HNO3 tothe ocean. Consideration of the variation of EN with NOx forthe three campaigns suggests that ozone production efficiency is relatively insensitive to both geographical location and season. The measuredEN values are also compared with values derived from steady-state expressions. An observed anti-correlation between EN and measured ozone tendencyis briefly discussed.  相似文献   

14.
Epidemiological studies initially considered the impact of total solid particles on human health, but according to the acquired knowledge about the worse effect of smaller particles, those studies turned to consider the impact of PM10. However, for the last decade PM2.5 began to be more important, once as they are smaller they can penetrate deeper in the lungs, being possible their trapping in alveoli and worse effects on human health. Therefore, more information on PM2.5 should be provided namely concerning the levels and elemental composition. Considering the relevance of traffic on the emission of particles of small sizes, this work included the detailed characterization of PM10 and PM2.5, sampled at two sites directly influenced by traffic, as well as at two reference sites, aiming a further evaluation of the influence of PM10 and PM2.5 on public health. The specific objectives were to study the influence of traffic emission on PM10 and PM2.5 characteristics, considering concentration, size distribution and elemental composition. PM10 and PM2.5 samples were collected using low-volume samplers; the element analyses were performed by particle induced X-ray emission (PIXE). At the sites influenced by traffic emissions PM10 and PM2.5 concentrations were 7–9 and 6–7 times higher than at the background sites. The presence of 17 elements (Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb) was determined in both PM fractions; particle metal contents were 3–44 and 3–27 times higher for PM10 and PM2.5, respectively, than at the backgrounds sites. The elements originated mostly from anthropogenic activities (S, K, V, Mn, Ni, Zn and Pb) were predominantly present in PM2.5, while the elements mostly originated from crust (Mg, Al, Si and Ca) predominantly occurred in PM2.5–10. The results also showed that in coastal areas sea salt spray is an important source of particles, influencing PM concentration and distributions (PM10 increased by 46%, PM2.5/PM10 decreased by 26%), as well as PM compositions (Cl in PM10 was 11 times higher).  相似文献   

15.
Surface measurements of cloud condensation nuclei (CCN) number concentration (cm−3) are presented for unmodified marine air and for polluted air at Mace Head, for the years 1994 and 1995. The CCN number concentration active at 0.5% supersaturation is found to be approximately log-normal for marine and polluted air at the site. Values of geometric mean, median and arithmetic mean of CCN number concentration (cm−3) for marine air are in the range 124–135, 140–150 and 130–157 for the two years of data. Analysis of CCN number concentration for high wind speed, U, up to 20 m s−1 show enhanced CCN production for U in excess of about 10–12 m s−1. Approximately 7% increase in CCN per 1 m s−1 increase in wind speed is found, up to 17 m s−1. A relationship of the form log10CCN=a+bU is obtained for the periods March 1994 and January, February 1995 for marine air yielding values a of 1.70; 1.90 and b of 0.035 for both periods.  相似文献   

16.
Elevated concentrations of S(IV) and formaldehyde were observed in fog- and cloudwater at sites in California. The highest concentrations (up to 3 mM S(IV) and 0.7 mM CH2O) were measured at Bakersfield, during a prolonged period of repeated fog. In Bakersfield [S(IV)] generally exceeded [CH2O], while in the Los Angeles area the reverse was observed. The lowest concentrations of both species were observed at marine and high altitude sites away from local emissions. Equilibrium computations indicate that high concentrations of S(IV) cannot be achieved without the formation of S(IV)-RCHO adducts.  相似文献   

17.
A box model was constructed to investigate connections between the particulate MSA to non-sea-salt sulfate ratio, R, and DMS chemistry in a clean marine boundary layer. The simulations demonstrated that R varies widely with particle size, which must be taken into account when interpreting field measurements or comparing them with each other. In addition to DMS gas-phase chemistry, R in the submicron size range was shown to be sensitive to the factors dictating sulfate production via cloud processing, to the removal of SO2 from the boundary layer by dry deposition and sea-salt oxidation, to the entrainment of SO2 from the free troposphere, to the relative concentration of sub- and supermicron particles, and to meteorology. Three potential explanations for the increase of R toward high-latitudes during the summer were found: larger MSA yields from DMS oxidation at high latitudes, larger DMSO yields from DMS oxidation followed by the conversion of DMSO to MSA at high latitudes, or lower ambient H2O2 concentrations at high latitudes leading to less efficient sulfate production in clouds. Possible reasons for the large seasonal amplitude of R at mid and high latitudes include seasonal changes in the partitioning of DMS oxidation to the OH and NO3 initiated pathways, seasonal changes in the concentration of species participating the DMS-OH reaction pathway, or the existence of a SO2 source other than DMS oxidation in the marine boundary layer. Even small anthropogenic perturbations were shown to have a potential to alter the MSA to non-sea-salt sulfate ratio.  相似文献   

18.
The impact of aerosols on the climate and atmospheric environment depends on the water uptake ability of particles; namely, hygroscopic growth and acti- vation into cloud condensation nuclei (CCN). The size-resolved activation ratios (SRAR), characterizing the fraction of aerosol particles that act as CCN at different particle sizes and supersaturations, can be measured using a combination of differential mobility analyzers (DMA) and particle counters. DMA-based measurements are in- fluenced by the multiply charged particles and the quasi-mono-dispersed particles (effect of DMA transfer function) selected for each prescribed particle size. A theoretical study, assuming different particle number size distributions and hygroscopicity of aerosols, is performed to study the effects of the DMA transfer function and multiple charging on the measured SRAR and the derived hygroscopicity. Results show that the raw SRAR can be significantly skewed and hygroscopicity may be highly biased from the true value if the data are not corrected. The effect of the transfer function is relatively small and depends on the sample to sheath flow ratio. Multiply charged particles, however, can lead to large biases of the SRAR. These results emphasize that the inversion algo- rithm, which is used to correct the effects of the DMA transfer function and multiple charging, is necessary for accurate measurement of the SRAR.  相似文献   

19.
巨盐核对云滴活化影响的数值模拟研究   总被引:1,自引:1,他引:0  
利用包含云凝结核(CCN)与巨核(GCCN)的核化,云滴凝结和碰并增长的分档气块模式模拟研究了不同的CCN数浓度、上升气流速度、CCN中值半径以及云底温度等情况下GCCN对CCN活化的影响,结果表明,在水汽供应相对充足的情况下GCCN对云滴活化数浓度的影响并不明显;而当水汽供应相对不充足时,增加GCCN至1 cm-3的量级以上可以有效减少CCN的活化数浓度.在水汽供应不充分且其他条件相同的情况下,增大CCN的平均直径或是增加云底温度都可以使GCCN对云滴活化的抑制作用增强.对比分析不同的GCCN数浓度对清洁大气和污染大气云底以上300 m高度处粒子谱型的影响可以看出,在水汽供应不充分的条件下加入GCCN,初始时刻CCN的数浓度对GCCN产生的大云滴数目及云滴谱宽的影响较小.在水汽供应相对充足的情况下,GCCN对CCN活化基本没有抑制作用,但此时在高过饱和度峰值下生成的大量小云滴争食水汽,反而导致云滴群凝结增长速度小于水汽供应相对不充足的情况,此时加入的GCCN可以先活化形成大云滴.  相似文献   

20.
The Pacific Atmospheric Sulfur Experiment (PASE) is the first sulfur-budget field experiment to feature simultaneous flux measurements of DMS marine emissions and SO2 deposition to the ocean surface. We make use of these data to constrain a 1-D chemical transport model to study the production and loss pathways for DMS and SO2 over the equatorial Pacific. Model results suggest that OH is the main sink for DMS in the boundary layer (BL), and the average DMS-to-SO2 conversion efficiency is ~73%. In an exploratory run involving the addition of 1 pptv of BrO as a second oxidant, a 14% increase in the DMS flux is needed beyond that based on OH oxidation alone. This BrO addition also reduces the DMS-to-SO2 conversion efficiency from 73% to 60%. The possibility of non-DMS sources of marine sulfur influencing the estimated conversion efficiency was explored and found to be unconvincing. For BL conditions, SO2 losses consist of 48% dry deposition, while transport loss to the BuL and aerosol scavenging each account for another 19%. The conversion of SO2 to H2SO4 consumes the final 14%. In the BuL, cloud scavenging removes 85% of the SO2, thus resulting in a decreasing vertical profile for SO2. The average SO2 dry deposition velocity from direct measurements (i.e., 0.36 cm sec−1) is approximately 50% of what is calculated from the 1-D model and the global GEOS-Chem model. This suggests that the current generation of global models may be significantly overestimating SO2 deposition rates over some tropical marine areas. Although the specific mechanism cannot be determined, speculation here is that the dry deposition anomalous results may point to the presence of a micro-surface chemical phenomenon involving partial saturation with either S(IV) and/or S(VI) DMS oxidation products. This could also appear as a pH drop in the ocean’s surface microfilm layer in this region. Finally, we propose that the enhanced SO2 level observed in the lower free troposphere versus that in the upper BuL during PASE is most likely the result of transported DMS/SO2-rich free-tropospheric air parcels from the east of the PASE sampling area, rather than an inadequate representation in the model of local convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号