首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract In the first extensive, systematic study of inclusions in zircons from ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic rocks of the Kokchetav Massif of Kazakhstan (separated from 232 rock samples from all representative lithologies and geographic regions), we identified graphite, quartz, garnet, phengite, phlogopite, rutile, albite, K-feldspar, amphibole, zoisite, kyanite, calcite, dolomite, apatite, monazite, omphacite and jadeite, as well as the diagnostic UHP metamorphic minerals (i.e. microdiamond and coesite) by laser Raman spectroscopy. In some instances, coesite + quartz and diamond + graphite occur together in a single rock sample, and inclusion aggregates also comprise polycrystalline diamond crystals overgrowing graphite. Secondary electron microscope and cathodoluminescence studies reveal that many zircons display distinct zonation textures, which comprise core and wide mantle, each with distinctive inclusion microassemblages. Pre-UHP metamorphic minerals such as graphite, quartz, phengite and apatite are common in the core, whereas diamond, coesite, garnet and jadeite occupy the mantle. The inclusions in core are irrelevant to the UHP metamorphism. The zircon core is of detrital or relatively low-grade metamorphic origin, whereas the mantle is of HP to UHP metamorphic origin. The zonal arrangement of inclusions and the presence of coesite and diamond without back-reaction imply that aqueous fluids were low to absent within the zircons during both prograde and retrograde metamorphism, and that the zircon preserves a prograde pressure–temperature record of the Kokchetav metamorphism which, elsewhere, has been more or less obliterated in the host rock.  相似文献   

2.
An introduction to ultrahigh-pressure metamorphism   总被引:6,自引:0,他引:6  
Abstract Ultrahigh-pressure (UHP) metamorphism refers to mineralogical and structural readjustment of supracrustal protoliths and associated mafic-ultramafic rocks at mantle pressures greater than ∼ 25 kbar (80-90 km). Typical products include metapelite, quartzite, marble, granulite, eclogite, paragneiss and orthogneiss; minor mafic and ultramafic rocks occur as eclogitic-ultramafic layers or blocks of various dimensions within the supracrustal rocks. For appropriate bulk compositions, metamorphism at great depths produces coesite, microdiamond and other characteristic UHP minerals with unusual compositions. Thus far, at least seven coesite-bearing eclogitic terranes and three diamond-bearing UHP regions have been documented. All lie within major continental collision belts in Eurasia, have similar supracrustal protoliths and metamorphic assemblages, occur in long, discontinuous belts that may extend several hundred kilometers or more, and typically are associated with contemporaneous high-P blueschist belts. This paper defines the P-T regimes of UHP metamorphism and describes mineralogical, petrological and tectonic characteristics for a few representative UHP terranes including the western gneiss region of Norway, the Dora Maira massif of the western Alps, the Dabie Mountains and the Su-Lu region of east-central China, and the Kokchetav massif of the former USSR. Prograde P-T paths for coesite-bearing eclogites require abnormally low geothermal gradients (approximately 7°C/km) that can be accomplished only by subduction of cold, oceanic crust-capped lithosphere ± pelagic sediments or an old, cold continent. The preservation of coesite inclusions in garnet, zircon, omphacite, kyanite and epidote, and microdiamond inclusions in garnet and zircon during exhumation of an UHP terrane requires either an extraordinarily fast rate of denudation (up to 10 cm/year) or continuous refrigeration in an extensional regime (retreating subduction zone).  相似文献   

3.
Abstract The Kokchetav Massif of Kazakhstan includes high to ultrahigh-pressure (HP–UHP) metamorphic rocks (some of which were recrystallized at depths in excess of 150 km), juxtaposed against much lower pressure metamorphic components. We investigated the relationship between the HP–UHP metamorphic unit and the low pressure (LP) unit (Daulet Suite) in the Sulu–Tjube area, where the metamorphic rocks have previously been interpreted as constituting a megamelange with subvertical structural attitudes. Analyses of fold structures suggest that the HP–UHP metamorphic unit overlies the LP unit across a west-dipping subhorizontal boundary. In addition, kinematic indicators display top-to-the-north senses of shear along the tectonic contact between the two units, indicating that the HP–UHP unit has been extruded northward onto the LP unit. Following the juxtaposition of the two units, upright folds developed in both units, and these are associated with the previously reported steeply dipping metamorphic foliations. These data have important implications for the mode of exhumation of the UHP rocks from upper mantle to shallow crustal depths.  相似文献   

4.
Abstract In northern Kazakhstan the WNW striking Kokchetav megamélange includes different crustal sequences with high‐pressure/ultrahigh‐pressure (HP/UHP) remnants of their 540–520 Ma subduction metamorphism. Two domains separated by the north‐east trending Chaglinka fault are distinguished. The western domain exhibits NE–SW structures within a single Kumdy–Kol megaunit of diamond‐bearing UHP metasediments and high‐temperature (HT) eclogites. The eastern domain consists of the composite Kulet megaunit with the Kulet UHP unit (coesite‐bearing metasediments, whiteschists and eclogites), the Enbek–Berlyk medium‐pressure (MP) unit (kyanite‐bearing, high‐alumina rocks with interleaved coronitic metagabbro), and ortho‐ and paragneisses with eclogites and amphibolites included. All eclogites in the eastern domain are of the relatively low temperature (LT) type. Sillimanite is common and appears after kyanite in the sheared MP unit. A regional and moderately ESE plunging linear fabric coincides with the fold‐axis of the foliation poles from the eastern domain. Whether this also reflects a regional top to the WNW transport, as inferred from the dextral strike‐slip on steeply to SSW dipping foliation, needs further study. Top to the WNW shear is shown by weakly inclined low pressure (LP) cordierite rocks that flank the eastern domain in the south. Some new 39Ar/40Ar mica cooling ages (519, 521 Ma) from the Kulet UHP micaschists reflect the same early stage evolutionary event as was previously shown for the Kumdy–Kol UHP rocks (515, 517 Ma) in the west. Similar 39Ar/40Ar ages (500, 517 Ma) are recorded by micas and amphibole that outline a top to NNW shear fabric in the non‐subducted Proterozoic basement, north of the megamélange. A 447 Ma overprint of the MP sequences is considered to reflect the strike‐slip deformation with sillimanite and the reworking of an early kyanite‐bearing tectonite. Biotites from the LP cordierite rocks yielded approximately 400 Ma 39Ar/40Ar ages. In case they reflect the WNW shear deformation, the latter is considered to be associated with a regional granite magmatism (420–460 Ma) extending south of the eastern domain. In their present different structural domains the Kulet and Kumdy–Kol UHP units display a similar early stage event. Subsequent LP deformation, which is likely to be associated with regional granite magmatism (420–460 Ma), is assumed to have obliterated any common or uniform early exhumation structure for the whole megamélange. The north‐east structured Kumdy–Kol domain is assumed to have preserved the most information about the early stage exhumation. This domain is at an angle to the regional WNW strike of the megamélange.  相似文献   

5.
J. Liu  J. G. Liou 《Island Arc》1995,4(4):334-346
Abstract Kyanite-anthophyllite schist preserves the first record of high pressure in the amphibolite-facies unit of the SW Dabie Mountains, whereas ultrahigh- and high-pressure (UHP and HP) metamorphism has been well documented by the occurrence of coesite, diamond and mafic eclogite in the SE Dabie Mountains. Textural evidence indicates that minerals of the kyanite-anthophyllite schist formed mainly in two stages: (i) garnet + kyanite + antho-phyllite + rutile formed at pressure in excess of 1.2 GPa at T < 650°C; (ii) cordierite±staurolite formed by reaction of anthophyllite + kyanite at P < 0.5 GPa, T∼530°C. Plagioclase and ilmenite replaced garnet and rutile respectively during decompression. In a still later stage, secondary biotite recrystallized, accompanied by sillimanite replacing kyanite, and spinel replacing staurolite. The P-T information suggests that the amphibolite unit in the SW Dabie Mountains is part of the Triassic collision belt between the Sino-Korean and Yangtze cratons. The P-T paths of the UHP eclogite in the eastern Dabie Mountains and the HP kyanite-anthophyllite schist in the SW Dabie Mountains show similar decompression and equivalent late stage Barrovian-style metamorphism. Emplacement of voluminous granitoid at middle crustal levels between 134–118 Ma contributed to the development of the Barrovian-type metamorphism in the Dabie Mountains.  相似文献   

6.
The internal structure and growth history of diamonds have been investigated by the study of carbon isotopes and the abundance, isotope composition and aggregation state of nitrogen. Polished plates of zoned diamonds (“coated stones”) were laser sectioned for infrared mapping and isotope profiling. Nine small cubic and three small octahedral diamonds from Zaïre and two coated stones and five small cubic diamonds specifically from the Mbuji Mayi area of that country were also investigated. The isotope composition and infrared characteristics of the diamonds of cubic habit, including coats, were found to be indistinguishable with δ13C in the range −5.9 to −7.5‰ and all the nitrogen being present as the paired structure (IaA) with a δ15N of between −3.1 and −8.0‰. The diamonds of octahedral habit, including the cores of the coated stones, were more variable: δ13C varied from −4.9 to −9.8‰. Infrared spectra of the octahedral diamond exhibited either strong IaA characteristics or a combination of IaA and IaB. Platelets were present in most cases. δ15N values from octahedral diamonds varied from −5.8 to +13.4‰. The data suggest that the octahedral diamonds represent a variety of growth events separated in time and/or space and that the diamonds resided in the lithosphere for a period sufficient for thermal maturation. In the case of the coated stones the octahedral diamonds were later involved in an event which added a component from a single relatively homogeneous reservoir; cubic habit diamonds were formed at the same time. This latter event is believed to be related to the kimberlite eruption. Comparison of the data with carbon isotope analyses of cubic diamond from other sources suggests that this reservoir could be widespread.  相似文献   

7.
An historical introduction to the geotherm and its significance for the existence of a diamond window at the base of the peridotite lithosphere is followed by a brief survey of types of mantle zenoliths (low T, high T and metasomatized peridotites, megacrysts or discrete nodules, eclogites and less common varieties). The similarities of eclogite xenoliths to the subducted eclogites with graphitized diamonds in the peridotite massif of Beni Bousera, northern Morocco, are reviewed. Diamond-bearing peridotite (Archaean harzburgite and lherzolite) and eclogite xenoliths are rare, having suffered excessive disaggregation. They do not necessarily relate proportionately to the types of diamonds in the host kimberlite/lamproite.Batches of single mineral species from disaggregated diamondiferous xenoliths, particularly garnets, form a realistic approach to diamond exploration. Nickel thermometry applied to Cr pyropes, developed by Griffin et al. (1989) Contr. Miner. Petrol. 103, 199–203, and barometry dependent upon Cr content in notional coexisting spinels, provide a realistic appreciation of the extent of the diamond window. Sodium and K pressure “indicators” in eclogitic garnets and clinopyroxenes are reviewed, but estimates are affected by mantle processes (metasomatism) and amounts of coexisting P and Ti.Metasomatic processes in the basal lithosphere are sourced in the underlying asthenospheric (megacryst) magmas. Depending on the degree and type of interaction they can result in the destruction of ancient diamonds or the growth of new peridotitic diamonds. Partial destruction or replacement of mineral indicators may also result and Cr garnets acquire distinctive quantifiable trace element signatures. High T minerals encapsulated in diamond are either relict from former ambient high T conditions or the result of localized thermal highs emanating from asthenospheric magmas (or plume/diapir).It is concluded that the fullest significance of the geochemistry (sensuo lato) of the diamondiferous debris erupted by kimberlites and lamproites, can only be made by reference to complementary geophysical, structural and isotopic studies of the surrounding cratonic country rocks. Thus, tectonothermal events which punctuate the varied evolutionary histories of cratons—plume migration, rifting, subduction/overthrusting, delamination, cratonization, flood basalt generation, regional metamorphism and metasomatism, etc.—can be manifested in the deep lithosphere environment, and cannot be divorced from questions of diamond formation and survival.  相似文献   

8.
Abstract Dolomite marble from the Kumdy–Kol area of the Kokchetav Massif contains abundant microdiamond, mainly in garnet and a few in diopside. The mineral assemblage at peak metamorphic condition consists of dolomite + diopside + garnet (+ aragonite) ± diamond. Inclusions of very low MgCO3 calcite and almost pure calcite occur in diopside and are interpreted as aragonite and/or aragonite + dolomite. Single-phase Mg–calcite in diopside with a very high MgCO3 component (up to 21.7 mol%) was also found in diamond-free dolomitic marble, and is interpreted as a retrograde product from aragonite + dolomite to Mg–calcite. The dolomite stability constrains the maximum pressure (P) at < 7 GPa using previous experimental data, whereas the occurrence of diamond yields the minimum peak pressure–temperature (P–T) condition at 4.2 GPa and 980 °C at X co 2 = 0.1. The highest MgCO3 in Mg–calcite constrains the minimum P–T condition higher than 2.5 GPa and 800 °C for the exhumation stage. As these marbles were subjected to nearly identical P–T metamorphic conditions, the appearance of diamond in some carbonate rocks was explained by high X co 2. A low X co 2 condition refers to high oxidized conditions and diamond (and/or graphite) becomes unstable. Difference in X co 2 for marble from the same area suggests local heterogeneity of fluid compositions during ultrahigh-pressure metamorphism.  相似文献   

9.
The concentration and isotopic composition of nitrogen, measured in large diamonds (gram size) from the Mbuji Mayi kimberlite district (Zaïre) show a large range of variation (100<N<2100 ppm, ?11.2<δ15N< +6.0). The15N-depleted nitrogen is associated with the higher nitrogen concentrations. The large diamonds are individually rather homogeneous in13C (range ofδ13C < 0.9‰) while variations occur within small octahedral diamonds from the same district (range up to 5.8‰). The total range ofδ13C variation is about the same for the large diamonds (?10.5 <δ13C < ?5.5), the small octahedral diamonds (?10 <δ13C < ?4.6), and the carbonates from local kimberlites (?11.8 < δ13C < ?5.5). The diamond carbon isotopic data could indicate a complex story of crystallization within a deep-seated system fractionating its carbon isotopes.The nitrogen results indicate that nitrogen in diamonds is, on the average, markedly depleted in15N (weighted average ?5.15‰) relative to atmosphere, sediments and upper mantle.  相似文献   

10.
The timing of ultra-high pressure (UHP) metamorphism has been difficult to determine because of a lack of age constraints on crucial events, especially those occurring on the prograde path. New Sensitive High-Resolution Ion Microprobe (SHRIMP) U–Pb age and rare-earth element (REE) data of zircon are presented for UHP metamorphic rocks (eclogite, garnet peridotite, garnet pyroxenite, jadeite quartzite and garnet gneiss) along the Dabie–Sulu UHP complex of China. With multiphase metamorphic textures and index mineral inclusions within zircon, the Dabie data define three episodes of eclogite-facies metamorphism, best estimated at 242.1 ± 0.4 Ma, 227.2 ± 0.8 Ma and 219.8 ± 0.8 Ma. Eclogite-facies zircons of the Sulu UHP complex grew during two major episodes at 242.7 ± 1.2 and 227.5 ± 1.3 Ma, which are indistinguishable from corresponding events in the Dabie UHP complex. A pre-eclogite metamorphic phase at 244.0 ± 2.6 Ma was obtained from two Sulu zircon samples which contain low pressure–temperature (plagioclase, stable below the quartz/Ab transformation) and hydrous (e.g., amphibole, stable below  2.5 Gpa) mineral inclusions. In terms of Fe–Mg exchange of trapped garnet–clinopyroxene pairs within zircon domains, we are able to determine the Pressure–Temperature (PT) conditions for a specific episode of metamorphic zircon growth. We suggest that mineral phase transformations and associated dehydration led to episodic eclogite-facies zircon growth during UHP metamorphism ( 2.7 Gpa) began at 242.2 ± 0.4 Ma (n = 74, pooling the Dabie–Sulu data), followed by peak UHP metamorphism (>  4 Gpa) at 227.3 ± 0.7 Ma (n = 72), before exhumation (<  220 Ma) to quartz stability (~ 1.8 Gpa). The Dabie–Sulu UHP metamorphism lasted for about 15 Ma, equivalent to a minimum subduction rate of 6 mm/year for the descending continental crust.  相似文献   

11.
Two unusual diamonds were studied from kimberlites from China, which contain both ultramafic and eclogitic mineral inclusions in the same diamond hosts. Diamond L32 contains seven Fe-rich garnets, four omphacites and one olivine inclusion. Four olivine, one sanidine and one coesite were recovered from diamond S32. Both garnet and omphacite inclusions have similar compositions as those from other localities of the world, and show basaltic bulk composition. All the garnet and omphacite inclusions in diamond L32 have positive Eu anomalies (Eu/Eu*1.64 1.79). These observations support the proposal that mantle eclogite is the metamorphic product of subducted ancient oceanic crust. The Mg/(Mg + Fe) ratio of the olivine inclusions from the two diamonds (91-92) are evidently lower than the normal olivine inclusions in diamonds from the same kimberlite pipe (92-95). The following model is proposed for the formation of diamonds with “mixed” mineral inclusions. Ascending diamond-bearing eclogite (recycled oceanic crust) entrained in mantle plumes may experience extensive partial melting, whereas the ambient peridotite matrix remains subsolidus in the diamond stable field. This provides a mechanism for the transport of diamond from its original eclogitic host to an ultramafic one. Subsequent re-growth of diamond in the new environment makes it possible to capture mineral inclusions of different lithological suites. Partial melts of basaltic sources may interact with the surrounding peridotite, resulting in the relatively lower Mg/(Mg + Fe) ratios of the coexisting olivine inclusions from the studied diamonds. Diamonds with “mixed” mineral inclusions demonstrate that plume activity also occurred in the Archean cratons.  相似文献   

12.
Abstract The Kokchetav Massif of northern Kazakhstan is unique because of the abundant occurrence of microdiamond inclusions in garnet, zircon and clinopyroxene of metasediments. In order to determine precise pressure–temperature (P–T) conditions, we have systematically investigated mineral inclusions and the compositions of major silicates in Ti–clinohumite–garnet peridotite and diamond-grade eclogite from Kumdy–Kol. It was found that garnet peridotites from Kumdy–Kol contain assemblages of garnet, olivine, Ti–clinohumite and ilmenite. The garnet contains inclusions that are indicative of both ultrahigh pressure (UHP) and retrograde conditions. Inclusions of hydrous phases such as chlorite, amphibole and zoisite were formed at the post-UHP stage. The study also found that eclogite from Kumdy–Kol contains albite–augite symplectites after omphacitic pyroxene. The core of pyroxene (sodic augite) contains high K2O (up to 1wt%; average 0.24wt%). Phengite is included in the core. Applying the K2O-in-augite geobarometry, which is based on recent experiments, and the garnet–clinopyroxene (Grt–Cpx) geothermometer for peak metamorphism, the eclogites yield P–T estimates of > 6 GPa and > 1000 °C, and the diamond-grade eclogites yield lower temperature estimates at 900–1000 °C and 5 GPa.  相似文献   

13.
Surface dissolution features on diamonds and Fourier Transform Infra Red spectroscopy (FTIR) of phenocrystal and xenocrystal olivines from kimberlites contain a record of magmatic fluid in kimberlite magmas. We investigated composition and behavior of kimberlitic fluid and the effect of volatiles on the eruption style and geology of kimberlites using microdiamonds and olivine concentrates from six kimberlite pipes with different lithologies and the character of diamond resorption (Ekati Diamond Mine, Northwest Territories, Canada). The study showed a clear correlation between the resorption style of diamond population of the kimberlites and the type of infrared (IR) spectra of their olivines. Four kimberlites have high quality diamonds with smooth regular surface features and high H2O content of the olivines indicating the presence of H2O-rich fluid during the emplacement. Fast ascent rates of fluid-rich magma can explain explosive eruption and filling the pipes with volcaniclastic kimberlite facies. Conversely, Grizzly and Leslie kimberlites have diamonds with complex sharp features diminishing diamond quality and indicating loss of the fluid. The slower ascent rates and less explosive eruption of the fluid-free magmas produced kimberlite pipes filled with magmatic facies kimberlite. Distinctive peaks in olivine IR spectra at 3356 and 3327 cm? 1 were found to correlate with the presence of hydrous magmatic fluid. Character of diamond morphology suggests that during the whole ascent of all six kimberlites, the magmatic fluid when present had a high H2O:CO2 ratio.  相似文献   

14.
Raman micro-spectroscopy was applied on carbon inclusions in garnet porphyroblasts from kyanite–biotite–garnet schists of the Rhodope Metamorphic Province (RMP), NE Greece. Diamond and cuboids of poorly to highly ordered graphite were identified either as single phase inclusions or as polyphase inclusions along with CO2 and/or carbonates (calcite/magnesian calcite). Questionable Raman bands that may be assigned to other C-phases (?nanodiamond/?lonsdaleite/?a different C-polymorph) have been observed. The presence of diamond confirms beyond any doubt the ultrahigh-pressure (UHP) metamorphism reported by Mposkos and Kostopoulos [1] [E. Mposkos, D. Kostopoulos, Diamond, former coesite and supersilisic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established, Earth Planet. Sci. Lett. 192 (2001) 497–506] in the RMP. Cuboid graphite showing variable degree of disordering most probably formed after diamond. The possible involvement of CO2 and or C–O–H fluids in the formation of diamond is discussed.  相似文献   

15.
In an attempt to constrain the origin of polycrystalline diamond, combined analyses of rare gases and carbon and nitrogen isotopes were performed on six such diamonds from Orapa (Botswana). Helium shows radiogenic isotopic ratios of R/Ra = 0.14–1.29, while the neon ratios (21Ne/22Ne of up to 0.0534) reflect a component from mantle, nucleogenic and atmospheric sources. 40Ar/36Ar ratios of between 477 and 6056 are consistent with this interpretation. The (129Xe/130Xe) isotopic ratios range between 6.54 and 6.91 and the lower values indicate an atmospheric component. The He, Ne, Ar and Xe isotopic compositions and the Xe isotopic pattern are clear evidence for a mantle component rather than a crustal one in the source of the polycrystalline diamonds from Orapa. The δ13C and δ15N isotopic values of − 1.04 to − 9.79‰ and + 4.5 to + 15.5‰ respectively, lie within the range of values obtained from the monocrystalline diamonds at that mine. Additionally, this work reveals that polycrystalline diamonds may not be the most appropriate samples to study if the aim is to consider the compositional evolution of rare gases through time. Our data shows that after crystallization, the polycrystalline diamonds undergo both gas loss (that is more significant for the lighter rare gases such as He and Ne) and secondary processes (such as radiogenic, nucleogenic and fissiogenic, as well as atmospheric contamination). Finally, if polycrystalline diamonds sampled an old mantle (1–3.2 Ga), the determined Xe isotopic signatures, which are similar to present MORB mantle – no fissiogenic Xe from fission of 238U being detectable – imply either that Xe isotopic ratios have not evolved within the convective mantle since diamond crystallization, or that these diamonds are actually much younger.  相似文献   

16.
Abstract The central part of the Kokchetav Massif is exposed in the Chaglinka–Kulet area, northern Kazakhstan. The ultrahigh-pressure–high-pressure (UHP–HP) metamorphic belt in this area is composed of four subhorizontal lithological units (Unit I–IV) metamorphosed under different pressure–temperature (P–T) conditions. The coesite- and diamond-bearing Unit II, which consists mainly of whiteschist and eclogite blocks, is tectonically sandwiched between the amphibolite-dominant Unit I on the bottom and the orthogneiss-dominant Unit III on the top. Total combined thickness of these units is less than 2 km. The rocks of the UHP–HP metamorphic belt are affected by at least four deformational events post-dating peak metamorphism: (i) The earliest penetrative deformation is characterized by non-coaxial ductile flow in a NW–SE direction. The shear sense indicators in oriented samples from Unit I provide consistent top-to-the-northwest motions and those from Unit III provide top-to-the-southeast, south or south-west motions; (ii) Upright folds with subhorizontal enveloping surface refold earlier foliations including shear-indicators throughout the metamorphic belt; (iii) The third stage of deformation is denoted by large-scale bending around a subvertical axis; and (iv) Late localized fault (or shear) zones cut all earlier structures. The fault zones have subvertical shear planes and their displacements are essentially strike-slip in manner. The subhorizontal structure and opposite shear directions between Unit I and Unit III during the earlier deformation stage suggest north-westward extrusion of UHP Unit II.  相似文献   

17.
Cong  Bolin  Wang  Qingchen  Zhai  Mingguo  Zhang  Ruyuan  Zhao  Zhongyan Ye  Kai 《Island Arc》1994,3(3):135-150
Abstract Based on petrological, structural, geological and geochronological research, the authors summarize the progress of ultra-high pressure (UHP) metamorphic rock study since 1989 by Chinese geoscientists and foreign geoscientists in the Dabie-Su-Lu region. The authors introduce and discuss a two-stage exhumation process for the UHP metamorphic rocks that have various lithologies; eclogite, ultramafics, jadeitic quartzite, gneiss, schist and marble. The metamorphic history of UHP metamorphic rocks is divided into three stages, that is, the pre-eclogite stage, coesite eclogite stage, and retrograde stage. Prior to UHP metamorphism, the ultramafics had a high temperature environment assemblage of mantle and others had blueschist facies assemblages. The granulite facies assemblages, which have recorded a temperature increase event with decompression, have developed locally in the Weihai basaltic rocks. Isotopic ages show a long range from > 700 Ma to 200 Ma. The diversity in protoliths of UHP metamorphic rocks may be related to the variation of isotopic ages older than 400 Ma. The Sm-Nd dating of ~ 220 Ma could reflect the initial exhumation stage after the peak UHP metamorphism in relation to the collision between the Sino-Korean and Yangtze blocks and subsequent events. Petrological and structural evidence imply a two-stage exhumation process. During the initial exhumation, the UHP metamorphic rocks were sheared and squeezed up in a high P/T regime. In the second exhumation stage the UHP metamorphic rocks were uplifted and eventually exposed with middle crustal rocks.  相似文献   

18.
Introduction to geodynamics for high- and ultrahigh-pressure metamorphism   总被引:1,自引:0,他引:1  
Since the first workshop on ultrahigh-pressure (UHP) metamorphism at Stanford in 1994 and the special issue of The Island Arc `Ultrahigh-Pressure Metamorphism and Tectonics' published in December 1995, many symposia and special sessions specifically with regard to the UHP metamorphic terrane have been held. While we are still wondering how exhumation of UHP rocks from mantle depths to the surface takes place, the finding of possible records from the mantle transition zone at 300–400 km depths is astonishing. The study of the UHP regime has expanded to include input from mineral physics, experimental geochemistry and kinetics in addition to the petrochemical and tectonic study of a variety of HP–UHP rocks. It was with this theme that the second workshop for the task group III-6 `Ultrahigh-Pressure Metamorphism and Geodynamics in Collision-type Orogenic Belts' of the International Lithosphere Program was held during the International Geological Congress in Beijing, 1996. The Symposium 8–9 `Dynamic Metamorphic Rocks and High- and Ultrahigh-Pressure Metamorphism' (Cong Bolin & J. G. Liou conveners) had more than 25 presentations in two oral sessions and 70 papers in one poster session. This second special issue of The Island Arc includes nine papers from this symposium and a few related contributions to the geodynamics of HP–UHP metamorphism and tectonics. It is our hope that The Island Arc will continue to publish a special issue on this increasingly recognized subject that is essential to our understanding of continental collision, mantle dynamics and geochemical + fluid cycles.  相似文献   

19.
The distribution of diamonds within individual kimberlite pipes is poorly documented in the public domain due to the proprietary nature of the data. The study of the diamond distribution within two pipes, Fox and Koala, from the EKATI Diamond Mine, NWT, Canada, in conjunction with detailed facies models has shown several distinct relationships of deposit type and grade distribution. In both pipes, the lithological facies represent grade units which can be distinguished from each other in terms of relative size and abundance of diamonds. A positive relationship between olivine grain size and abundance with diamond size and abundance is observed, indicating that sorting of fragmental kimberlites influences diamond distribution. Though surface geological processes do not control the diamond potential of the erupting magma, they can be responsible for concentrating diamonds into economically significant proportions. A good understanding of the eruption, transport and depositional processes responsible for the individual lithological units and the diamond distribution within them is important for successful resource estimation. This may lead to recognition of areas suitable for selective mining, making a marginal deposit economic.  相似文献   

20.
Re–Os isotope compositions of syngenetic sulphide inclusions in both eclogite suite (E-type) and peridotite suite (P-type) parageneses in diamonds from the Koffiefontein mine, South Africa have been analysed using a technique capable of analysing single inclusion grains, or, in some cases multiple inclusions from the same diamonds. Sulphide inclusion Ni contents broadly correlate with Os abundances in that low-Ni (6.8–8.7% Ni), E-type sulphides have 4.7 to 189 ppb Os whereas the two high-Ni (25%), P-type sulphides have 5986 and 6097 ppb Os. Two P-type sulphides from the same diamond define the first mineral isochron obtained for a single diamond which has an age of 69±30 Ma with chondritic initial 187Os/188Os. This indicates that the sulphides, and hence the host diamond, crystallised close to the time of kimberlite emplacement (90 Ma), in the Mesozoic. This is supported by Pb isotopic measurements of a fragment from one of the sulphides, together with the absence of significant Type IaB nitrogen aggregation in the host diamond lattice. E-type sulphide inclusions have radiogenic Os isotopic compositions, 187Os/188Os 0.346 to 2.28, and Re–Os model ages from 1.1 to 2.9 Ga. They define an array on a Re–Os isochron diagram that may be interpreted as defining a single period of E-type sulphide growth at 1.05±0.12 Ga, with an elevated initial 187Os/188Os. Alternatively, two episodes of sulphide crystallisation, from a chondritic reservoir, may be invoked in the Archaean and in the Proterozoic. The results for both P- and E-type diamonds point to a spectrum of diamond crystallisation ages. High contents of both Re and Os, and the similarity of Re/Os ratios of sulphide inclusions in diamonds to whole rock eclogite and peridotite xenoliths indicate that small amounts of sulphides can dominate the mantle budget of both these elements during melting. Recent addition to the lithospheric mantle of high-Os material similar to that from which the P-type sulphides crystallised may explain the variable, sometimes young Os model ages seen in whole rock xenolith Re–Os data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号