首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mineralogy adopted by a depleted harzburgite composition has been studied over the pressure interval 5–26 GPa at temperatures of 1300–1400°C. The pyroxene-garnet component of the harzburgite composition (harzburgite minus 82 wt.% olivine) transforms to majorite garnet by 18–19 GPa, and further disproportionates to the assemblage of garnet + stishovite + Mg2SiO4 spinel above 20 GPa. At still higher pressures, first ilmenite (22–24 GPa) and then perovskite MgSiO3 (24–26 GPa) are found to coexist with garnet. Garnet disappears at 26 GPa and almost complete transition to perovskite is achieved at this pressure. The mineral proportions and density profiles in the subducting oceanic lithosphere, modelled by a combination of 80% harzburgite + 20% primitive MORB compositions are calculated as a function of depth under conditions isothermal with surrounding pyrolite mantle, and also for a temperature distribution in which the slab is substantially cooler than surrounding mantle to below 700 km. Under isothermal conditions, the slab has a density similar to surrounding mantle to a depth of 600 km. However, between 600 and 700 km, the slab is up to 0.08 g/cm3 denser than surrounding mantle. This is caused primarily by the higher alumina content in pyrolite as compared to harzburgite, which causes the transition to perovskite in pyrolite to occur at substantially higher pressures than in harzburgite. The presence of alumina also smears out the garnet-perovskite transition in pyrolite over a depth interval of 50 km, whereas this transformation is much sharper in the harzburgite composition. Calculations based on the observed phase equilibria also show that a subducted cool slab remains much denser (by 0.1–0.3 g/cm3) than surrounding mantle to a depth of 700 km but possesses a density similar to surrounding mantle below this depth. These results have important implications for the dynamical behaviour of slabs possessing different thermal regimes when they encounter the 670 km discontinuity and also for the nature of this discontinuity.  相似文献   

2.
Phase equilibrium experiments were performed on typical ‘oceanic’ and ‘cratonic’ peridotite compositions and a Ca, Al-rich orthopyroxene composition, to test the proposal that garnet lherzolites exsolved from high-temperature harzburgites, and to further our understanding of the origin of ancient cratonic lithospheres. ‘Oceanic’ peridotites crystallize a garnet harzburgite assemblage at pressures above 5 GPa in the temperature range 1450–1600°C, but at 5 GPa and temperatures less than 1450°C, crystallize clinopyroxene to become true lherzolites. ‘Cratonic’ peridotites crystallize a garnet harzburgite assemblage at pressures above 5 GPa in the temperature range 1300–1600°C. Garnet-free harzburgite crystallizes from both ‘cratonic’ and ‘oceanic’ peridotite at temperatures above 1450°C and pressures below 4.5–5 GPa. Phase relations for the high Ca, Al-rich orthopyroxene composition essentially mirror those for ‘oceanic’ peridotite.The complete solution of garnet and clinopyroxene into orthopyroxene observed in all three starting compositions at temperatures near or above the mantle solidus at pressures less than 6 GPa supports the hypothesis that garnet lherzolite could have exsolved from harzburgite. The inferred cooling path for the original high-temperature harzburgite protoliths of garnet lherzolites differs depending on bulk composition. The precursor harzburgite protoliths of garnet lherzolites and harzburgites with ‘cratonic’ bulk compositions apparently experienced simple isobaric cooling from formation temperatures near the peridotite solidus to those at which most of these peridotites were sampled in the mantle (< 1200°C). The cooling histories for harzburgite protoliths of sheared garnet lherzolites with ‘oceanic’ compositional affinity are speculated to have involved convective circulation of mantle material to depths deeper than those at which it was originally formed.Phase equilibria and compositional relationships for orthopyroxenes produced in phase equilibrium experiments on peridotite and komatiite are consistent with an origin for ‘cratonic’ peridotite as a residue of Archean komatiite extraction, which has since cooled and exsolved clinopyroxene and garnet to become the common low-temperature, coarse-grained peridotite thought to comprise the bulk of the mantle lithosphere beneath the Archean Kaapvaal craton.  相似文献   

3.
High-pressure and high temperature experiments at 20 GPa on (Mg,Fe)SiO3 have revealed stability fields of two types of aluminium-free ferromagnesian garnets; non-cubic garnet and cubic garnet (majorite). Majorite garnet is stable only within a limited compositional variation, 0.2 < Fe/(Mg + Fe)< 0.4, and in the narrow temperature interval of 200°C around 2000°C, while the stability of non-cubic garnet with more iron-deficient compositions persists up to higher temperatures. These two garnets show fractional melting into iron-deficient garnet and iron-rich liquid, and the crystallization field of cubic garnet extends over Fe/(Mg + Fe)= 0.5. The assemblage silicate spinel and stishovite is a low-temperature phase, which also occurs in the iron-rich portion of the MgSiO3—FeSiO3 system. The sequence as given by the Fe/(Mg + Fe) value for the coexisting phases with the two garnets at 2000°C and 20 GPa is: silicate modified spinel aluminium-free garnets silicate spinel.Natural majorite in shock-metamorphosed chondrites is clarified to be produced at pressures above 20 GPa and temperatures around 2000°C. Similar shock events may cause the occurrence of non-cubic garnet in iron-deficient meteorites. Non-cubic garnet could be a stable phase in the Earth's mantle if a sufficiently low concentration of aluminium is present in the layer corresponding to the stable pressure range of non-cubic garnet. The chemical differentiation by melting in the deep mantle is also discussed on the basis of the present experimental results and the observed coexistence of majorite garnet with magnesiowüstite in chondrites.  相似文献   

4.
δ18O values of coexisting garnet, clinopyroxene and phlogopite for twelve compositionally and texturally diverse Roberts Victor eclogite xenoliths range from +3.8 to +7.1, +4.0 to +7.4 and +5.9 to +7.4, respectively. Differences between theδ18O values of coexisting garnets and clinopyroxenes are normally zero; however, there is some variation in theδ18O values of different fractions of the same mineral in four samples which suggests the presence of isotopic zonation and inhomogeneity, possibly resulting from the introduction of a secondary fluid which metasomatized the eclogites and resulted in the formation of phlogopite, amphibole and celsian. Theδ18O value of the metasomatic fluid is generally buffered by the isotopic composition of the primary garnet and clinopyroxene, as indicated by a correlation between the isotopic composition of phlogopite and the primary pyroxene and garnet.The large range inδ18O values of the eclogites and the similarity in the isotopic composition of coexisting pyroxene and garnet support the interpretation that the Roberts Victor eclogites represent metamorphosed, altered basalts. The eclogites were subjected to infiltration metasomatism in the mantle prior to their incorporation in the kimberlite, and the source of this fluid was probably unrelated to the eclogite.  相似文献   

5.
Pyroxene (omphacitic) and garnet (pyrope-rich) are the two major mineral components of an eclogite. No high-pressure phase transformation has been observed in omphacite and pyrope in the pressure range between 30 and 200 kbar and at 1000°C. The phase behaviour of the DSDP3-18 glass (basaltic and eclogitic composition) has been investigated in the pressure range between 100 and 280 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. Both omphacite and garnet were observed in the range 100 to 150 kbar and garnet is the only phase observed in the 180-kbar run. However, it was inferred from other evidence that garnet also coexists with diopside (II) in the 180-kbar run. Diopside (II) is an unquenchable phase which is impossible to preserve on release of pressure. Glasses were the only products quenched from runs carried out at pressures greater than 210 kbar. These glasses were also interpreted as diopside(II). The phase behaviour of this complex eclogite composition at pressures below 200 kbar generally resembles that of a simple enstatite-pyrope system; pyroxene progressively dissolves in garnet with increasing pressure. The P-T conditions for the pyroxene ? garnet transition and the accompanying density (or velocity) change in the eclogitic composition are not consistent with those of the 400-km discontinuity in the Earth's mantle. Thus, an eclogitic mantle composition would not undergo a phase transformation which would be capable of accounting for the major seismic discontinuity observed in the vicinity of 400 km.  相似文献   

6.
Anhydrous spinel lherzolite xenoliths from the Shavaryn-Tsaram volcano, which represent unusually clinopyroxenerich samples of upper mantle beneath the Tariat Depression in north-central Mongolia, have particularly low δ18O values of +4.9 to +5.7‰ SMOW. Constituent minerals exhibit small (ca. 0.5–0.7‰) variations in18O content (olivine = +4.6 to +5.3‰, clinopyroxene = +5.6 to +6.1‰, orthopyroxene = +5.8 to +6.5‰), that are unrelated to xenolith modal mineralogy, chemical composition, radiogenic isotope character, or pyroxene equilibration temperature. This O-isotope character of the Tariat xenoliths is interpreted to reflect the closed-system distribution of oxygen isotopes in a slowly cooling mantle diapir emplaced into the lithosphere from a relatively primitive region of the asthenosphere.  相似文献   

7.
A review of experimental data for systems, pertaining to anhydrous fertile garnet-lherzolite shows strong convergence in the liquidus and solidus temperatures for the range 6.5–15 GPa. These can converge either to a common temperature or to temperatures which differ by only ~ 100°C. The major-element composition of magmas generated by even minor degrees of partial melting may be similar to the primordial bulk silicate Earth composition in an upper-mantle stratigraphic column extending over 160 km in depth.The convergence of the solidus and liquidus temperatures is a consequence of the highly variable dTdP of the fusion curves for minerals which crystallize in peridotite systems. In particular, dTdP for the forsterite fusion curve is much less than that for diopside and garnet. Whether or not the solidus and liquidus intersect, the liquidus mineralogy for undepleted garnet-lherzolite compositions changes from olivine at low pressures to pyroxene, garnet, or a complex pyroxene-garnet solid solution at pressures in excess of 10–15 GPa. Geochemical data for the earliest Archean komatiites are consistent with an upper-mantle phase diagram having garnet as a liquidus phase for garnet-lherzolite compositions at high pressures. All estimates of the anhydrous solidus and liquidus for the range 10–15 GPa are consistent with silicate liquid compressibility data, which indicate that olivine may be neutrally buoyant in ultramafic magmas at these pressures.  相似文献   

8.
A single garnet clinopyroxenite xenolith found at the Dish Hill basanite cone near Ludlow, California, has well developed unmixing and reaction textures like those found in garnet pyroxenite inclusions in Hawaiian, African and Australian basalts and like those of pyroxenites in some European alpine peridotites. Reconstructed pyroxene compositions suggest that before unmixing the rock consisted of clinopyroxene and about 10% garnet plus spinel, but all of the garnet may have been dissolved in clinopyroxene. Most or all of the garnet formed by exsolution from clinopyroxene and by reaction between clinopyroxene and spinel in an open system. Following exsolution, the rock was deformed and partly recrystallized in the solid state. Similarity of compositions of exsolved and recrystallized minerals suggests recrystallization at P-T conditions similar to those of exsolution.The rock is not the chemical equivalent of the host basanite and cannot represent magma of basanitic composition crystallized in the mantle. Its history of deformation and recrystallization, like that of accompanying spinel lherzolite inclusions, supports the idea that the garnet clinopyroxenite is an accidental inclusion derived from the upper mantle.  相似文献   

9.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

10.
Fine-scale sampling with alvin and by dredging of the axial ridge in the Mariana Trough between 17°40′N and 18°30°N recovered basalts with isotopic compositions that span the range between N-type MORB and Mariana island arc basalts. There is a local tectonic-morphological control on basalt compositions; MORB-like basalts are found on the deeper ridge segment bounded by the Pagan transform and the ridge offset at 17°56′N, while basalts from the shallower ridge to the north are typical Mariana Trough basalts (MTB) having compositions intermediate between the two endmember rock types. Arc-like basalts were recovered from one site on the axial ridge.The discovery of basalts with such diverse isotopic characteristics from a short (100 km) section of this backarc spreading center constrains the chemical characteristics and distribution of mantle source variability in the Mariana Trough. SrNdPb isotopic variability suggests that the MTB source is heterogeneous on the scale of individual melt batches. The principal component in the MTB mantle source region is depleted peridotite similar to the source of MORB. The enriched component, most evident in the arc-like basalts and intimately mixed in MTB, has isotopic characteristics similar to those observed in the Mariana arc basalts. The isotopic data suggest that source variability for Mariana axial ridge basalts can be explained by mixed arc-like and MORB-like mantle. We hypothesize that there are fragments of old oceanic lithosphere in the backarc source region. This lithospheric component may reflect remnants of subducted seafloor or forearc-volcanic arc mantle that predate rifting in the backarc basin.  相似文献   

11.
Experimental study of spinel-garnet phase transition was carried out using natural mineral and rock specimens from xenolith of mantle rocks in Cenozoic basalt as starting materials. From the result it was found that the condition of spinel Iherzolite-garnet Ihenolite phase transition (T = 1 100°C andP = 1.8–2.0 GPa) is consistent with theP-T equilibrium condition of the five-phase assemblage spinel/garnet Iherzolite in eastern China, suggesting that there may exist a spinel-garnet Iherzolite phase transition zone with the thickness of a few km to several ten km at the depth of 55–70 km in the continental upper mantle of eastern China. The depth of phase transition from spinel pyroxenite to garnet pyroxenite is found to be less than 55 km. Experiment results also show that water promotes metasomatism on one hand but suppresses phase transition on the other. Zoning of mineral composition was also discussed. Project supported by the National Natural Science Foundation of China.  相似文献   

12.
Along the deformation front of the North Ecuador–South Colombia (NESC) margin, both surface heat flow and trench sediment thickness show prominent along-strike variations, indicating significant spatial variations in sedimentation rate. Investigating these variations helps us address the important question of how trench sedimentation influences the temperature distribution along the interplate contact and the extent of the megathrust seismogenic zone. We examine this issue by analysing 1/ a new dense reflection data set, 2/ pre-stack depth migration of selected multichannel seismic reflection lines, 3/ numerous newly-identified bottom-simulating reflectors and 4/ the first heat probe measurements in the region. We develop thermal models that include sediment deposition and compaction on the cooling oceanic plate as well as viscous corner flow in the mantle wedge. We estimate that the temperature from 60–150 °C to 350–450 °C, commonly associated with the updip and downdip limits of the seismogenic zone, extends along the plate interface over a downdip distance of 160 to 190 ± 20 km. We conclude that the updip limit of the seismogenic zone for the great megathrust earthquake of 1979 is associated with low-temperature (60–70 °C) processes. Our models also suggest that 60–70% of the two-fold decrease in measured heat flow from 3°N to 2.8°N is related to an abrupt southward increase in sedimentation rate in the trench. Such a change may potentially induce a landward shift of the 60–150 °C isotherms, and thus the updip limit of the seismogenic zone, by 10 to 20 km.  相似文献   

13.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

14.
This paper provides new constraints on the crystallization conditions of the 3.49 Ga Barberton komatiites. The compositional evidence from igneous pyroxene in the olivine spinifex komatiite units indicates that the magma contained significant quantities of dissolved H2O. Estimates are made from comparisons of the compositions of pyroxene preserved in Barberton komatiites with pyroxene produced in laboratory experiments at 0.1 MPa (1 bar) under anhydrous conditions and at 100 and 200 MPa (1 and 2 kbar) under H2O-saturated conditions on an analog Barberton composition. Pyroxene thermobarometry on high-Ca clinopyroxene compositions from ten samples requires a range of minimum magmatic water contents of 6 wt.% or greater at the time of pyroxene crystallization and minimum emplacement pressures of 190 MPa (6 km depth). Since high-Ca pyroxene appears after 30% crystallization of olivine and spinel, the liquidus H2O contents could be 4 to 6 wt.% H2O. The liquidus temperature of the Barberton komatiite composition studied is between 1370 and 1400°C at 200 MPa under H2O-saturated conditions. When compared to the temperature-depth regime of modern melt generation environments, the komatiite mantle source temperatures are 200°C higher than the hydrous mantle melting temperatures inferred in modern subduction zone environments and 100°C higher than mean mantle melting temperatures estimated at mid-ocean ridges. When compared to previous estimates of komatiite liquidus temperatures, melting under hydrous conditions occurs at temperatures that are 250°C lower than previous estimates for anhydrous komatiite. Mantle melting by near-fractional, adiabatic decompression takes place in a melting column that spans 38 km depth range under hydrous conditions. This depth interval for melting is only slightly greater than that observed in modern mid-ocean ridge environments. In contrast, anhydrous fractional melting models of komatiite occur over a larger depth range ( 130 km) and place the base of the melting column into the transition zone.  相似文献   

15.
Least-squares collocation technique was used to process regional gravity data of the SE South American lithospheric plate in order to map intermediate (10–2000 km) wavelength geoid anomalies. The area between 35–10° S and 60–25° W includes the Paraná CFB Province, the Southern São Francisco Craton and its marginal fold/thrust belts, the Brazilian continental margin and oceanic basins. The main features in the geoid anomaly map are: (a) Paraná CFB Province is characterized by a 1000 km long and 500 km wide, NE-trending, 9 m-amplitude negative anomaly which correlates with the distribution of sediments and basalts within the Paraná basin. (b) A circular (600–800 km in diameter) positive, 8 m-amplitude geoid anomaly is located in the southern S. Francisco craton and extends into the northeastern border of the Paraná CFB Province. This anomaly partially correlates with Alto Paranaíba Igneous Province (APIP), where alkalic volcanism and tholeiitic dikes of ages younger than 80 Ma are found and where a low-velocity zone in the mantle has been mapped using seismic tomography. This positive geoid anomaly extends towards the continental margin at latitude 21° S and joins a linear sequence of short wavelength positive geoid anomalies associated with Vitoria–Trindade seamounts. (c) A NE-trending, 1000 km long and 800 km wide, 4 m-amplitude, positive geoid anomaly, which is located along the southeastern coast of Brazil, from latitude 24 to 35° S. The northern part of this anomaly correlates with the Ponta Grossa Arch and Florianopolis dyke swarm provinces. The age of this intrusive volcanism is 130–120 Ma. (d) A circular positive anomaly with 9 m of amplitude, located over the Rio Grande and Uruguay shields and offshore Pelotas basin. Few alkaline intrusives with ages between 65 and 80 Ma are found in the region and apatite fission track ages in basement rocks indicates cooling at around 30 Ma. A semi-quantitative analysis of the observed geoid anomalies using isostatic considerations suggests that the mechanism which generated Paraná CFB Province did not change, in a significant manner, the lithospheric thermal structure, since the same geoid pattern observed within this province continues northward over the Neoproterozoic fold/thrust belts systems separating the São Francisco and Amazon cratons. Therefore, this observation favours Anderson’s idea of rapid basaltic outpouring through a pull-apart mechanism along a major suture zone. A thermal component may still be present in the Southern São Francisco Craton and in the Rio Grande Shield and contiguous continental margins, sites of Tertiary thermal and magmatic reactivations.  相似文献   

16.
The Mt Somers Volcanics are part of a suite of mid-Cretaceous (89 ± 2 Ma) intermediate to silicic volcanics, erupted onto an eroded surface of Torlesse sediments. Rock types vary from basaltic andesite to high-silica rhyolite. Andesites are medium- to high-K with phenocrysts of plagioclase, orthopyroxene and pigeonite. Dacites are peraluminous and commonly contain granulite facies xenoliths and garnet xenocrysts. Equilibrium mineral assemblages indicate metamorphic pressures of close to 6 kbar at 800°C. Rhyolites are peraluminous with phenocrysts of quartz, sanidine, plagioclase, biotite, garnet and orthopyroxene. The ferromagnesian phases show textural evidence of magmatic crystallization and are chemically distinct from xenocryst phases in dacites. Equilibrium assemblages indicate that early magmatic crystallization occurred at close to 7 kbar (20 km depth) at above 850°C, with melt-water contents of less than 3.5%. Major-element contents, trace-element contents and an initial 87Sr/86Sr ratio of 0.7085 indicate that the rhyolites formed by partial melting of dominantly quartzo-feldspathic Torlesse sediments, leaving a granulite-facies residue. The chemical variation displayed by the rhyolites is best explained by fractional crystallization of the observed high-pressure phenocryst assemblage. Most elements show a compositional gap between rhyolite and dacite. The major-element, trace-element and Sr isotope compositions of the intermediate lavas are best explained by assimilation of lower crustal material combined with fractional crystallization in mantle-derived tholeiitic magmas. Magmatism was the result of heat and magma flux from the mantle, during the change from compressive to extensional tectonics after the culmination of the Rangitata Orogeny.  相似文献   

17.
Continental shield regions are normally characterized by low-to-moderate mantle heat flow. Archaean Dharwar craton of the Indian continental shield also follows the similar global pattern. However, some recent studies have inferred significantly higher mantle heat flow for the Proterozoic northern block of Southern Granulite Terrain (SGT) in the immediate vicinity of the Dharwar craton by assuming that the radiogenic elements depleted exposed granulites constitute the 45-km-thick crust. In this study, we use four-layered model of the crustal structure revealed by integrated geophysical studies along a geo-transect in this region to estimate the mantle heat flow. The results indicate that: (i) the mantle heat flow of the northern block of SGT is 17 ± 2 mW/m2, supporting the global pattern, and (ii) the lateral variability of 10–12 mW/m2 in the surface heat flow within the block is of crustal origin. In terms of temperature, the Moho beneath the eastern Salem–Namakkal region appears to be at 80–100 °C higher temperature than that beneath the western Avinashi region.  相似文献   

18.
An integrated study based on incompatible trace elements and Sr–Nd–Pb isotopes is presented in order to assess the mantle sources involved in the genesis of the Paraná Magmatic Province (PMP) tholeiites. Particular emphasis is given to 33 new Pb isotope and concentration data obtained in representative samples of low-TiO2 (LTiB) and high-TiO2 (HTiB) flood basalts that occur in the province. Results show important differences with respect to type and location of these rocks. The LTiB and HTiB from northern PMP exhibit very similar initial Pb isotope ratios (average LTiB vs HTiB: 206Pb/204Pbi=17.78±0.03 vs 17.65±0.02; 207Pb/204Pbi=15.53±0.01 vs 15.52±0.01; 208Pb/204Pbi=38.12±0.03 vs 38.05±0.04). The LTiB from southern PMP, with initial 87Sr/86Sri≤0.7060, show small variation in initial Pb isotope compositions (average 206Pb/204Pbi=18.20±0.07; 207Pb/204Pbi=15.61±0.01; 208Pb/204Pbi=38.32±0.10), which are highly enriched in radiogenic Pb in comparison to the northern PMP analogues. The HTiB from southern PMP have initial Pb isotope ratios (average 206Pb/204Pbi=17.45±0.09; 207Pb/204Pbi=15.50±0.01; 208Pb/204Pbi=37.89±0.03) slightly less radiogenic compared with the HTiB from northern PMP. The data cover a large range of isotope compositions, which are accompanied by systematic changes in incompatible trace element ratios and Sr–Nd isotopes, indicating contributions from different mantle sources. The remarkable chemical and isotope differences between PMP basalts, N-MORB and Tristan da Cunha least evolved volcanics indicate that these asthenospheric sources did not play a significant role in the basalt genesis, suggesting generation from the melting of heterogeneous lithospheric mantle sources. The close similarity between the radiogenic isotopes of the Cretaceous carbonatites that surround the PMP and those of the HTiB rock-types and the LTiB from the northern Paraná suggests the involvement of the same mantle components in their genesis: a dominant EMI end member and a radiogenic isotope enriched component of EMII-type, as some phlogopite-peridotite mantle xenoliths (Japecanga) from the Alto Paranaíba Igneous Province. The latter component seems also to have an important role in the origin of the LTiB from the southern Paraná, where the other end member is highly depleted in radiogenic lead similar to DMM.  相似文献   

19.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

20.
Submersible investigations along the East Rift segments, the Pito Deep and the Terevaka transform fault of the Easter microplate eastern boundary, and on a thrust-fault area of the Nazca Plate collected a variety of basalts and dolerites. The volcanics consist essentially of depleted (N-MORB), transitional (T-MORB) and enriched (E-MORB) basalts with low (0.01−0.1, < 0.7), intermediate (0.12–0.25, 0.7–1.2) and high (> 0.25, > 1.2–2) K/Ti and(La/Sm)N ratios, respectively. The Fe-Ti-rich ferrobasalt encountered among the N-MORBs are found on the Pito Deep Central volcano, on the Terevaka intra-transform ridge, on the ancient (< 2.5 Ma) Easter microplate (called EMP, comprising the East Rift Inner pseudofaults and Pito Deep west walls) and on thrust-fault crusts. The most enriched (T- and E-MORB) volcanics occur along the East Rift at 25 °50′–27 °S (called 26 °S East Rift) and on the Pito seamount located near the tip of the East Rift at 23 °00′–23 °40′S (called 23 °S East Rift). The diversity in incompatible element ratios of the basalts in relation to their structural setting suggests that the volcanics are derived from a similar heterogenous mantle which underwent variable degrees of partial melting and magma mixing. In addition the Pito seamount volcanics have undergone less crystal fractionation (< 20%) than the lavas from the other Easter microplate structures (up to 35–45%). The tectonic segmentation of the East Rift observed between 23 and 27 °S corresponds to petrological discontinuities related to Mg# variations and mantle melting conditions. The highest Mg# (> 61) are found on topographic highs (2000–2300 m) and lower values (Mg# < 56) at the extremities of the East Rift segments (2500–5600 m depths). The deepest area (5600 m) along the East Rift is located at 23 °S and coincides with a Central volcano constructed on the floor of the Pito Deep. Three major compositional variabilities of the volcanics are observed along the East Rift segments studied: (1) the 26 °S East Rift segment where the volcanics have intermediate Na8 (2.5–2.8%) and Fe8 (8.5–11%) contents; (2) the 23 °S East Rift segment (comprising Pito seamount and Pito Deep Central volcano) which shows the highest (2.9–3.4%) values of Na8 and a low (8–9%) Fe8 content; and (3) the 25 °S (at 24 °50′–26 °10′S) and the 24 °S (at 24 °10′–25 °S) East Rift segments where most of the volcanics have low to intermediate Na8 (2.6–2.0%) and a high range of Fe8 (9–13%) contents. When modeling mantle melting conditions, we observed a relative increase in the extent of partial melting and decreasing melting pressure. These localized trends are in agreement with a 3-D type diapiric upwelling in the sense postulated by Niu and Batiza (1993). Diapiric mantle upwelling and melting localized underneath the 26, 25 and 23 °S (Pito seamount and Central volcano) East Rift segments are responsable for the differences observed in the volcanics. The extent of partial melting varies from 14 to 19% in the lithosphere between 18 and 40 km deep as inferred from the calculated initial (Po=16kbar) and final melting (Pf=7kbar) pressures along the various East Rift segments. The lowest range of partial melting (14–16%) is confined to the volcanics from 23 °S East Rift segment including the Pito seamount and the Central volcano. The Thrust-fault area, and the Terevaka intra-transform show comparable mantle melting regimes to the 25 and 26 °S East Rift segments. The older lithosphere of the EMP interior is believed to have been the site of high partial melting (17–20%) confined to the deeper melting area (29–50 km). This increase in melting with increasing pressure is similar to the conditions encountered underneath the South East Pacific Rise (13–20 °S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号