首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
海南岛排浦礁区由珊瑚岸礁和堤礁及其间水域组成。因堤礁的障壁作用和丰富的陆源物质供应,研究区内形成清水和浑水两类沉积环境,产出清水碳酸盐和浑水碳酸盐两列沉积体系,并形成礁源沉积、陆源沉积和混合沉积三类沉积物。文中详细论述了各类沉积的特征,讨论了沉积体系的演化过程:全新世早期是单一的陆源碎屑沉积体系,全新世中期海侵,气温转暖,形成早期排浦岸礁与大铲堤礁的雏型,全新世晚期堤礁进入成熟阶段,其障壁作用加强,最终形成清水与浑水两种沉积环境和两列沉积体系。  相似文献   

2.
Cold‐water coral ecosystems present common carbonate factories along the Atlantic continental margins, where they can form large reef structures. There is increasing knowledge on their ecology, molecular genetics, environmental controls and threats available. However, information on their carbo‐nate production and accumulation is still very limited, even though this information is essential for their evaluation as carbonate sinks. The aim of this study is to provide high‐resolution reef aggradation and carbonate accumulation rates for Norwegian cold‐water coral reefs from various settings (sunds, inner shelf and shelf margin). Furthermore, it introduces a new approach for the evaluation of the cold‐water coral preservation within cold‐water coral deposits by computed tomography analysis. This approach allows the differentiation of various kinds of cold‐water coral deposits by their macrofossil clast size and orientation signature. The obtained results suggest that preservation of cold‐water coral frameworks in living position is favoured by high reef aggradation rates, while preservation of coral rubble prevails by moderate aggradation rates. A high degree of macrofossil fragmentation indicates condensed intervals or unconformities. The observed aggradation rates with up to 1500 cm kyr?1 exhibit the highest rates from cold‐water coral reefs so far. Reef aggradation within the studied cores was restricted to the Early and Late Holocene. Available datings of Norwegian cold‐water corals support this age pattern for other fjords while, on the shelf, cold‐water coral ages are reported additionally from the early Middle Holocene. The obtained mean carbonate accumulation rates of up to 103 g cm?2 kyr?1 exceed previous estimates of cold‐water coral reefs by a factor of two to three and by almost one order of magnitude to adjacent sedimentary environments (shelf, slope and deep sea). Only fjord basins locally exhibit carbonate accumulation rates in the range of the cold‐water coral reefs. Furthermore, cold‐water coral reef carbonate accumulation rates are in the range of tropical reef carbonate accumulation rates. These results clearly suggest the importance of cold‐water coral reefs as local, maybe regional to global, carbonate sinks.  相似文献   

3.
Holocene reef development was investigated by coring on Britomart Reef, a mid-shelf reef, 23 km long and 8 km wide situated 120 km north of Townsville in the central Great Barrier Reef (GBR). Two holes were drilled, Britomart 1 on a lagoon patch reef, and Britomart 2 on the windward reef crest. The Holocene reef (25·5 m) is the thickest yet recorded in the GBR and overlies an uneven substrate of weathered Pleistocene limestone. Mineralogical and geochemical analyses show that magnesian calcite and aragonite were converted to low Mg-calcite below the Holocene-Pleistocene disconformity. Corals above the interface have 7500–8500 ppm Sr, but 1650–1500 ppm just below it, decreasing to 400–800 ppm downwards. The intermediate Sr values could be due to partial replacement of aragonite by calcite or higher original Sr content in the corals. Three units are recognized in the Holocene: (1) coral boundstone unit, (2) coral framestone unit, and (3) coral rudstone unit. The coral boundstone unit forms the top 5 m of both cores and is algal-bound coral rubble similar to the present reef top. The coral framestone unit is composed of massive head corals Diploastrea heliopora and Porites sp., and is currently forming in patch reefs situated in the lagoon and along the reef front. The coral rudstone unit comprises coral rudstone and floatstone with unabraded, and unbound, coral clasts in muddy matrix. This matrix may be up to 30% sponge chips. Radiocarbon dating indicates the reef grew more rapidly under the lagoon than under the reef front from 7000 to 5000 yr BP. The rate of reef growth matched existing estimates of sea-level rise, but lagged approximately 1000 years (5–10 m) behind it. Most of the reef mass accumulated between 8500 and 5000 yr BP as a mound of debris, perhaps stabilized by seagrasses or algae. Accretion of the reef top in a windward direction between 5000 and 3000 yr BP created the present, steep reef-front profile.  相似文献   

4.
Solid phase P speciation has been determined in sediments from a transect across the central section of the continental shelf and slope of the Great Barrier Reef (GBR) lagoon. This region is characterized by a gradient of riverine aluminosilicate clay and silt nearshore, seawards of which biogenic carbonate sediment predominates. Phosphorus speciation results show large variations along this transect. Organic P and authigenic (apatite) P are the major chemical forms of phosphorus in the central GBR continental shelf sediments. Post-depositional reorganization of P was also observed, converting organic P and iron bound P (Fe-P) to authigenic (apatite) P. Phosphorus burial rate was estimated from measurements of total P concentration and excess 210Pb sediment mass accumulation rates. Burial efficiency varies significantly over the shelf. Inshore areas showed significant P remobilization from sediments to the water column (up to ∼50%). The mid and the outer shelf showed little evidence for remobilization (except for coral reef platform sediments), with more of the sediment P being in the less reactive authigenic apatite phases. An appreciable fraction of this non-labile authigenic apatite phase was identified as fish bone. P sources and sinks over the central part of the GBR shelf were quantified using a mass balance approach. This showed that Coral Sea shelf edge upwelling events are essential to satisfy the large P nutrient demand of the whole GBR lagoon. P inputs due to upwelling events were greater than those contributed by local rivers over an average year.  相似文献   

5.
南沙群岛中央水道及南华水道两侧的珊瑚礁,大部分为环礁,分属开放型、半开放型、准封闭型、封闭型和台礁化型,反映了环礁向灰砂岛演变的不同阶段。每个环礁,从礁前斜坡向礁坪至潟湖,可相应划分出3种沉积相和细分9种沉积带。礁顶是全新世中期以来形成发育的。  相似文献   

6.
南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用   总被引:18,自引:4,他引:18  
在南海北部大陆架陆源碎屑沉积占优势的背景上,在珊瑚岸礁和堡礁周围,广泛发育着礁源碳酸盐和陆源碎屑组成的混合沉积。它们以砂屑、砂砾屑结构为主并含有生物格架结构。混合沉积的形成条件是具备碳酸盐和硅质碎屑两类物源,活跃的水动力,干湿交替的气候,此外,海平面的相对波动,也会造成积极的影响。混合沉积方式有随机式、相变式和随机 - 相变式等三种。混合沉积体常是多种混合方式交替、叠加而成的沉积复合体。礁源与陆源混合沉积相模式是从岸礁 - 堡礁相模式基础上发展而来,按沉积相和沉积结构可以分为五种混合沉积:1)礁基混积岩和礁格架混积岩,2)礁坪砂砾屑混积岩,3)礁后海滩 - 沙堤砾砂屑混合沉积,4)礁后泻湖砂屑混合沉积和5)礁前(翼)浅海砂屑混合沉积。礁源与陆源混合沉积的鉴别标志是珊瑚骨屑和岩屑各占10 - 50 %,其它生物碎屑不计。南海大陆架现代混合沉积是一个典型的实例,可为全面研究现代南海沉积学和比较沉积学提供依据。  相似文献   

7.
The leeward fringing reef at Fantome Island (central Great Barrier Reef province) is a carbonate body which has developed under the influence of terrigenous sedimentation. The reef flat is up to 1000 m wide and is surfaced by mobile sand and gravel, with almost all live corals restricted to the seaward rim. The reef slope has coral columns and heads on the upper part, but below 5 m water depth it is a muddy substrate with scattered mounds of branching corals. Three high recovery cores show the reef is up to 10 m thick and developed over a gently sloping terrace of weathered Pleistocene alluvium. Three post-glacial stratigraphic units are recognised: (1) carbonate reef top unit of coral rudstone and framestone including Sinularia spiculite; (2) lower slope unit of coral floatstone in a terrigenous muddy matrix; and (3) transgressive basal unit of skeletal arkosic sand. The acid insoluble content of matrix and of individual corals increases downwards. Coral growth rates decrease downwards, reflecting slower growth in muddier environments. Radiocarbon dating shows that the reef prograded seaward at almost stable sea level. An average vertical accumulation rate of 6.7 mm yr-1 is indicated. Two age reversals are interpreted as material transported by storms or by erosion in response to a late Holocene sea-level fall. The carbonate reef top unit has developed adjacent to, and is environmentally compatible with a muddy terrigenous, lower slope unit. Terrigenous influx has not changed during the Holocene, and terrigenous content of sediments is controlled by deposition on the reef slope of fine sediment winnowed from the reef flat and concentration of coarse sediment in the transgressive basal sheet.  相似文献   

8.

Elizabeth and Middleton Reefs are atoll-like structures that have developed on top of volcanic edifices and are close to the southern environmental limit of reef development in the southwest Pacific. Reef morphology and vertical accretion rates during the Holocene appear similar to those on other more tropical reefs. Sediment samples were collected from the lagoon of both reefs and around the flanks of Middleton Reef. A distinctly chlorozoan assemblage was observed with coral, molluscs, Halimeda, coralline algae and foraminifers being the dominant sediment constituents. Lagoon sediment samples show little variation within or between reefs, lacking the concentric zonation characteristic of larger atolls. Samples collected from the flanks of Middleton Reef, and subsurface material from vibrocores, differ compositionally from the surficial lagoon sand and were typically more tropical in character. A comparison of the sediment constituents from these reefs with those of samples from within a fringing reef and from the shelf around Lord Howe Island, further south, indicated regional patterns in sediment composition. Halimeda rapidly decreased in abundance with increased latitude, and appeared confined to deeper water, whereas coralline red algae increased significantly. The rapid change in these major sediment contributors is coincident with the general decrease in coral growth rates with latitude. This reinforces the notion that the latitudinal limit of reef development is constrained by factors other than coral growth alone.  相似文献   

9.
A sedimentological and stratigraphic study of Low Isles Reef off northern Queensland, Australia was carried out to improve understanding of factors that have governed Late Holocene carbonate deposition and reef development on the inner to middle shelf of the northern Great Barrier Reef. Low Isles Reef is one of 46 low wooded island-reefs unique to the northern Great Barrier Reef, which are situated in areas that lie in reach of river flood plumes and where inter-reef sediments are dominated by terrigenous mud. Radiocarbon ages from surface and subsurface sediment samples indicate that Low Isles Reef began to form at ca 3000 y BP, several thousand years after the Holocene sea-level stillstand, and reached sea-level soon after (within ~500 years). Maximum reef productivity, marked by the development of mature reef flats that contributed sediment to a central lagoon, was restricted to a narrow window of time, between 3000 and 2000 y BP. This interval corresponds to: (i) a fall in relative sea-level, from ~1 m above present at ca 5500 y BP to the current datum between 3000 and 2000 y BP; and (ii) a regional climate transition from pluvial (wetter) to the more arid conditions of today. The most recent stage of development (ca 2000–0 y BP) is characterised by extremely low rates of carbonate production and a dominance of destructive reef processes, namely storm-driven remobilisation of reef-top sediments and transport of broken coral debris from the reef front and margins to the reef top. Results of the present study enhance existing models of reef development for the Great Barrier Reef that are based on regional variations in reef-surface morphology and highlight the role of climate in controlling the timing and regional distribution of carbonate production in this classic mixed carbonate–siliciclastic environment.  相似文献   

10.
The Belize barrier and atoll reefs represent one of the largest reef structures in the Atlantic Ocean. The southern shelf of Belize is a classic location of a modern mixed carbonate–siliciclastic system. Whereas knowledge of the Holocene deposits in the area is extensive, data on the Pleistocene system are fragmentary. Open questions include: (i) the nature of the reef foundations (carbonate versus siliciclastics); (ii) the ages of the deposits including the initiation of the barrier reef; and (iii) the response of the mixed system to sea‐level fluctuations. The results of a study of borings on the southern Belize shelf are presented here. Six, up to 105 m long borings were made to better understand the history of this important mixed system. Uranium‐series dating in the Pleistocene was not possible because of diagenetic alteration; however, lithostratigraphy, strontium isotopes and calcareous nannofossil biostratigraphy were used to constrain stratigraphic ages. Results support the contention that the Quaternary development in Belize was quite similar to that of other major barrier reefs such as the Florida Reef Tract and, further afield, the Great Barrier and the New Caledonian Barrier Reefs. All of these barrier reefs are mixed carbonate–siliciclastic systems and significant reef growth only began after the onset of high‐amplitude, eccentricity‐controlled sea‐level changes and as late as during the exceptionally long and warm marine isotope stage 11, some 400 ka. In Belize, Early Pleistocene sections at bases of borings include mollusc‐rich wackestones, rare coral packstones and marls, which were deposited under low to moderate energy conditions in a ramp setting before ca 900 ka, during the high sea‐levels of marine isotope stage 25 and possibly earlier (marine isotope stage 31 or 37). The Belize shelf was subaerially exposed for most of the mid‐Pleistocene and was dominated by siliciclastic sedimentation, possibly during marine isotope stages 24 to 12 when highstands were comparatively low. Continuous reefs at the shelf margin were developing during highstands. In the Late Pleistocene, beginning with the long and high highstand of marine isotope stage 11 (some 400 ka), the southern shelf was flooded entirely and carbonates started to dominate once more. Reefs developed on top of siliciclastic deposits on the shelf. A continuous barrier reef came into existence and largely developed on top of carbonates at the shelf margin. During Late Pleistocene lowstands, siliciclastics presumably no longer reached the shelf margin because of the topographic high of the barrier reef platform. The Quaternary Belize example may serve as a model for reconstructing ancient mixed systems in icehouse worlds, however, any extrapolations are limited by the fact that fast‐growing Scleractinian reef‐builders had not yet evolved in the Palaeozoic.  相似文献   

11.
Down‐faulting at the north‐west margins of the Gulf of Aqaba is inferred to have triggered a catastrophic sedimentary event at 2.3 ka that killed the Elat fringing coral reef. Whereas segments of the Holocene reef were perfectly fossilized and preserved beneath a veneer of siliciclastic sediments, other segments were abraded, settled by nomads, and later re‐submerged under 4 m of water. Repeated damage triggered by down‐throwing earthquakes degenerate the fringing reefs of the north‐west end of the gulf. Conversely, on the north‐eastern and southern parts of the gulf, where earthquakes uplift the margins, modern reefs are thriving, attached to uplifted fossil reef terraces. Therefore, coastal subsidence moderates the development of fringing coral reefs during the late Holocene sea‐level stand still.  相似文献   

12.
The delivery, flux and fate of terrigenous sediment entering the Great Barrier Reef lagoon has been a focus of recent studies and represents an ongoing environmental concern. Wave‐induced bed stress is the most significant mechanism of sediment resuspension in the Great Barrier Reef, and field data and mathematical modelling indicates that the combined effects of short‐period wind waves, longer period swell waves, and tidal and wind‐driven currents can often exceed the critical bed stress for resuspension. Suspended‐sediment concentrations at 20 m water depth indicate resuspension seldom occurs on the middle shelf under normal wave conditions. Non‐cyclonic turbidity events are generally confined to the inner shelf. The wave climate in the southern sector of the central Great Barrier Reef lagoon is the most erosive, and resuspension of outer shelf sediments was hindcast for recorded cyclones. Wind‐driven, longshore currents are fundamental to the northward movement of sediment, and the annual northward mass flux from embayments undergoing resuspension in the Burdekin region is estimated to be one order of magnitude larger than the mass of sediment introduced by a moderate flood plume. Strong onshore winds are estimated to generate significant three‐dimensional bottom return currents on approximately 30–70 days per year, forming a potentially significant offshore‐directed sediment flux during high suspended‐sediment concentration events on the inner shelf.  相似文献   

13.
《Sedimentary Geology》2006,183(1-2):31-49
The early Kimmeridgian Torrecilla Reef Complex in the northern Iberian Basin of Spain consists of a fringing reef composed of eight accretionary units. The first four were deposited along a steep margin. They display down-lapping and off-lapping geometries, and are characterised by poor reef-framework development, large volumes of reworked corals and transported sediment, and limited growth of micro-encrusters. In contrast, deposition of the fifth and younger accretionary units occurred on a shallow platform without a pronounced slope where coral reefs grew in a shallow protected environment. The main features of these reefs are an absence of reef-slope facies, a high proportion of preserved framework elements, relatively low volumes of intra-reef sediment, high proportions of terrigenous material, and abundant micro-encrusters and microbialites. These reefs were protected from storm waves by long-shore sand bars, which also protected a very shallow lagoon during the last stage of sedimentation.The early Kimmeridgian was a period of rising global sea level, a trend apparent across other portions of the Iberian Basin. However, geometry and sedimentary evolution of the Torrecilla Reef Complex is consistent with those of off-lapping reefs that develop during sea-level fall. Thus, we conclude that down-stepping geometries and evolution to progressively shallower environments within the Torrecilla Reef Complex occurred as a result of a tectonically forced regression.  相似文献   

14.
珊瑚砂属珊瑚礁碎屑土,是一种特殊的地质体,具有典型的疏松多孔、硬度低、易碎的特点,由于珊瑚礁仅分布在热带海域,往往位于远离大陆的礁岛,当前对珊瑚礁岩土的勘察研究较少,相关规范也尚未涉及。以实际工程为对象,对东帝汶某珊瑚砂场地的工程性质进行了一些探讨,从标准贯人试验和钻孔剪切波速试验等原位试验结果进行分析,借鉴了目前石英砂工程性质的评价方法作为对珊瑚砂工程性质判断的参考,对珊瑚砂的强度特性和地震液化特性进行了讨论。相对石英砂的一般性质而言,珊瑚砂的标贯击数较低而相应的剪切波速相对较大,珊瑚砂在地震作用下液化的可能性较大。  相似文献   

15.
The Lower Cretaceous Mural Limestone marks the maximum marine incursion into southeast Arizona during Aptian-Albian time and records the middle Cretaceous transition from coral-dominated to rudist-bivalve dominated reefs. Upper Mural Limestone facies are most often dominated by corals. However, rudists form significant frameworks at some localities, one of which is described in this paper. The paleoenvironmental distribution of three potential reef-builders (corals, rudists, and ‘oysters’) were studied at this patch reef locality. Corals built the framework of the inner reef core. The rudist Petalodontia initially gained a foothold in sheltered areas among corals and subsequently built a framework in the outer reef core. Caprinid rudists formed mounds in the outer reef to back reef areas. The rudists Toucasia and Monopleura and the oyster-like bivalve Chondrodonta formed beds or were scattered in the reef-flank and shelf lagoon sediments and did not contribute to the reef framework.Upper Mural Limestone reefs are important examples of the coexistence of corals and rudists during this middle Cretaceous faunal transition period. This study supports the idea that rudist-bivalves initially colonized protected back-reef areas early in the Cretaceous and only later in the Cretaceous did rudists dominate reef frameworks.  相似文献   

16.
S.J. MAZZULLO 《Sedimentology》2006,53(5):1015-1047
Lithostratigraphy, depositional facies architecture, and diagenesis of upper Pliocene to Holocene carbonates in northern Belize are evaluated based on a ca 290 m, continuous section of samples from a well drilled on Ambergris Caye that can be linked directly to outcrops of Pleistocene limestone, and of overlying Holocene sediments. Upper Pliocene outer‐ramp deposits are overlain unconformably by Pleistocene and Holocene reef‐rimmed platforms devoid of lowstand siliciclastics. Tectonism controlled the location of the oldest Pleistocene platform margin and coralgal barrier reef, and periodically affected deposition in the Holocene. A shallow, flat‐topped, mostly aggradational platform was maintained in the Holocene by alternating periods of highstand barrier‐reef growth and lowstand karstification, differential subsidence, and the low magnitude of accommodation space increases during highstands. Facies in Pleistocene rocks to the lee of the barrier reef include: (i) outer‐shelf coralgal sands with scattered coral patch reefs; (ii) a shoal–water transition zone comprising nearshore skeletal and oolitic sands amidst scattered islands and tidal flats; and (iii) micritic inner‐shelf deposits. Four glacio‐eustatically forced sequences are recognized in the Pleistocene section, and component subtidal cycles probably include forced cycles and autocycles. Excluding oolites, Holocene facies are similar to those in the Pleistocene and include mud‐mounds, foraminiferal sand shoals in the inner shelf, and within the interiors of Ambergris and surrounding cayes, mangrove swamps, shallow lagoons, and tidal and sea‐marginal flats. Meteoric diagenesis of Pliocene and Pleistocene rocks is indicated by variable degrees of mineralogic stabilization, generally depleted whole‐rock δ18O and δ13C values, and meniscus and whisker‐crystal cements. Differences in the mineralogy and geochemistry of the Pliocene and Pleistocene rocks are attributed to variable extent of meteoric alteration. Dolomitization in the Pliocene carbonates may have begun syndepositionally and continued into the marine shallow‐burial environment. Positive dolomite δ18O and δ13C values suggest precipitation from circulating, near‐normal marine fluids that probably were modified somewhat by methanogenesis. Sedimentologic and diagenetic attributes of the Pliocene–Pleistocene rocks in the study area are similar to those in the Bahamas with which they share a common history of sea‐level fluctuations and climate change.  相似文献   

17.

The Great Barrier Reef represents the largest modern example of a mixed siliciclastic‐carbonate system. The Burdekin River is the largest source of terrigenous sediment to the lagoon and is therefore an ideal location to investigate regional patterns of mixed sedimentation. Sediments become coarser grained and more poorly sorted away from the protection of eastern headlands, with mud accumulation focused in localised ‘hot spots‘ in the eastern portion of embayments protected from southeast trade winds. The middle shelf has a variable facies distribution but is dominated by coarse carbonate sand. North of Bowling Green Bay, modern coarse carbonate sand and relict quartzose sand occur. Shore‐normal compositional changes show Ca‐enrichment and Al‐dilution seawards towards the reef, and shore‐parallel trends show Al‐dilution westwards (across bays) along a Ca‐depleted mixing line. Intermediate siliciclastic‐carbonate sediment compositions occur on the middle shelf due to the abundance of relict terrigenous sand, a pattern that is less developed on the narrow northern Great Barrier Reef shelf. Rates of sediment deposition from seismic evidence and radiochemical tracers suggest that despite the magnitude of riverine input, 80–90% of the Burdekin‐derived sediment is effectively captured in Bowling Green Bay. Over millennial time‐scales, stratigraphic controls suggest that sediment is being preferentially accreted back to the coast.  相似文献   

18.
Recently, questions about the health of the coral reefs of the Florida Keys have been raised. Estimates of net recruitment and mortality of reef corals on Carysfort Reef, Key Largo, Florida, suggest that these populations declined over the 14 month interval studied. The greatest rate of change on Carysfort Reef, the most well developed reef in the northern Keys, occurred in the zone of richest coverage by corals. Water pollution associated with the tremendous increase in the human population of South Florida in the last twenty years may be contributing to the reef's decline.  相似文献   

19.
Post-glacial seismic stratigraphy, central Great Barrier Reef, Australia   总被引:1,自引:0,他引:1  
A regional programme of continuous seismic (boomer) profiling in the central Great Barrier Reef Province has identified a widespread shallow seismic discontinuity (reflector A) which is interpreted as the pre-Holocene surface. Nine seismic facies units are distinguished primarily on the basis of the seismic records, but also with the aid of additional criteria such as location and surface sediment types. Two units underlie reflector A and are pre-Holocene. These units are interpreted as: (a) Permo-Carboniferous bedrock, and (b) Pleistocene/? Tertiary sediments, consisting of both shelf-wide terrigenous units, and carbonate mounds and platforms under present reefs. Seven units are post-glacial and overlie reflector A. These units are interpreted as: (c) fluvial/estuarine channel fill, (d) relict delta-front deposits, (e) relict transgressive veneer, (f) coastal coarse and (g) fine deposits, (h) modern reef and (i) reef talus. In general post-glacial sediment cover is very thin and in many places on the mid-shelf the pre-Holocene units crop out. Substantial post-glacial accumulations are limited to protected coastal embayments and to offshore reef masses.  相似文献   

20.
西沙海域西琛1井生物礁主要是由红藻门壳状珊瑚藻、有节珊瑚藻和绿藻门仙掌藻等钙藻组成的植物礁,其次为珊瑚礁。礁相类型主要有礁核相和礁后泻湖相。岩石矿物成分单一,以碳酸盐矿物为主,包括低镁方解石和铁白云石;结构组分有生物骨架、粒屑、泥晶和亮晶;结构类型有生物格架结构、生物障积结构、生物节片结构、生物捆扎结构和生物粘结结构。岩石类型包括骨架石灰岩/白云岩、粘结石灰岩/白云岩、粒屑石灰岩/白云岩。储集空间类型有粒间孔、生物体腔孔和藻架孔等原生孔隙和铸模孔、裂缝、颗粒内溶蚀孔、藻类溶孔和扩大的粒间溶孔等次生孔隙。孔隙组合类型以粒间孔+溶孔+晶间孔最为发育,储集性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号