首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

2.
Summary. In this paper computer modelling is used to test simple approximations for simulating strong ground motions for moderate and large earthquakes in the Mexicali–Imperial Valley region. Initially, we represent an earthquake rupture process as a series of many independent small earthquakes distributed in a somewhat random manner in both space and time along the rupture surface. By summing real seismograms for small earthquakes (used as empirical Green's functions), strong ground motions at specific sites near a fault are calculated. Alternatively, theoretical Green's functions that include frequencies up to 20 Hz are used in essentially similar simulations. The model uses random numbers to emulate some of the non-deterministic irregularities associated with real earthquakes, due either to complexities in the rupture process itself and/or strong variations in the material properties of the medium. Simulations of the 1980 June 9 Victoria, Baja California earthquake ( M L= 6.1) approximately agree with the duration of shaking, the maximum ground acceleration, and the frequency content of strong ground motion records obtained at distances of up to 35 km for this moderate earthquake. In the initial stages of modelling we do not introduce any scaling of spectral shape with magnitude, in order to see at what stage the data require it. Surprisingly, such scaling is not critical in going from M = 4–5 events to the M = 6.1 Victoria earthquake. However, it is clearly required by the El Centro accelerogram for the Imperial Valley 1940 earthquake, which had a much higher moment ( Ms ∼ 7). We derive the spectral modification function for this event. The resulting model for this magnitude ∼ 7 earthquake is then used to predict the ground motions at short distances from the fault. Predicted peak horizontal accelerations for the M ∼ 7 event are about 25–50 per cent higher than those observed for the M = 6.1 Victoria event.  相似文献   

3.
Summary. The statistical capability of the m b: M s discriminant for the discrimination of earthquake and explosion populations is examined by application of discriminant functions to a group of 83 explosions and 72 earthquakes in Eurasia. Equations are derived for the probability that an event is an earthquake or an explosion. The positive sign of DIS in the decision index equation, DIS i = 34.3383 – 11.9569 mb t + 7.1161 M si , indicates that the event i is an earthquake. Its negative sign indicates that event i is an explosion. The probability of correct classification for an event, P i , is related to its DIS i value, by P i = [1-exp (DIS i )]−1, where a large, positive DIS indicates a high probability that an event is an earthquake and a large, negative DIS indicates a high probability that an event is an explosion. The discrimination line M s = 1.680 m b– 4.825, or m b= 0.595 M s+ 2.872 very successfully separates the explosion population from the earthquake population. The points on this line have an equal chance of being an earthquake or an explosion; moreover, for any event, the distance parallel to the M s-axis from the point representing that event in the m b: M s plane to this line is a measure of the probability for the correct classification of that event.  相似文献   

4.
Summary . Vertical component Rayleigh-wave amplitudes from 1461 shallow earthquakes recorded in the distance range 0–150° are analysed to separate the effects of earthquake size, epicentral distance (Δ) and recording station.
The estimated decay of amplitude with distance has the form of a theoretical curve for the decay of Rayleigh waves with distance if the assumption is made that the decay due to dispersion for the data analysed is that of an Airy phase. Writing the decay due to anelastic attenuation as exp (- k Δ), k is estimated to be 0.676/rad over the whole range of distance. If the distance effects are represented by a straight line of the form h log Δ+ constant, h is estimated to be 1.15. The calibration function for computing M s derived from the estimated distance effects is very similar to that of Marshall & Basham.
Station effects on Rayleigh-wave amplitudes though statistically significant are small, and can probably be ignored in the computation of M s.
Comparing the estimated surface-wave magnitudes (earthquake size) obtained in this study with the long and short period body-wave magnitudes ( m LPb and m SPb respectively) obtained by Booth, Marshall & Young for the same earthquake shows that m LPb is about equal to M s over the magnitude range of interest (˜4.0–7.0). The m LPb and Ms relationship shows that the greater the long-period energy radiated by an earthquake the smaller proportionately is the short-period energy.  相似文献   

5.
We present the results of body waveform modelling studies for 17 earthquakes of M w ≥5.7 occurring in the South Island, New Zealand region between 1918 and 1962, including the 1929 M s = 7.8 Buller earthquake, the largest earthquake to have occurred in the South Island this century. These studies confirm the concept of slip partitioning in the northern South Island between strike-slip faulting in southwestern Marlborough and reverse and strike-slip faulting in the Buller region, but indicate that the zone of reverse faulting is quite localized. In the central South Island, all historical earthquakes appear to be associated with strike-slip faulting, although recent (post-1991) reverse faulting events suggest that slip partitioning also occurs within this region. The difference between historical and recent seismicity in the central South Island may also reflect stress readjustment occurring in response to the 1717 ad rupture along the Alpine fault. Within the Fiordland region (southwestern South Island) none of the historical earthquakes appears to have occurred along the Australian/Pacific plate interface, but rather they are associated with complex deformation of the subducting plate as well as with deformation of the upper (Pacific) plate. Two earthquakes in the Puysegur Bank region south of the South Island suggest that strike-slip deformation east of the Puysegur Trench is playing a major role in the tectonics of the region.  相似文献   

6.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

7.
Summary. The Atlantic segment of the Africa–Europe plate boundary has usually been interpreted as a transform boundary on the basis of the bathymetric expression of the Gloria fault and dextral strike-slip first-motion mechanisms aligned along the Azores–Gibraltar line of seismicity. The 1975 May 26 earthquake ( M s=7.9) was assumed to fit into this framework because it occurred in the general area of this line and has a similar first-motion focal mechanism (strike=288°, dip=72°, slip angle=184°). However, several anomalies cast doubt on this picture: the event is abnormally large for an oceanic transform event; a sizeable tsunami was excited; the aftershock area is unusually small for such a large event; and most significantly, the epicentre is 200 km south of the presumed plate boundary. The Rayleigh wave radiation pattern indicates a change in focal mechanism to one with a significant dip-slip component. The short duration of the source time history (20 s, as deconvolved from long-period P -waves), the lack of directivity in the Rayleigh waves, and the small one-day aftershock area suggest a fault length less than 80 km. One nodal plane of the earthquake is approximately aligned with the trace of an ancient fracture zone.
We have compared the Pasadena 1-90 record of the 1975 earthquake to that of the 1941 North Atlantic strike-slip earthquake (200 km to the NNW) and confirmed the large size of the 1941 event ( M =8.2). The non-colinear relationship of the 1975 and 1941 events suggests that there is no well-defined plate boundary between the Azores and Gibraltar. This interpretation is supported by the intraplate nature of both the 1975 event and the large 1969 thrust event 650 km to the east. This study also implies that the largest oceanic strike-slip earthquakes occur in old lithosphere in a transitional tectonic regime.  相似文献   

8.
9.
The ability of seismological criteria to identify earthquakes from underground explosions depends partly on the orientation of the earthquake source. Well-determined double-couple moment tensor solutions for a large number of earthquakes have been published in the Harvard centroid moment tensor (CMT) and United Slates Geological Survey (USGS) catalogues. Statistical analyses of these catalogues indicate that the distribution of the orientation of earthquake mechanisms is not random. The distribution of the T axes shows significant clustering around the downward vertical, indicating that a larger number of earthquake mechanisms radiate compressional P -wave energy to teleseismic distances from near the maximum of the radiation pattern than is predicted if earthquake sources are randomly oriented double couples. The clustered T axes correspond to compressional dip-slip mechanisms, and it is this type of mechanism which is believed to cause both the m b: M s (the ratio of body-wave to surface-wave magnitude) and first-motion criteria to misidentify an earthquake as an explosion.  相似文献   

10.
The Pisco earthquake ( M w 8.0; 2007 August 15) occurred offshore of Peru's southern coast at the subduction interface between the Nazca and South American plates. It ruptured a previously identified seismic gap along the Peruvian margin. We use Wide Swath InSAR observations acquired by the Envisat satellite in descending and ascending orbits to constrain coseismic slip distribution of this subduction earthquake. The data show movement of the coastal regions by as much as 85 cm in the line-of-sight of the satellite. Distributed-slip model indicates that the coseismic slip reaches values of about 5.5 m at a depth of ∼18–20 km. The slip is confined to less than 40 km depth, with most of the moment release located on the shallow parts of the interface above 30 km depth. The region with maximum coseismic slip in the InSAR model is located offshore, close to the seismic moment centroid location. The geodetic estimate of seismic moment is 1.23 × 1021 Nm ( M w 8.06), consistent with seismic estimates. The slip model inferred from the InSAR observations suggests that the Pisco earthquake ruptured only a portion of the seismic gap zone in Peru between 13.5° S and 14.5° S, hence there is still a significant seismic gap to the south of the 2007 event that has not experienced a large earthquake since at least 1687.  相似文献   

11.
Summary. In order to separate the scattering effect from the intrinsic attenuation, we need a multiple scattering model for seismic wave propagation in random heterogeneous media. In this paper, we apply radiative transfer theory to seismic wave propagation and formulate in the frequency domain the energy density distribution in space for a point source. We consider the cases of isotropic scattering and strong forward scattering. Some numerical examples are shown. It is seen that the energy density–distance curves have quite different shapes depending on the values of medium seismic albedo B 0s/(ηsa) where ηs is the scattering coefficient and ηa is the absorption coefficient of the medium. For a high albedo ( B > 0.5) medium, the energy–distance curve is of arch shape and the position of the peak is a function of the extinction coefficient of the medium ηesa. Therefore it is possible to separate the scattering effect and the absorption based on the measured energy density distribution curves.  相似文献   

12.
Summary. A simple method is presented which combines the reciprocity theorem and the flat layer theory to yield teleseismic body wave radiation from seismic sources embedded in the Earth's crust. The source is represented by its equivalent body forces and can be quite general. The effect of Yucca Flat geology on explosion signals is studied in detail. In particular, the m b— M s relation is shown to be dependent on detonation medium and source depth. Application to shallow earthquake faults demonstrates the strong influence of free surface and layering on the shape of P- and S-wave teleseismic spectra.  相似文献   

13.
We invert surface-wave and geodetic data for the spatio-temporal complexity of slip during the M w =8.1 Chile 1995 event by simulated annealing. This quasi-global inversion method allows for a wide exploration of model space, and retains the non-linearity of the source tomography problem. Complex source spectra are obtained from 5 to 45 mHz from first- and second-orbit fundamental-mode Rayleigh waves using an empirical Green's function cross-correlation technique. Coseismic displacement vectors were measured at 10 GPS sites near Antofagasta. They are part of a French-Chilean experiment which monitors the Northern Chile seismic gap. The spectra, together with the geodetic data, are inverted for the moment distribution on a 2-D dipping fault, under the physical constraints of slip positivity and causality. Marginal a posteriori distributions of the model parameters are obtained from several independently inverted solutions. In general, features of the slip model are well resolved. Data are well fitted by a purely unilateral southward rupture with a nearly uniform velocity around 2.5–3.0 km s−1, and a total duration of 65 s. Several regions of moment release were imaged, one near the hypocentre, a major one 80 km south of it and a minor one 160 km south of it. The major patch of moment release seemed to have propagated to relatively shallow depths near the trench, 100 km SSW of the epicentre. The region of major slip is located updip of the 1987, M w =7.5 earthquake, suggesting a causal relationship. Most of the slip occurred updip of the hypocentre (36 km), but the entire coupled plate interface (20–40 km) ruptured during the Chile 1995 event.  相似文献   

14.
The Western Pyrenees presents a diffuse and moderate ( M ≤ 5.7) instrumental seismicity. It nevertheless historically suffered from strong earthquakes (I = IX MSK). The seismic sources of these events are not yet clearly identified. We focus on the Arudy (1980) epicentral area ( M = 5.1) and propose here the reactivation of early Cretaceous normal faults of the Iberian margin as a potential source. The late Cretaceous inversion of this basin, first in a left-lateral strike-slip mode and then in a more frontal convergence, resulted in a pop-up geometry. This flower structure attests of the presence of a deep crustal discontinuity.
The present-day geodynamic arrangement suggests that this accident is reactivated in a right lateral mode. This reactivation leads to a strain partitioning between the deep discontinuity that accommodates the lateral component of the motion and shallow thrusts, rooted on this discontinuity. These thrusts accommodate the shortening component of the strain. The distribution of the instrumental seismicity fits well the structural model of the Arudy basin. Whatever the compressive regional context, the structural behaviour of the system explains too the extensive stress tensor determined for the Arudy crisis if we interpret it in terms of strain ellipsoid. Indeed numerical modelling has shown that this concomitant activity of strike-slip and thrust faulting results in an extensive component that can rise 50 per cent of the finite strain.
We identify too a 25–30 km long potential seismic source for the Arudy area. The size of the structure and its potential reactivation in a strike-slip mode suggest that a maximum earthquake magnitude of ∼6.5 could be expected. The extrapolation of this model at the scale of the Western Pyrenees allows to propose other potential sources for major regional historical earthquakes.  相似文献   

15.
The Benevento region is part of the southern Apennines seismogenic belt, which experienced large destructive seismic events both in historical and in recent times. The study area lies at the northern end of the Irpinia fault, which ruptured in 1980 with a Ms = 6.9 normal faulting event, which caused about 3000 casualties. The aims of this paper are to image lateral heterogeneities in the upper crust of the Benevento region, and to try to identify the fault segments that are expected to generate such large earthquakes. This work is motivated by the recognition that lithological heterogeneities along major fault zones, inferred from velocity anomalies, reflect the presence of fault patches that behave differently during large rupture episodes. In this paper, we define the crustal structure of the Benevento region by using the background seismicity recorded during 1991 and 1992 by a local seismic array. These data offer a unique opportunity to investigate the presence of structural discontinuities of a major seismogenic zone before the occurrence of the next large earthquake. The main result that we obtained is the delineation of two NW-trending high-velocity zones (HVZs) in the upper crust beneath the Matese limestone massif. These high velocities are interpreted as high-strength regions that extend for 30-40 km down to at least 12 km depth. The correspondence of these HVZs with the maximum intensity regions of historical earthquakes (1688 AD, 1805 AD) suggests that these anomalies delineate the extent of two fault segments of the southern Apenninic belt capable of generating M = 6.5−7 earthquakes. The lateral offset observed between the two segments from tomographic results and isoseismal areas is possibly related to transverse right-lateral faults.  相似文献   

16.
It has long been known that S waves on seismograms of local explosions are often accompanied by strong low-frequency, low-velocity, Rg surface wave trains, often significantly diminished for earthquakes. We utilize this fact to construct a new formal discriminator between earthquakes and explosions by measuring the S -surface-wave group velocity. The method is based on analysing the velogram; that is, the display of the envelope of ground motion versus group velocity V = R/T , where R is the epicentral distance and T  the traveltime. We examine the distribution of seismic energy in time and space using envelopes of records from the Israel Seismic Network (ISN), from which we compute the velograms and observe differences in the velograms of quarry blasts and earthquakes. The data include 143 seismic events occurring in three areas (Galilee, Dead Sea, and Gilad) monitored by the ISN; the magnitude range is M L = 1.0–2.8 at distances of 15–310 km. From the velograms we measure the group velocity, V m s , within the 1–4 km s1 range at which the velogram reaches its maximum for each available station. The resulting V m s (R) function is closely fitted by the empirical relationship a + b  ln  R , with a and b coefficients varying from event to event. A simple linear function c = b + 0.33a at a threshold C = 0.69 completely separates ( a,b ) pairs for the 67 Galilee events, and, for the 76 remaining events, one earthquake and four explosions are wrongly classified. After data validation and application of the Fisher linear discriminator, adapted to the events from Galilee, only two misidentified events remain for the whole data set.  相似文献   

17.
Magnitude corrections for attenuation in the upper mantle   总被引:3,自引:0,他引:3  
Summary. The m b: M s relation for explosions at the Nevada Test Site (NTS) differs from those for explosions in other parts of the world. There is considerable evidence that this results mostly from high body-wave attenuation in the upper mantle beneath the western US. The authors have developed an empirical magnitude correction for body-wave attenuation and applied it to both source and receiver ends of the teleseismic body-wave path. The results imply that m b values are lower for NTS explosions than for Soviet explosions of comparable yield and seismic coupling. The authors have also developed and applied a source-depth correction to account for pP-P interference in the P -wave arrival.
The body-wave magnitude resulting from these corrections is designated mo to distinguish it from other definitions of m b. Values of mQ determined for a world-wide set of large explosions show that a single mQ : yield relation is a fair fit to the data for the explosions with high seismic coupling. However, grouping the explosions under two mQ :yield relations gives a better fit to the data.
All the studied explosions in salt or granite or below the water table fit a common M s:yield relation. Explosions from North America, Eurasia and Africa have a common mQ : M s relation.  相似文献   

18.
A highly significant seismic quiescence with a standard deviate Z = 10.1. corresponding to a 99 per cent confidence level, lasted from 1987.7 up to the 1990 February 20 Izu-Oshima M 6.5 earthquake. The quiescent volume had dimensions of 30 km N-S and 10 km E-W and was centred below 14 km depth. Within the recently upgraded seismograph network of the Earthquake Research Institute (ERI), this main shock was the only one with a magnitude M > 5.8 in the upper 30 km of the crust for which the precursory quiescence hypothesis could be tested. Within a radius of 50 km, and during the observation period (1983.5–1995.9), there were no other 1.5 yr or longer periods of quiescence that were rated Z > 6.5 in the declustered earthquake catalogue, except one that was associated with volcanic activity. The total space-time covered by alarms, including the volcanic one, was less than 1 per cent at the Z = 6.5 level. The rarity of highly significant episodes of quiescence, and the correlation in space and time suggest that a precursory seismic quiescence started 2.5 yr before the Izu-Oshima 1990 earthquake in its source volume and to the north of it, and that it can be recognized with an alarm level of Z = 6.0, generating no false alarms. During the 1.5 yr quiescence window, only 10 earthquakes occurred in the quiet volume, whereas 50 events were expected based on the rate seen at other times. In randomly selected volumes containing 50, 100 and 200 events, the anomaly scored Z = 6.1 to 10.1. On the basis of the data from May 1983 to 1995, there is no highly significant quiescence currently present in the Izu-Oshima area.  相似文献   

19.
We analysed aftershocks recorded by a temporary digital seismic network following the moderate M w = 5.5 1993, Scotts Mills, Oregon, earthquake. A technique to retrieve source moment tensors from local waveforms was developed, tested, and applied to 41 small earthquakes ( M w ranging from 1.6 to 3.2). The derived focal mechanisms, although well resolved, are highly variable and do not share a common nodal plane. In contrast, the majority of the events, relocated with a joint hypocentre determination algorithm, collapse to a well-focused plane. The incompatibility of the nodal planes of most events with the plane defined by their locations suggests that the aftershocks did not occur on the fault plane, but tightly around it, outlining the rupture area rather than defining it. Furthermore, the moment tensors reveal stable P -axes, whereas T  -axes plunges are highly dispersed. We detect a rotation of average T  -axis plunge with depth, indicating a change from shallower, predominantly dip-slip mechanisms to deeper strike-slip mechanisms. These characteristics are difficult to explain by remnant stress concentrations on the main-shock rupture plane or asperity- and barrier-type models. We suggest that the aftershocks occurred under the ambient regional stress, triggered by a sudden weakening of the region surrounding the main-shock slip, rather than from a shear stress increase due to the main shock.  相似文献   

20.
Large historical earthquakes in Italy define a prominent gap in the Pollino region of the southern Apennines. Geomorphic and palaeoseismological investigations in this region show that the Castrovillari fault (CF) is a major seismogenic source that could potentially fill the southern part of this gap. The surface expression of the CF is a complex, 10–13 km long set of prominent scarps. Trenches across one scarp indicate that at least four surface-faulting earthquakes have occurred along the CF since Late Pleistocene time, each producing at least 1 m of vertical displacement. The length of the fault and the slip per event suggest M =6.5-7.0 for the palaeoearthquakes. Preliminary radiocarbon dating coupled with historical considerations imply that the most recent of these earthquakes occurred between 380 BC and 1200 AD, and probably soon after 760 AD; no evidence for this event has been found in the historical record. We estimate a minimum recurrence interval of 1170 years and a vertical slip rate of 0.2-0.5 mm yr-1 for the CF, which indicates that the seismic behaviour of this fault is comparable to other major seismogenic faults of the central-southern Apennines. The lack of mention or the mislocation of the most recent event in the historical seismic memory of the Pollino region clearly shows that even in Italy, which has one of the longest historical records of seismicity, a seismic hazard assessment based solely on the historical record may not be completely reliable, and shows that geological investigations are critical for filling possible information gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号