首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speckle interferometric binary system HD375; Is it a sub-giant binary?   总被引:1,自引:0,他引:1  
Atmospheric modeling is used to build synthetic spectral energy distributions (SEDs) for the individual components of the speckle interferometric binary system HD375. These synthetic SEDs are combined together for the entire system and compared with its observed SED in an iterative procedure to achieve the best fit. Kurucz blanketed models and the measurements of magnitude differences were used to build these SEDs. The input physical parameters for building these best fitted synthetic SEDs represent adequately enough properties of the system. These parameters are: T eff a = 6100 ± 50 K, T eff b = 5940 ± 50 K, log g a = 4.01 ± 0.10, log g b = 3.98 ± 0.10, R a = 1.93 ± 0.20R , R b = 1.83 ± 0.20R , M v a = 3 · m 26 ± 0.40, M v b = 3 · m 51 ± 0.50, L a = 4.63 ± 0.80 L , and L b = 3.74 ± 0.70 L , in accordance with the new estimated parallax π = 12.02 ± 0.60 mas. A modified orbit of the system is built and compared with earlier orbits, and the masses of the two components are calculated as M a = 1.35M and M b = 1.25M . Based on the estimated physical and geometrical parameters of the system, which are confirmed by synthetic photometry, we suggest that the two components are evolved subgiant (F8.5 IV and G0 IV) stars with the age of 3.5 Gyr, formed by fragmentation.  相似文献   

2.
Abstract– There are 31 proven impact structures in Fennoscandia—one of the most densely crater‐populated areas of the Earth. The recently discovered Keurusselkä impact structure (62°08′ N, 24°37′ E) is located within the Central Finland Granitoid Complex, which formed 1890–1860 Ma ago during the Svecofennian orogeny. It is a deeply eroded complex crater that yields in situ shatter cones with evidence of shock metamorphism, e.g., planar deformation features in quartz. New petrophysical and rock magnetic results of shocked and unshocked target rocks of various lithologies combined with paleomagnetic studies are presented. The suggested central uplift with shatter cones is characterized by increased magnetization and susceptibility. The presence of magnetite and pyrrhotite was observed as carriers for the remanent magnetization. Four different remanent magnetization directions were isolated: (1) a characteristic Svecofennian target rock component A with a mean direction of D = 334.8°, I = 45.6°, α95 = 14.9° yielding a pole (Plat = 51.1°, Plon = 241.9°, A95 = 15.1°), (2) component B, D = 42.4°, I = 64.1°, α95 = 8.4° yielding a pole (Plat = 61.0°, Plon = 129.1°, A95 = 10.6°), (3) component C (D = 159.5°, I = 65.4°, α95 = 10.7°) yielding a pole (Plat = 21.0°, Plon = 39.3°, A95 = 15.6°), and (4) component E (D = 275.5°, I = 62.0°, α95 = 14.4°) yielding a pole (Plat = 39.7°, Plon = 314.3°, A95 = 19.7°). Components C and E are considered much younger, possibly Neoproterozoic overprints, compared with the components A and B. The pole of component B corresponds with the 1120 Ma pole of Salla diabase dyke and is in agreement with the 40Ar/39Ar age of 1140 Ma from a pseudotachylitic breccia vein in a central part of the structure. Therefore, component B could be related to the impact, and thus represent the impact age.  相似文献   

3.
Detached eclipsing binaries constitute potential accurate distance tracers. They are also useful as the test bench of stellar evolution. In BD–00° 3357 eclipses are partial and its orbital period is 1.d4. Our combined spectroscopic and photometric solution yields secure parameters of this system. The model of the star was obtained using the Wilson‐Devinney method. As result we obtained a semi major axis of 7.65 R and a mass ratio of 0.78. The derived masses and radii are M 1 = 1.73 M,M 2 = 1.34 MR 1 = 1.78 R, R 2 = 1.32 R, respectively. These values correspond to the slightly evolved F0 and F6.5 components, both slightly less than 1Gyr old. The distance of the star was estimated to be 310 ± 60 pc, and the corresponding photometric parallax is 3.24 ± 0.74 mas. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A laboratory study was performed using the Visible Oxford Space Environment Goniometer in which the broadband (350–1250 nm) bidirectional reflectance distribution function (BRDF) of the Winchcombe meteorite was measured, across a range of viewing angles—reflectance: 0°–70°, in steps of 5°; incidence: 15°, 30°, 45°, and 60°; and azimuthal: 0°, 90°, and 180°. The BRDF dataset was fitted using the Hapke BRDF model to (1) provide a method of comparison to other meteorites and asteroids, and (2) to produce Hapke parameter values that can be used to extrapolate the BRDF to all angles. The study deduced the following Hapke parameters for Winchcombe: w = 0.152 ± 0.030, b = 0.633 ± 0.064, and hS = 0.016 ± 0.008, demonstrating that it has a similar w value to Tagish Lake (0.157 ± 0.020) and a similar b value to Orgueil (0.671 ± 0.090). Importantly, the surface profile of the sample was characterized using an Alicona 3D® instrument, allowing two of the free parameters within the Hapke model φ and θ ¯ , which represent porosity and surface roughness, respectively, to be constrained as φ = 0.649 ± 0.023 and θ ¯ = 16.113° (at 500 μm size scale). This work serves as part of the characterization process for Winchcombe and provides a reference photometry dataset for current and future asteroid missions.  相似文献   

5.
The ionizing star BD+60°2522 is known as the central star of Bubble Nebulae NGC 7635—wind-blown bubble created by the interaction of the stellar wind of BD+60°2522 (O6.5 IIIef, V=8.7 mag, mass loss rate 10−5.76 M /year) with the ambient interstellar medium. From the evolutionary calculations for the star with mass loss and overshooting, we find that the initial mass of the star is 60M , its present age is 2.5×106 years, and the present mass is 45M .  相似文献   

6.
New BV light curves and times of minimum light for the short period W UMa system LO And were analyzed to derive the preliminary physical parameters of the system. The light curves were obtained at Ankara University Observatory during 5 nights in 2003. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson‐Devinney 2003 code. The present solution reveals that LO And has a photometric mass ratio q = 0.371 and is an A‐type contact binary. The period of the system is still increasing, which can be attributed to light‐time effect and mass transfer between the components. With the assumption of coplanar orbit of the third body the revealed mass is M3 = 0.21M. If the period change dP/dt = 0.0212 sec/yr is caused only by the mass transfer between components (from the lighter component to the heavier) the calculated mass transfer rate is dm/dt = 1.682×10−7M/yr. The absolute radii and masses estimated for the components, based on our photometric solution and the absolute parameters of the systems which have nearly same period are R1 = 1.30R, R2 = 0.85R, M1 = 1.31M, M2 = 0.49M respectively for the primary and secondary components. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The Hipparcos Space Astrometry Mission photometric observations of V398 Lac, led to the discovery of its variability, allowing to classify it as an eclipsing binary with an orbital period of about 5.4 days. This prompted us to acquire highresolution échelle spectra with the aim of performing accurate radial velocity measurements and to determine the main physical parameters of the system's components. We present, for the first time, a double‐lined radial velocity curve and determine the orbital and physical parameters of the two components, that can be classified both as late B‐type stars. In particular, we obtained an orbital inclination i ∼ 85°. With this value of the inclination, we deduced masses M1 = 3.83±0.35 M andM2 = 3.29±0.32 M, and radii R1 = 4.89±0.18 R and R2 = 2.45±0.11 R for the more massive and less massive components, respectively. Both components are well inside their own Roche lobes. The mass ratio is M2/M1 ∼ 0.86. We derived also the projected rotational velocities as v1 sin i = 79±2 km s–1 and v2 sin i = 19±2 km s–1. Our measurements indicate that the rotation of the primary star is essentially pseudo‐synchronized with the orbital velocity at the periastron, while the secondary appears to rotate very slowly and has not yet attained synchronization. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present the results of our photometric and spectroscopic studies of the new eclipsing cataclysmic variable star 1RXS J180834.7+101041. Its spectrum exhibits double-peaked hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines show a nonuniform distribution of emission in the disk similar to that observed in IP Peg. This suggests that the object can be a cataclysmic variable with tidal density waves in the disk. We have determined the component masses (M WD = 0.8 ± 0.22M and M RD = 0.14 ± 0.02M ) and the binary inclination (i = 78° ± 1.5°) based on well-known relations between parameters for cataclysmic variable stars. We have modeled the binary light curves and showed that the model of a disk with two spots is capable of explaining the main observed features of the light curves.  相似文献   

9.
In this study we determined precise orbital and physical parameters of the very short‐period low‐mass contact binary system CC Com. The parameters are obtained by analysis of new CCD data combined with archival spectroscopic data. The physical parameters of the cool and hot components are derived as Mc = 0.717(14) M, Mh = 0.378(8) M, Rc = 0.708(12) R, Rh = 0.530(10) R, Lc = 0.138(12) L, and Lh = 0.085(7) L, respectively, and the distance of the system is estimated as 64(4) pc. The times of minima obtained in this study and with those published before enable us to calculate the mass transfer rate between the components which is 1.6 × 10–8 M yr–1. Finally, we discuss the possible evolutionary scenario of CC Com (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Abstract– A calibrated lightcurve is presented of the near‐Earth asteroid 2008 TC3, obtained before it impacted Earth on October 7, 2008. The asteroid was observed in unfiltered images from the end of astronomical twilight until the object entered Earth’s shadow about 2 h later. The observations covered a wide range of phase angles from 14.79° to 2.93°, during which the asteroid ranged from 82,000 km to 29,000 km distance from the observer. A method is presented for obtaining photometrically filtered brightness values for the asteroid using unfiltered imaging techniques. Over 1,700 images of the asteroid produce a lightcurve with a peak‐to‐peak variation in V of 0.76 magnitude. Analysis of the lightcurve yields values for H = 30.86 ± 0.01 and G = 0.33 ± 0.03. Combined with other constraints on the kinetic energy and diameter of the asteroid, which suggest a low 1.8 g cm?3 density and albedo 0.05 ± 0.01, the value of H implies an asteroid of about 4.1 m in diameter, 28 m3 in volume, and 51,000 kg in mass. The determined value of G is out of range for normal, larger asteroids of albedo 0.05–0.15.  相似文献   

11.
Photoelectric observations of the WR binary CQ Cephei (WN6+O9) are presented. the depths of the eclipses in the light curves are best represented by an inclination of the orbit i = (68°.8±0.6) and the width of the very asymmetric eclipse curves can be represented by only an overcontact configuration (Ω1 = Ω2 = 3.65 ± 0.05, and f = 27%). Simultaneous solution of the light and radial velocity curves strongly supports CQ Cep's membership of the Cep OB1 association. By considering this membership we obtained absolute dimensions of the system, which lead to a consistent physical model for CQ Cephei. The more luminous WR primary turns out to be the hotter but slightly less massive component: MWR = 20.8 M⊙, RWR = 8.2R⊙, Teff(WR) = 43600 K, and Mo = 21.4 M⊙, Ro = 8.3 R⊙, Teff(O) = 37000 K.  相似文献   

12.
The results of photometry and polarimetry of the R Coronae Borealis type stars and other interesting objects are given. The observation of the former objects are obtained at the light maximum or at a brightness lower by 2-3 mag. The polarization of R CrB stars at light maximum has interstellar origin. The absolute magnitude of V 854 Cen is estimated to Msvw = −3m, and for Y Mus it is Mv > −3m.7. ρ Cas has a variable polarization and is probably a giant (Mv ≅ 0m) rather than a supergiant. Many early stars in its surroundings are photometrically and polarimetrically variable. The protoplanetary star BD −0°3679 has a polarization with the Rayleigh component.  相似文献   

13.
This paper presents the results of polarization observations of asteroid 554 Peraga obtained with the UBVRI polarimeter using the 1.25 m telescope of the Crimean Astrophysical Observatory down to phase angles of 3.1°–16.6° from October to November 2006. The asteroid’s polarization phase curve is shown to have a negative branch with the parameters P min = −1.7% and αmin = 8.4°, which is typical of C-type asteroids. However, these data contradict the results of Zellner and Gradie (1976) obtained in March 1975 that the reflected light from the asteroid’s surface is positively polarized, ≈1% at phase angles of 8°–10°. Since the asteroid’s ecliptic longitudes differ by 160°-145° for the two observation periods, we discuss the possibility that the two sets of observations refer to the asteroid’s two hemispheres with different polarimetric properties.  相似文献   

14.
We report multi-frequency radio continuum and hydrogen radio recombination line observations of HII regions near l = 24.8°, b = 0.1° using the Giant Metrewave Radio Telescope (GMRT) at 1.28 GHz (n = 172), 0.61 GHz (n = 220) and the Very Large Array (VLA) at 1.42 GHz (n = 166). The region consists of a large number of resolved HII regions and a few compact HII regions as seen in our continuum maps, many of which have associated infrared (IR) point sources. The largest HII region at l = 24.83° and b = 0.1° is a few arcmins in size and has a shell-type morphology. It is a massive HII region enclosing ∼550 M with a linear size of 7 pc and an rms electron density of ∼110 cm−3 at a kinematic distance of 6 kpc. The required ionization can be provided by a single star of spectral type O5.5. We also report detection of hydrogen recombination lines from the HII region at l = 24.83° and b = 0.1° at all observed frequencies near V lsr = 100 km s−1. We model the observed integrated line flux density as arising in the diffuse HII region and find that the best fitting model has an electron density comparable to that derived from the continuum. We also report detection of hydrogen recombination lines from two other HII regions in the field.  相似文献   

15.
We present the results of our investigation of the geometrical and physical parameters of the W UMa‐type binary V404 Peg from analysis of CCD (BVRI) light curves and radial velocity data. The photometric data were obtained during 2010 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously by using the well‐known Wilson‐Devinney (2007 revision) code to obtain absolute and geometrical parameters. Our solution indicates that V404 Peg is an A‐type overcontact binary with a mass ratio of q = 0.243 and an overcontact degree of f = 32.1 %. Combining our light curves with the radial velocity curves from Maciejewski & Ligeza (2004), we determined the absolute parameters of this system as follows: a = 2.672 R, M1 = 1.175 M, M2 = 0.286 M, R1 = 1.346 R, and R2 = 0.710 R. Finally, we discuss the evolutionary condition of the system (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson‐Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR = 10.64 M, MO = 24.68 M, RWR = 7.19 R, RO = 6.85 R, TWR = 31 000 K, and TO = 40000 K, respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The OC analysis of the system revealed a period lengthening of 0.139 ± 0.018 syr–1, implying a mass loss rate of (6.76 ± 0.39) ×10–6 M yr–1 for the WR component. Moreover, 106 IUE‐NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200–2000 Å) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s–1 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Abstract— Paleomagnetic, rock magnetic, and petrophysical results are presented for impactites and target rocks from the Lake Jänisjärvi impact structure, Russian Karelia. The impactites (tagamites, suevites, and lithic breccias) are characterized by increased porosity and magnetization, which is in agreement with observations performed at other impact structures. Thermomagnetic, hysteresis, and scanning electron microscope (SEM) analysis document the presence of primary multidomain titanomagnetite with additional secondary titanomaghemite and ilmenohematite. The characteristic impact‐related remanent magnetization (ChRM) direction (D = 101.5°, I = 73.1°, α95 = 6.2°) yields a pole (Lat. = 45.0°N, Long. = 76.9°E, dp = 9.9°, dm = 11.0°). Additionally, the same component is observed as an overprint on some rocks located in the vicinity of the structure, which provides proofs of its primary origin. An attempt was made to determine the ancient geomagnetic field intensity. Seven reliable results were obtained, yielding an ancient intensity of 68.7 ± 7.6 μT (corresponding to VDM of 10.3 ± 1.1 times 1022 Am2). The intensity, however, appears to be biased toward high values mainly because of the concave shape of the Arai diagrams. The new paleomagnetic data and published isotopic ages for the structure are in disagreement. According to well‐defined paleomagnetic data, two possible ages for magnetization of Jänisjärvi rocks exist: 1) Late Sveconorwegian age (900–850 Myr) or 2) Late Cambrian age (?500 Myr). However, published isotopic ages are 718 ± 5 Myr (K‐Ar) and 698 ± 22 Myr (39Ar‐40Ar), but such isotopic dating methods are often ambiguous for the impactites.  相似文献   

18.
We consider a model for the cyclic activity of young binary stars that accrete matter from the remnants of a protostellar cloud. If the orbit of such a binary system is inclined at a small angle to the line of sight, then the streams of matter and the density waves excited in the circumbinary disk can screen the primary component of the binary from the observer. To study these phenomena by the SPH (smoothed particle hydrodynamics) method, we have computed grids of hydrodynamic models for binary systems based on which we have constructed the light curves as a function of the orbital phase. The main emphasis is on investigating the properties of the brightness oscillations. Therefore, the model parameters were varied within the following ranges: the component mass ratio q = M 2: M 1 = 0.2–0.5 and the eccentricity = 0–0.7. The parameter that defined the binary viscosity was also varied. We adopted optical grain characteristics typical of circumstellar dust. Our computations have shown that bimodal oscillations are excited in binaries with eccentric orbits, provided that the binary components do not differ too much in mass. In this case, the ratios of the periods and amplitudes of the bimodal oscillations and their shape depend strongly on the inclination of the binary plane and its orientation relative to the observer. Our analysis shows that the computed light curves can be used in interpreting the cyclic activity of UX Ori stars.  相似文献   

19.
New ephemeris and the absolute parameters—masses, radii and luminosities—of the contact systems VW LMi and BX Dra have been obtained, by means of the analysis of the minima data available in the literature (for the determination of the ephemeris) and combining the previously published spectroscopic information and the results of the Wilson-Devinney method using photometric data (for the determination of the absolute parameters). The VW LMi OC analysis confirms the multiplicity of the system detected previously from the spectroscopic data. Masses of the VW LMi contact system primary and secondary components are 1.67 ± 0.02M and 0.70 ± 0.02M , respectively. The corresponding radii are 1.709 ± 0.007R and 1.208 ± 0.006R , respectively. For the BX Dra contact system the masses are 2.19 ± 0.13M and 0.63 ± 0.06M , and the radii, 2.13 ± 0.04R and 1.26 ± 0.03R , for the primary and secondary, respectively. In both cases, the estimated luminosities seem to be slightly greater that the values derived from the Hipparcos distances.  相似文献   

20.
Based on high-resolution spectra taken near the He I 6678 Å line for the massive binary system 103 Tau, we have detected a weak absorption component belonging to the binary’s secondary component. We have measured the radial velocities of both components, improved the previously known orbital parameters, and determined the new ones. The binary has an orbital period P orb = 58.305d, an orbital eccentricity e = 0.277, a radial velocity semi-amplitude of the bright component K A = 44.8 km s?1, and a component mass ratio M A /M B = 1.77. The absence of photometric variability and the estimates of physical parameters for the primary component suggest that the binary most likely has a considerable inclination of the orbital plane to the observer, i ≈ 50°?60°. In this case, the secondary component is probably a normal dwarf of spectral type B5–B8. Based on the spectra taken near the H α line, we have studied the variability of the emission profile. It is shown to be formed in the Roche lobe of the secondary component, but no traces of active mass exchange in the binary have been detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号