首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
High nitrate concentrations, above the WHO guideline of 50 mg l−1, were observed in samples of shallow wells reaching the Yeumbeul suburb (Senegal) area groundwater. This groundwater is exploited by 7000 houses and therefore there are health implications. Correlations between parameters such as nitrate content (NO3) in the groundwater and soil water, the distance between shallow wells and family latrines, and soil water chloride (Cl) and colon bacillus content led to two possible sources of groundwater pollution: first, contamination by non impervious and shallow latrines; and second, the leaching of soil NO3 from waste organic matter carried in groundwater.  相似文献   

2.
This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually the complex phenomena affecting nitrate concentrations in soil, subsoil and groundwater. In particular, the traditional methods for vulnerability analysis do not analyze physical processes in aquifers, such as denitrification and nitrate dilution. According to a recent study in the shallow unconfined aquifer of the Piemonte plain, dilution can be considered as the main cause for nitrate attenuation in groundwater.  相似文献   

3.
Hydrogeochemical characteristics of central Jianghan Plain, China   总被引:2,自引:0,他引:2  
The central Jianghan Plain is the semi-closed basin in the middle reaches of Yangtze River. A total of 78 water samples targeting groundwater were collected from 75 sites in this study site, the area between Yangtze River and Han River, including rivers and lakes for temperature, pH, electrical conductivity (EC), total dissolved solids (TDS) and ion composition measurements. Correlation matrix was used to assess the geochemical and anthropogenic processes. The most confined groundwater was grouped into HCO3–Ca–Mg, while phreatic groundwater and surface water had a more diversified hydrochemistry. The spatial variation in overall water quality as well as comparison with WHO (World Health Organization) standards for drinking water is illustrated. Mn, As and NO3 ? concentrations were found to exceed the allowable limits for drinking water of WHO guidelines, and they also show remarkable spatial variations. Abnormally high nitrate concentration, up to 150–190 mg/l, was found only in phreatic groundwater, which suggested that the nitrate pollution might be caused by agricultural activities. The present study may be helpful in further studies concerning water quality issues in this area where groundwater is a vital source for drinking and other activities.  相似文献   

4.
Assessment of nitrate contamination of Lidder catchment Kashmir, India   总被引:1,自引:1,他引:0  
Nitrate contamination in the groundwater from various sources is one of the major problems of water resources in Liddercatchment, Kashmir. Systematic sampling was carried out during summer 2007, with a view to understand the source of nitrate ions in the groundwater of the Lidder catchment. Twelve sample sites were selected and samples were taken for a baseline study to understand the geochemistry of the groundwater and to assess the overall physico-chemical characteristics. Results showed that NO 3 ? concentration in ranged from 18.72?mg/L to 75.93?mg/L with an average of 47.03?mg/L. More than 80% (83.33%) of the samples collected from various sampling stations had nitrate concentrations exceeding the threshold value of 20?mg/L, and 58.33% of the samples collected had nitrate concentrations higher than 50?mg/L, the maximum acceptable nitrate concentration for drinking water. There is a wide spatial variation in the nitrate concentration in the groundwater. Monitoring the water quality of various sampling stations showed that the lowest concentrations of nitrate were found in the wet season (January, February, and December), while the highest concentrations were found in the dry season (August, September). Numerous human perturbations have been detected affecting the water quality of Lidder catchment. Disposal of sewage and animal wastes was found to contribute about 85% of total nitrate pollution in the study area. Based on the trend analysis (using previous data), future scenario of nitrate pollution has been predicted in the study area. The results of this study are useful to highlight one of the most important environmental problems, namely the degradation of the water quality, and may serve to alert and encourage local and national authorities to take substantial steps and actions to protect and manage water quality.  相似文献   

5.
Karst groundwater is a vital resource for drinking, living and irrigation purposes in karst agricultural areas of the world. Due to the vulnerability of karst aquifers, surface pollutants are easily transferred to the subsurface and make karst groundwater be deteriorated, thereby restricting the rational exploitation of karst groundwater resource. In view of this, 49 karst groundwater samples were collected from spring (SW) and underground river (URW) sites in the suburban area of Chongqing City and analyzed for various hydrochemical components. Particularly, the karst groundwater quality was comprehensively uncovered by combining characteristics of hydrogeochemical evolution and health risks caused by nitrate and fluoride. The results revealed that the karst groundwater was slightly alkaline in nature and the water types were mainly characterized by Ca-HCO3 accounting for 93.88% of the total samples due to the heavy dissolution of carbonate rock. The relatively high concentrations of Na+, SO42? and NO3? up to 271.88 mg/L, 277.94 mg/L and 56.94 mg/L were over the corresponding maximum acceptable limits for drinking water, which can be predominately attributed to the emissions of industrial park, dissolution of gypsum and pyrite and excessive application of chemical fertilizers. Although agricultural activities were stopped and chemical fertilizers were no longer applied during the sampling period, long-term application of fertilizers have a persistent adverse effect on the karst groundwater NO3?. The pollution index of the karst groundwater (PIG) revealed that the low pollution and potential pollution zones were noticed in the northwestern parts of the study area. With respect of the SW, all the total hazard index (HI) values were below 1 suggesting no significant health risk. On the contrary, HI values of 0.11–1.16 for adults, 0.15–1.61 for children and 0.17–1.83 for infants in the URW indicated significant noncarcinogenic health risks. Particularly, infants and children were more vulnerable to karst groundwater NO3? than adults. Furthermore, the noncarcinogenic health risks of karst groundwater can be mainly attributed to NO3?, confirmed by the higher contribution ratio (66.55%) to the HI values. Therefore, special and targeted measures need to be taken to decrease the NO3? concentration in agricultural area.  相似文献   

6.
A vegetable- and meat-canning facility located in the karst of southeastern Minnesota disposes ≈2.85×105 m3 yr?1 of wastewater by spray irrigation of an 83.7-ha field located atop the local groundwater divide. Cannery effluent contains high levels of chloride and nitrogen (organic and ammonia), in excess of 7000 mg/l and 400 mg/l, respectively. Nitrate-nitrogen concentrations are generally < 5 mg/l. Agricultural, domestic, and municipal sources of chloride and nitrate are common in the region, and water supplies frequently exceed the drinking-water limit for nitrate-nitrogen of 10 mg/l. Fifty-two area wells and thirteen surface-water locations were sampled and analyzed for five ionic species, including: chloride (Cl), nitrate-nitrogen (NO3-N), sulfate (SO4), nitrite-nitrogen (NO2-N), and phosphate (PO4). Two distinct chloride plumes flowing outward from the groundwater divide were identified, and 65% of the wells sampled had nitrate-nitrogen concentrations in excess of 10 mg/l. The data were divided into two groups: one group of samples from wells located near the canning facility and another group from outside that area. A correlation coefficient of R2= 0.004 for Cl vs. NO3-N in the vicinity of the irrigation fields indicates essentially no relationship between the source of Cl and NO3. In areas of agricultural and domestic activities located away from the cannery, an R2 of 0.54 suggests that Cl and NO3 have common sources in these areas.  相似文献   

7.
Groundwater is a finite resource that is threatened by pollution all over the world. Shimabara City, Nagasaki, Japan, uses groundwater for its main water supply. During recent years, the city has experienced severe nitrate pollution in its groundwater. For better understanding of origin and impact of the pollution, chemical effects and surface–groundwater interactions need to be examined. For this purpose, we developed a methodology that builds on joint geochemical analyses and advanced statistical treatment. Water samples were collected at 42 sampling points in Shimabara including a part of Unzen City. Spatial distribution of water chemistry constituents was assessed by describing Stiff and Piper diagrams using major ions concentrations. The nitrate (NO3?+?NO2–N) concentration in 45% of water samples exceeded permissible Japanese drinking level of 10 mg L??1. Most of the samples showed Ca–HCO3 or Ca–(NO3?+?SO4) water types. Some samples were classified into characteristic water types such as Na–Cl, (Na?+?K)–HCO3, (Na?+?K)–(SO4?+?NO3), and Ca–Cl. Thus, results indicated salt water intrusion from the sea and anthropogenic pollution. At the upstream of Nishi River, although water chemistry was characterized as Ca–HCO3, ion concentrations were higher than those of other rivers. This is probably an effect of disinfection in livestock farming using slaked lime. Positive correlation between NO3? and SO42?, Mg2+, Ca2+, Na+, K+, and Cl? (r?=?0.32–0.64) is evidence that nitrate pollution sources are chemical fertilizers and livestock waste. Principal component analysis showed that chemistry of water samples can be explained by three main components (PCs). PC1 depicts general ion concentration. PC2 and PC3 share influence from chemical fertilizer and livestock waste. Cluster analyses grouped water samples into four main clusters. One of these is the general river chemistry mainly affected by PC1. The others reflect anthropogenic activities and are identified by the combination of the three PCs.  相似文献   

8.
A geochemical assessment of groundwater quality and possible contamination in the vicinity of the Bhalswa landfill site was carried out by using a hydrochemical approach with graphical and multivariate statistical methods with the objective of identifying the occurrence of various geochemical processes and understanding the impact of landfill leachates on groundwater quality. Results indicate that nitrate, fluoride and heavy-metal pollution are in an alarming state with respect to the use of groundwater for drinking purposes. Various graphical plots and statistical analyses have been applied to the chemical data based on the ionic constituents, water types, and hydrochemical facies to infer the impact of the landfill on groundwater quality. The statistical analysis and spatial and temporal variations indicate the leaching of contaminants from the landfill to the groundwater aquifer system. The concentrations of heavy metals in the landfill leachates are as follows: Fe (22 mg/l), Mn (~20 mg/l), Cu (~10 mg/l), Pb (~2 mg/l), Ni (0.25 mg/l), Zn (~10 mg/l), Cd (~0.2 mg/l), Cl (~4,000 mg/l), SO42− (~3,320 mg/l), PO43− (~4 mg/l), NO3 (30 mg/l) and fluoride (~50 mg/l); all were much higher than the standards. The study reveals that the landfill is in a depleted phase and is affecting groundwater quality in its vicinity and the surrounding area due to leaching of contaminants.  相似文献   

9.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

10.
Geological and geographical parameters including land use, stratigraphic structure, groundwater quality, and N- and O-isotopic compositions of nitrate in groundwater were investigated to elucidate the mechanism of groundwater pollution by NO3 ? in the agricultural area of Katori, Chiba, Japan. An aquitard distributed in the western part of the study area has produced two unconfined aquifers. The average concentrations of NO3 ? and dissolved oxygen (DO) were high in the aquifer above the aquitard (7.5 and 7.6 mg/L, respectively) and in the aquifer of the eastern part of the study area that was not influenced by the aquitard (11.9 and 7.8 mg/L, respectively); however, the levels in the aquifer under the aquitard were relatively low (2.2 and 3.7 mg/L, respectively). The δ15N and δ18O values of NO3 ? generally increased exponentially in the groundwater that flowed into the aquifer under the aquitard as the concentration of NO3 ? decreased, although this decrease in NO3 ? also occasionally occurred without isotopic changes. These results indicated that the aquitard prevented the penetration of NO3 ?, DO, and gaseous O2. Under the aquitard, denitrification and dilution with unpolluted water that entered from natural forested areas reduced the NO3 ? concentrations in the groundwater. The major sources of NO3 ? in groundwater in the study area were estimated to be NH4-chemical fertilizer, livestock waste, and manure.  相似文献   

11.
The nitrate of groundwater in the Gimpo agricultural area, South Korea, was characterized by means of nitrate concentration, nitrogen-isotope analysis, and the risk assessment of nitrogen. The groundwaters belonging to Ca–(Cl + NO3) and Na–(Cl + NO3) types displayed a higher average NO3 concentration (79.4 mg/L), exceeding the Korean drinking water standard (<44.3 mg/L NO3 ). The relationship between δ18O–NO3 values and δ15N–NO3 values revealed that nearly all groundwater samples with δ15N–NO3 of +7.57 to +13.5‰ were affected by nitrate from manure/sewage as well as microbial nitrification and negligible denitrification. The risk assessment of nitrate for groundwater in the study area was carried out using the risk-based corrective action model since it was recognized that there is a necessity of a quantitative assessment of health hazard, as well as a simple estimation of nitrate concentration. All the groundwaters of higher nitrate concentration than the Korean drinking water standard (<44.3 mg/L NO3 ) belonged to the domain of the hazard index <1, indicating no health hazard by nitrate in groundwater in the study area. Further, the human exposure to the nitrate-contaminated soil was below the critical limit of non-carcinogenic risk.  相似文献   

12.
In order to assess the extent of groundwater contamination by nitrate (NO3 –N) and to provide information about the deterioration of the groundwater quality in Zhangye Oasis, Northwest China, a study was conducted in this area. The mean value of NO3 –N concentrations in groundwater samples was 10.66 ± 0.19 mg l−1. NO3 –N concentrations exceeding 10 mg l−1 (the threshold for drinking water set by the World Health Organization) were found in 32.4% of 71 wells, and were 13, 33.3, 52.4 and 50.0% in the groundwater samples from drinking wells, irrigation wells, hand-pumping wells and groundwater table observation wells, respectively. The result showed that the groundwater samples that had NO3 –N concentrations exceeding the threshold for drinking water were mostly collected from a depth of less than 20 m. Groundwater NO3 –N concentrations in areas used for the cultivation of vegetables, seed maize and intercropped maize were significantly higher than those in urban or paddy areas. NO3 –N contamination of groundwater in areas with sandy soil was more severe than in those with loam soil.  相似文献   

13.
Kilimanjaro, Tanzania, the highest mountain in Africa, has undergone extensive hydrologic changes over the past century in an area where water resources are critical. A hydrochemical and isotopic synoptic sampling program in January 2006 is used to characterize hydrogeology, hydrology, and water quality of the area. Samples were collected from the summit and southern side of Kilimanjaro and the Moshi region (Tanzania). Sample sources included four glaciers, seven groundwater wells, 12 rivers, 10 springs, precipitation, and a lake. Analyses included major ion chemistry, stable isotopes of water (18O and D); in addition, seven samples were analyzed for tritium. The samples generally have good water quality with the exception of three samples with elevated fluoride concentrations (>3 mg/L) and elevated nitrate concentrations (>2.5 mg/L NO3 as N). There is a strong elevation control on stable isotopes, with an apparent elevation effect of – 0.1 ‰ δ18O per 100 m rise in elevation (R 2 = 0.79). The results, including the tritium values, show that the hydrogeologic system is comprised of both local and regional flow systems, and that regional rivers are receiving significant inflow from shallow groundwater, and at very high elevations the hydrologic system is derived from groundwater, precipitation, and glacial melt water.  相似文献   

14.
为研究大规模综合机械化采煤氮污染来源及影响程度,选取宁东煤炭基地侏罗纪煤田鸳鸯湖矿区的梅花井井田为研究对象,通过调查取样分析,对梅花井井田地下水三氮污染分布、物源、水文地质条件进行研究。结果表明:(1)宁东煤炭基地鸳鸯湖矿区梅花井井田三氮NH4+、NO3-、NO2-含量范围分别为0.06~0.12mg/L、4.67~234mg/L、0.01~2.01mg/L,与国家地下水质量标准Ⅲ类水质限值对比,NO2-达到重度或极严重污染,主要分布在潜水含水层;NO3-污染级别为中度、轻度污染,超标样点占调查样点的75%,垂向上已延伸到承压含水层。水平空间上无论矿权范围还是矿权外,污染样点均有存在。(2)部分水样中NO3-毫克当量百分数超过25%,对水化学类型产生影响。(3)煤矿区NO3-、NO2-的污染首先与丰富的物源有关,还受煤矿开采扰动、地形地貌条件、垂向补给径流、水文地球化学条件等因素的影响。研究结果为风积沙大型机械化煤矿开采区地下水氮污染的防治提供了可参考依据。  相似文献   

15.
Nitrate (NO3 ) is major pollutant in groundwater worldwide. Karst aquifers are particularly vulnerable to nitrate contamination from anthropogenic sources due to the rapid movement of water in their conduit networks. In this study, the isotopic compositions (δ15N–NO3 , δ15N–NH4 +) and chemical compositions(e.g., NO3 , NH4 +, NO2 , K+) were measured in groundwater in the Zunyi area of Southwest China during summer and winter to identify the primary sources of contamination and characterize the processes affecting nitrate in the groundwater. It was found that nitrate was the dominant species of nitrogen in most of the water samples. In addition, the δ15N–NO3 values of water samples collected in summer were lower than those collected in winter, suggesting that the groundwater received a significant contribution of NO3 from agricultural fertilizer during the summer. Furthermore, the spatial variation in the concentration of nitrate and the δ15N–NO3 value indicated that some of the urban groundwater was contaminated with pollution from point sources. In addition, the distribution of δ15N–NO3 values and the relationship between ions in the groundwater indicated that synthetic and organic fertilizers (cattle manure) were the two primary sources of nitrate in the study area, except in a few cases where the water had been contaminated by urban anthropogenic inputs. Finally, the temporal and spatial variation of the water chemistry and isotopic data indicated that denitrification has no significant effect on the nitrogen isotopic values in Zunyi groundwater.  相似文献   

16.
Identifying the origin of nitrate is important for the control and management of groundwater quality in aquifer systems. In the southern Apennines (Italy), the Mount Vulture volcanic aquifer is a large and valuable resource of potable and mineral water supply. Unfortunately, signs of anthropogenic impact, especially nitrogen contamination, have recently become evident. In this study, and for the first time, stable isotope ratios (δ15N and δ18O) of NO3 ? were determined in groundwater to identify their origins and evaluate the presence of transformation processes. The Mount Vulture groundwaters are meteoric in origin, as demonstrated by measurements of δD and δ18O, and can be divided into two distinct areas based on their NO3 ? content. In the southeastern area, characterized by active agricultural land use, the high NO3 ? content and the δ15N–NO3 isotopic values are due to anthropogenic contamination (inorganic fertilizer). In groundwaters from the western area, the NO3 ? contents below 4 mg/L and the δ15N–NO3 values can be associated at organic soil N. Evidence for local denitrification may be assumed in a few groundwater samples of the western area showing relatively heavy δ15N values and low concentrations of nitrate. Finally, the low measured δ18O values indicate that nitrification occurred in both investigated areas.  相似文献   

17.
Over the past decades, the Gujarat state of India experienced intensive agricultural and industrial activities, fertilizer consumption and abstraction of groundwater, which in turn has degraded the ground water quality. Protection of aquifers from nitrate pollution is a matter of prime concern for the planners and decision-makers. The present study assessed the spatial and temporal variation of groundwater nitrate levels in areas with different land use/land cover activities for both pre- and post-monsoon period. The pre-monsoon nitrate level (1.6–630.7 mg/L) in groundwater was observed to be higher as compared to the post-monsoon level (2.7–131.7 mg/L), possibly due to insufficient recharge and evaporation induced enrichment of agrichemical salts in groundwater. High HCO3 ? (200–1,000 mg/L) as well as SO4 2?/Cl? (0.111–0.992) in post-monsoon period provides a favourable environment for denitrification, and lower the NO3 levels during the post-monsoon period. The K vs NO3 scatter plot suggests a common source of these ions when the concentration is <5 mg/L, the relationships between different pollutants and nitrate also suggest that fertilizers and other sources, such as, animal waste, crop residue, septic tanks and effluents from different food processing units present in the area can be attributed to higher nitrate levels in the groundwater. Appropriate agronomic practices such as application of fertilizers based on calibrated soil tests and proper irrigation with respect to crop can minimize the requirement for inorganic fertilizers, which can bring down the cost of cultivation considerably, and also protect groundwater from further degradation.  相似文献   

18.
The identification of sources and behavior of contaminants is important to control and manage groundwater quality of aquifer systems in urban areas. In this study, hydrogeochemistry of major constituents and stable isotope ratios of nitrate in groundwater were determined to identify contamination sources and transformation processes occurring in soils and deeper groundwater of Beijing with intense human activities. The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from groundwater samples indicate at least three potential sources of nitrate in groundwaters at Beijing. Stable isotope analyses from this study site, which has atmospheric, chemical fertilizer and human waste nitrate sources, provide a tool to distinguish nitrate sources in a confined aquifer where concentrations alone do not. These data indicate that the most common sources of high nitrate concentrations in groundwater at Beijing are wastewater and denitrification process occurred specially in the Central area. NO3–N and cation and anion concentrations (Ca2+, Mg2+ Cl? and SO 4 2 ) showed strong correlations indicating that they originated from the same sources. This study demonstrates that a thorough evaluation of hydrodynamic and hydrochemical parameters with dual isotopes of NO3 ? constitutes an effective approach for identifying sources and transformation processes of NO3 ? in deeper groundwater systems.  相似文献   

19.
Analyses of groundwater samples collected from several locations in a small watershed of the Deccan Trap Hydrologic Province, indicated anomalously higher values of nitrate than the background. However, the NO3 concentrations in water from dug wells under pastureland where the subsurface material consisted of stony waste were minimum. The maximum values were reported for water from dug wells where the principal land use was agricultural. Lowering of NO3 values under shallow water-table conditions suggests denitrification. Higher concentrations of nitrate determined for samples collected from the wells with a deeper water-table indicate that denitrification process is inactive. The high values of nitrate coinciding with agricultural land use indicate fertilizers as the main source of nitrate pollution of ground-water. Decrease in Cl/NO3 ratio for agricultural land use confirms this inference.  相似文献   

20.
A diagnosis of the groundwater quality of 70 wells sampled during two climatic regimes (dry and raining seasons) from a semiarid area in Rajasthan, India, had been carried out using standard methods. Analysis of the results for various hydrochemical parameters wherein the geological units are alluvium, quartzite and granite gneisses showed that all the parameters did not fall within the World Health Organisation’s acceptable limits for irrigation and drinking water purposes. The order of major cations and anions obtained during the dry and raining seasons are Na+ ? Mg2+ ? Ca2+ ? K+ and Cl?? HCO3 ? ? SO4 2?? CO3 ?> F? ? NO3 ?, respectively. A maximum value of nitrate of 491.6 mg/l has been examined and its contamination is due to discriminated highly impacted groundwater samples by agricultural activity and small-scale urbanization. Fluoride (F?) concentration is 6.50 mg/l as a maximum value, whereas values in about 26 % of the samples are more than the permissible limit (1.5 mg/l) for drinking water. The cumulative probability distributions of the selected ions show two individual intersection points with three diverse segments, considered as regional threshold values and highly impacted threshold values for differentiating the samples with the effects of geogenic, anthropogenic and saline water mixing. The first threshold values indicate the background hydrochemical constituents in the study area. The second threshold value of 732 mg/l for bicarbonate indicates that sandy aquifer is being dissolved during wet period, whereas NO3 ? concentration of more than the initial threshold value (=75 mg/l) indicates discriminated highly impacted groundwater samples by agricultural activity and urbanization in dry season. Various parameters such as soluble sodium percentage (SSP), salinity (electrical conductivity (EC)), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), Kelley’s ratio (KR), permeability index (PI), residual sodium bicarbonate (RSB) and magnesium absorption ratio (MAR) for the well samples show that, overall, 46 % of groundwater samples are not suitable for irrigation. Further, chloro-alkaline indices (CAIs) were used for distinguishing regional recharge and discharge zones whereas corrosivity ratio (CR) utilized for demarcating areas to use metallic pipes for groundwater supply. In general, groundwater quality is mainly controlled by the chemical weathering of rock-forming minerals. The information obtained represents a base for future work that will help to assess the groundwater condition for periodical monitoring and managing the groundwater from further degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号