首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Geochemical potential field is defined as the scope within the earth’s space where a given component in a certain phase of a certain material system is acted upon by a diffusion force, depending on its spatial coordinatesX, Y andZ. The three coordinates follow the relations: $$NF_{ix} = - \frac{{\partial \mu }}{{\partial x}}, NF_{iy} = - \frac{{\partial \mu }}{{\partial y}}, NF_{iz} = - \frac{{\partial \mu }}{{\partial z}}$$ The characteristics of such a field can be summarized as: (1) The summation of geochemical potentials related to the coordinatesX, Y, Z, or pseudo-velocity head, pseudo-pressure head and pseudo-potential head of a certain component in the earth is a constant as given by $$\mu _x + \mu _y + \mu _z = c$$ or $$\mu _{x2} + \mu _{y2} + \mu _{z2} = \mu _{x1} + \mu _{y1} + \mu _{z1} $$ Derived from these relations is the principle of geochemical potential conservation. The following relations have the same physical significance: $$\mu _k + \mu _u + \mu _p = c$$ or $$\mu _{k2} + \mu _{u2} + \mu _{p2} = \mu _{k1} + \mu _{u1} + \mu _{p1} $$ (2) Geochemical potential field is a vector field quantified by geochemical field intensity which is defined as the diffusion force applied to one molecular volume (or one atomic volume) of a certain component moving from its higher concentration phase to lower concentration phase. The geochemical potential field intensity is given by $$\begin{gathered} E = - grad\mu \hfill \\ E = \frac{{RT}}{x}i + \frac{{RT}}{y}j + \frac{{RT}}{z}K \hfill \\ \end{gathered} $$ The present theory has been inferred to interpret the mechanism of formation of some tungsten ore deposits in China.  相似文献   

2.
A great wealth of analytical data for fluid inclusions in minerals indicate that the major species of gases in fluid inclusions are H2O, CO2, CO, CH4, H2 and O2. Three basic chemical reactions are supposed to prevail in rock-forming and ore-forming fluids: $$\begin{gathered} H_2 + 1/2{\text{ O}}_{\text{2}} = H_2 O, \hfill \\ CO + 1/2{\text{ O}}_{\text{2}} = CO_2 , \hfill \\ CH_4 + 2{\text{O}}_{\text{2}} = CO_2 + 2H_2 O, \hfill \\ \end{gathered} $$ and equilibria are reached among them. \(\lg f_{O_2 } - T,{\text{ }}\lg f_{CO_2 } - T\) and Eh-T charts for petrogenesis and minerogenesis in the supercritical state have been plotted under different pressures. On the basis of these charts \(f_{O^2 } ,{\text{ }}f_{CO_2 } \) , Eh, equilibrium temperature and equilibrium pressure can be readily calculated. In this paper some examples are presented to show their successful application in the study of the ore-forming environments of ore deposits.  相似文献   

3.
We evaluate balanced metasomatic reactions and model coupled reactive and isotopic transport at a carbonatite-gneiss contact at Alnö, Sweden. We interpret structurally channelled fluid flow along the carbonatite-gneiss contact at ~640°C. This caused (1) metasomatism of the gneiss, by the reaction: ${\hbox{biotite} + \hbox{quartz} + \hbox{oligoclase} + \hbox{K}_{2} \hbox{O} +\,\hbox{Na}_{2}\hbox{O} \pm \hbox{CaO} \pm \hbox{MgO} \pm \hbox{FeO} = \hbox{albite} + \hbox{K-feldspar} + \hbox{arfvedsonite} + \hbox{aegirene-}\hbox{augite} + \hbox{H}_{2} \hbox{O} + \hbox{SiO}_{2}}We evaluate balanced metasomatic reactions and model coupled reactive and isotopic transport at a carbonatite-gneiss contact at Aln?, Sweden. We interpret structurally channelled fluid flow along the carbonatite-gneiss contact at ∼640°C. This caused (1) metasomatism of the gneiss, by the reaction: , (2) metasomatism of carbonatite by the reaction: calcite + SiO2 = wollastonite + CO2, and (3) isotopic homogenization of the metasomatised region. We suggest that reactive weakening caused the metasomatised region to widen and that the metasomatic reactions are chemically (and possibly mechanically) coupled. Spatial separation of reaction and isotope fronts in the carbonatite conforms to a chromatographic model which assumes local calcite–fluid equilibrium, yields a timescale of 102–104 years for fluid–rock interaction and confirms that chemical transport towards the carbonatite interior was mainly by diffusion. We conclude that most silicate phases present in the studied carbonatite were acquired by corrosion and assimilation of ijolite, as a reactive by-product of this process and by metasomatism. The carbonatite was thus a relatively pure calcite–H2O−CO2–salt melt or fluid.  相似文献   

4.
The complexation between gold and silica was experimentally, confirmed and calibrated at 200 °C: $$\begin{gathered} Au^ + + H_3 SiO_4^ - \rightleftharpoons AuH_3 SiO_4^0 \hfill \\ \log K_{(200^\circ C)} = 19.26 \pm 0.4 \hfill \\ \end{gathered} $$ Thermodynamic calculations show that AuH3SiO 4 0 would be far more abundant than AuCl 2 ? under physicochemical conditions of geological interest, suggesting that silica is much more important than chloride as ligands for gold transport. In systems containing both sulfur and silica, AuH3SiO 4 0 would be increasingly more important than Au (HS) 2 ? as the proportion of SiO2 in the system increases. The dissolution of gold in aqueous SiO2 solutions can be described by the reaction: $$\begin{gathered} Au + 1/4O_2 + H_4 SiO_4^0 \rightleftharpoons AuH_3 SiO_4^0 + 1/2H_2 O \hfill \\ log K_{(200^\circ C)} = 6.23 \hfill \\ \end{gathered} $$ which indicates that SiO2 precipitation is an effective mechanism governing gold deposition, and thus explains the close association of silicification and gold mineralization.  相似文献   

5.
Data systematization using the constraints from the equation $$Cp = Cv + \alpha _P {}^2V_T K_T T$$ where C p, C v, α p, K T and V are respectively heat capacity at constant pressure, heat capacity at constant volume, isobaric thermal expansion, isothermal bulk modulus and molar volume, has been performed for tungsten and MgO. The data are $$K_T (W) = 1E - 5/(3.1575E - 12 + 1.6E - 16T + 3.1E - 20T^2 )$$ $$\alpha _P (W) = 9.386E - 6 + 5.51E - 9T$$ $$C_P (W) = 24.1 + 3.872E - 3T - 12.42E - 7T^2 + 63.96E - 11T^3 - 89000T^{ - 2} $$ $$K_T (MgO) = 1/(0.59506E - 6 + 0.82334E - 10T + 0.32639E - 13T^2 + 0.10179E - 17T^3 $$ $$\alpha _P (MgO) = 0.3754E - 4 + 0.7907E - 8T - 0.7836/T^2 + 0.9148/T^3 $$ $$C_P (MgO) = 43.65 + 0.54303E - 2T - 0.16692E7T^{ - 2} + 0.32903E4T^{ - 1} - 5.34791E - 8T^2 $$ For the calculation of pressure-volume-temperature relation, a high temperature form of the Birch-Murnaghan equation is proposed $$P = 3K_T (1 + 2f)^{5/2} (1 + 2\xi f)$$ Where $$K_T = 1/(b_0 + b_1 T + b_2 T^2 + b_3 T^3 )$$ $$f = (1/2)\{ [V(1,T)/V(P,T)]^{2/3} - 1\} $$ $$\xi = ({3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-\nulldelimiterspace} 4})[K'_0 + K'_1 \ln ({T \mathord{\left/ {\vphantom {T {300}}} \right. \kern-\nulldelimiterspace} {300}}) - 4]$$ where in turn $$V(1,T) = V_0 [\exp (\int\limits_{300}^T {\alpha dT)]} $$ . The temperature dependence of the pressure derivative of the bulk modulus (K′1) is estimated by using the shock-wave data. For tungsten the data are K′0 = 3.5434, K′1 = 0.032; for MgO K′0 = 4.17 and K′1 = 0.1667. For calculating the Gibbs free energy of a solid at high pressure and at temperatures beyond that of melting at 1 atmosphere, it is necessary to define a high-temperature reference state for the fictive solid.  相似文献   

6.
The enthalpy of formation of andradite (Ca3Fe2Si3O12) has been estimated as-5,769.700 (±5) kJ/mol from a consideration of the calorimetric data on entropy (316.4 J/mol K) and of the experimental phaseequilibrium data on the reactions: 1 $$\begin{gathered} 9/2 CaFeSi_2 O_6 + O_2 = 3/2 Ca_3 Fe_2 Si_3 O_{12} + 1/2 Fe_3 O_4 + 9/2 SiO_2 (a) \hfill \\ Hedenbergite andradite magnetite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 4 CaFeSi_2 O_6 + 2 CaSiO_3 + O_2 = 2 Ca_3 Fe_2 Si_3 O_{12} + 4 SiO_2 (b) \hfill \\ Hedenbergite wollastonite andradite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 18 CaSiO_3 + 4 Fe_3 O_4 + O_2 = 6Ca_3 Fe_2 Si_3 O_{12} (c) \hfill \\ Wollastonite magnetite andradite \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} Ca_3 Fe_2 Si_3 O_{12} = 3 CaSiO_3 + Fe_2 O_3 . (d) \hfill \\ Andradite pseudowollastonite hematite \hfill \\ \end{gathered} $$ and $$log f_{O_2 } = E + A + B/T + D(P - 1)/T + C log f_{O_2 } .$$ Oxygen-barometric scales are presented as follows: $$\begin{gathered} E = 12.51; D = 0.078; \hfill \\ A = 3 log X_{Ad} - 4.5 log X_{Hd} ; C = 0; \hfill \\ B = - 27,576 - 1,007(1 - X_{Ad} )^2 - 1,476(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite (Ad)-hedenbergite (Hd)-magnetite-quartz: $$\begin{gathered} E = 13.98; D = 0.0081; \hfill \\ A = 4 log(X_{Ad} / X_{Hd} ); C = 0; \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-quartz: 1 $$\begin{gathered} E = 13.98;{\text{ }}D = 0.0081; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 0;}} \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-calcitequartz: 1 $$\begin{gathered} E = - 1.69;{\text{ }}D = - 0.199; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 2;}} \hfill \\ B = - 20,441 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-calcite: 1 $$\begin{gathered} E = - 17.36;{\text{ }}D = - 0.403; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 4;}} \hfill \\ B = - 11,720 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 \hfill \\ \end{gathered} $$ The oxygen fugacity of formation of those skarns where andradite and hedenbergite assemblage is typical can be calculated by using the above equations. The oxygen fugacity of formation of this kind of skarn ranges between carbon dioxide/graphite and hematite/magnetite buffers. It increases from the inside zones to the outside zones, and appears to decrease with the ore-types in the order Cu, Pb?Zn, Fe, Mo, W(Sn) ore deposits.  相似文献   

7.
The equilibrium $${\text{(1}} - y{\text{)Fe}}_{(s)} + \tfrac{{\text{1}}}{{\text{2}}}{\text{O}}_{{\text{2(g)}}} \rightleftarrows {\text{Fe}}_{{\text{1}} - y} {\text{O}}_{{\text{(}}s,{\text{ in MW)}}} $$ was studied by measuring oxygen potentials for a range of different magnesiowüstite compositions relative to those of the iron-wüstite system in an oxygen concentration cell involving yttria stabilized zirconia as the solid electrolyte. The temperature range covered was 1050 to 1400 K. Separate measurements of the mole fraction of trivalent iron in magnesiowüstite (x(Fe3+)) were made and the composition dependence ofx(Fe3+) was taken into account in calculations of the activity-composition relations of FeO, Fe2/3O and MgO.  相似文献   

8.
Coherency stress and coherency strain energy generated by Na+?K+ ion exchange in alkali feldspars are calculated using an isotropic model, and deformation of single crystals of alkali feldspars exposed to molten alkali chlorides at \(P_{H_2 O} \) < 1 bar is described. Coherency stress in alkali feldspars can reach 10–20 kb. When it is large, partial relaxation by fracture and/or plastic deformation takes place under anhydrous conditions, but temporary build-up of stress is unavoidable even under hydrothermal conditions. Because of coherency strain energy, a thin layer of an end-member alkali feldspar produced by cation exchange on a grain of the other end-member alkali feldspar would be unstable with respect to dissolution. Therefore, under hydrothermal conditions one end-member alkali feldspar replaces the other by dissolution and precipitation. The mechanism of the reaction $$Na_x K_{1 - x} AlSi_3 O_{8_{(feld.)} } + yK^ + \rightleftharpoons Na_{x - y} K_{1 + y - x} AlSi_3 O_{8_{(feld.)} } + yNa^ + $$ is primarily controlled by \(P_{H_2 O} \) and by ΔK/(Na + K), the difference between the equilibrium value and the initial value of the atomic K/(Na + K) ratio of the feldspar. When ¦ΔK/(Na + K)¦ is small, the reaction proceeds by cation exchange. When ¦ΔK/(Na + K)¦ is large, cation exchange still occurs if \(P_{H_2 O} \) is very low, but under hydrothermal conditions replacement by dissolution and precipitation occurs.  相似文献   

9.
Oxygen isotope fractionation between rutile and water   总被引:1,自引:0,他引:1  
Synthetic rutile-water fractionations (1000 ln α) at 775, 675, and 575° C were found to be ?2.8, ?3.5, and ?4.8, respectively. Partial exchange experiments with natural rutile at 575° C and with synthetic rutile at 475° C failed to yield reliable fractionations. Isotopic fractionation within the range 575–775° C may be expressed as follows: 1 $$1000\ln \alpha ({\rm T}i{\rm O}_{2 } - H_2 O) = - 4.1 \frac{{10^6 }}{{T_{k^2 } }} + 0.96$$ . Combined with previously determined quartz-water fractionations, the above data permit calibration of the quartz-rutile geothermometer: 1 $$1000\ln \alpha ({\text{S}}i{\rm O}_{2 } - Ti{\rm O}_{2 } ) = 6.6 \frac{{10^6 }}{{T_{k^2 } }} - 2.9$$ . When applied to B-type eclogites from Europe, as an example, the latter equation yields a mean equilibration temperature of 565° C.  相似文献   

10.
The Naqadeh mafic plutonic rocks are located on a plutonic assemblage and include different granitoid rocks related to ~40 Ma. U-Pb SHRIMP data shows different ages of 96?±?2.3 Ma for mafic rocks. Naqadeh mafic plutonic rocks consist of diorite to diorite-gabbros with relatively high contents of incompatible elements, low Na2O, and $ {\hbox{Mg\# }} = \left[ {{\hbox{molar}}\;{100} \times {\hbox{MgO/}}\left( {{\hbox{MgO}} + {\hbox{FeO}}} \right)} \right] > 44.0 $ . These features suggest that the Naqadeh mafic rocks originate from enriched lithospheric mantle above subducted slab during Neotethys subduction under Iranian plate.  相似文献   

11.
Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030–1,600° C and 10–28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): $$\begin{gathered} RT{\text{ln(}}X_{{\text{MgTs}}} {\text{/}}X_{{\text{En}}} {\text{) + 29,190}} - {\text{13}}{\text{.42 }}T + 0.18{\text{ }}T + 0.18{\text{ }}T^{1.5} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [0.013 + 3.34 \times 10^{ - 5} (T - 298) - 6.6 \times 10^{ - 7} P]P. \hfill \\ \end{gathered} $$ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: $$\begin{gathered} - RT{\text{ln(}}X_{{\text{MgTs}}} \cdot X_{{\text{En}}} {\text{) + 5,510}} - 88.91{\text{ }}T + 19{\text{ }}T^{1.2} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [ - 0.832 - 8.78{\text{ }} \times {\text{ 10}}^{ - {\text{5}}} (T - 298) + 16.6{\text{ }} \times {\text{ 10}}^{ - 7} P]{\text{ }}P. \hfill \\ \end{gathered} $$ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: $$H_{f,970}^0 = - 4.77{\text{ kJ/mol, }}S_{298}^0 = 129.44{\text{ J/mol}} \cdot {\text{K,}}$$ and $$V_{298,1}^0 = 58.88{\text{ cm}}^{\text{3}} .$$ The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent orthopyroxene and spinel. An ideal two-site mixing model for pyroxene and Sack's (1982) expressions for spinel activities provide, with the present experimental calibration, a geothermometer which yields temperatures of 800° C to 1,350° C for various alpine peridotites and 850° C to 1,130° C for various volcanic inclusions of upper mantle origin.  相似文献   

12.
The linear thermal expansions of åkermanite (Ca2MgSi2O7) and hardystonite (Ca2ZnSi2O7) have been measured across the normal-incommensurate phase transition for both materials. Least-squares fitting of the high temperature (normal phase) data yields expressions linear in T for the coefficients of instantaneous linear thermal expansion, $$\alpha _1 = \frac{1}{l}\frac{{dl}}{{dT}}$$ for åkermanite: $$\begin{gathered} \alpha _{[100]} = 6.901(2) \times 10^{ - 6} + 1.834(2) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 2.856(1) \times 10^{ - 6} + 11.280(1) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ for hardystonite: $$\begin{gathered} \alpha _{[100]} = 15.562(5) \times 10^{ - 6} - 1.478(3) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 11.115(5) \times 10^{ - 6} + 11.326(3) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ Although there is considerable strain for temperatures within 10° C of the phase transition, suggestive of a high-order phase transition, there appears to be a finite ΔV of transition, and the phase transition is classed as “weakly first order”.  相似文献   

13.
The standard enthalpies of formation of FeS (troilite), FeS2 (pyrite), Co0.9342S, Co3S4 (linnaeite), Co9S8 (cobalt pentlandite), CoS2 (cattierite), CuS (covellite), and Cu2S (chalcocite) have been determined by high temperature direct reaction calorimetry at temperatures between 700 K and 1021 K. The following results are reported: $$\Delta {\rm H}_{f,FeS}^{tr} = - 102.59 \pm 0.20kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,FeS}^{py} = - 171.64 \pm 0.93kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_{0.934} S} = - 99.42 \pm 1.52kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_9 S_8 }^{ptl} = - 885.66 \pm 16.83kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_3 S_4 }^{In} = - 347.47 \pm 7.27kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,CoS_2 }^{ct} = - 150.94 \pm 4.85kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Cu_2 S}^{cc} = - 80.21 \pm 1.51kJ mol^{ - 1} ,$$ and $$\Delta {\rm H}_{f,CuS}^{cv} = - 53.14 \pm 2.28kJ mol^{ - 1} ,$$ The enthalpy of formation of CuFeS2 (chalcopyrite) from (CuS+FeS) and from (Cu+FeS2) was determined by solution calorimetry in a liquid Ni0.60S0.40 melt at 1100 K. The results of these measurements were combined with the standard enthalpies of formation of CuS, FeS, and FeS2, to calculate the standard enthalpy of formation of CuFeS2. We found \(\Delta {\rm H}_{f,CuFeS_2 }^{ccp} = - 194.93 \pm 4.84kJ mol^{ - 1}\) . Our results are compared with earlier data given in the literature; generally the agreement is good and our values agree with previous estimates within the uncertainties present in both.  相似文献   

14.
The chemical composition of 2188 terrestrial igneous rocks ranging from ultrabasic to granitic composition was analyzed statistically using the method of factor analysis (principal components). The resultant first and second factors were: $$\begin{gathered} {\text{ }}F_1 = 0.933{\text{ Na}}_{\text{2}} {\text{O + 0}}{\text{.143 SiO}}_{\text{2}} + 0.206{\text{ K}}_{\text{2}} {\text{O}} - 0.346{\text{ CaO}} - 0.263{\text{ MgO}} - \hfill \\ .203{\text{ FeO}} \pm \cdot \cdot \cdot \hfill \\ {\text{ }}F_2 = 0.979{\text{ Al}}_{\text{2}} {\text{O}}_{\text{3}} - 0.269{\text{ MgO}} - 0.151{\text{ SiO}}_{\text{2}} - 0.112{\text{ FeO}} \pm \cdot \cdot \cdot \hfill \\ \end{gathered} $$ where oxides are in weight percent. A plot of the first factor against the second results in a useful igneous variation diagram. When the compositions of the 2188 terrestrial rocks and 604 lunar rocks are plotted on this diagram, the two groups of rocks are clearly separated within an albite-anorthite-forsterite-fayalite-quartz polygon. None of the terrestrial differentiation trends are significant for lunar rocks. The major difference in the chemistry of lunar and terrestrial rocks lies in the former being albite poor. Removal of most of the albite from the compositions of terrestrial layered intrusives such as the Skaergaard results in an excellent match between the compositions of the two groups of rocks. Albite subtracted compositions of Skaergaard rocks in particular cover the entire range of chemical variation in the lunar rocks. The statistical results prompt us to speculate further on the similarity of the moon and Skaergaard. We note that the average composition of the moon (Wanke et al., 1974) is similar to the albite subtracted composition of the Skaergaard magma. The lunar crust and a significant part of the lunar interior may match the albite subtracted and somewhat Mg enriched Skaergaard magma.  相似文献   

15.
Reactions involving the phases quartz-rhodochrosite-tephroite-pyroxmangite-fluid have been studied experimentally in the system MnO-SiO2-CO2-H2O at a pressure of 2 000 bars and resulted in the following expressions 1 $$\begin{gathered} {\text{Rhodochrosite + Quartz = Pyroxmangite + CO}}_2 \hfill \\ {\text{ log}}_{{\text{10}}} K^{{\text{2000 bars}}} = - \frac{{11.765}}{T} + 18.618. \hfill \\ {\text{Rhodochrosite + Pyroxmangite = Tephroite + CO}}_2 \hfill \\ {\text{ log}}_{{\text{10}}} K^{{\text{2000 bars}}} = - \frac{{7.083}}{T} + 11.870. \hfill \\ \end{gathered}$$ which can be used to derive data for the remaining two reactions among the phases under consideration. Field data from the Alps are in agreement with the metamorphic sequence resulting from the experiments.  相似文献   

16.
For the reaction: 1 diopside+3 dolomite ?2 forsterite+4 calcite+2 CO2 (14) the following P total?T-brackets have been determined experimentally in the presence of a gasphase consisting of 90 mole%CO2 and 10 mole%H2O∶1 kb, 544°±20° C; 3kb, 638°±15° C; 5kb, 708°±10° C; 10kb, 861°±10° C. The determination was carried out with well defined synthetic minerals in the starting mixture. The MgCO3-contents of the magnesian calcites formed by the reaction in equilibrium with dolomite agree very well with the calcite-dolomite miscibility gap, which can be recalculated from the activities and the activity coefficients of MgCO3 as given by Gordon and Greenwood (1970). The equilibrium constant K 14b was calculated with respect to the reference pressure P 0=1 bar using the experimentally determined \(P_{total} TX_{CO_2 }\) brackets, the activities of MgCO3 and CaCO3 (Gordon and Greenwood 1970; Skippen 1974) and the fugacities of CO2 Holloway (1977) considering the correction of Flowers (1979). Results are plotted as function of the absolute reciprocal temperature in Fig. 1. For the temperature range of 530° to 750° C the following linear expression can be given for the natural logarithm of K14b: (g) $$[ln K_{14b} ]_T^P = - \frac{{18064.43}}{{T\left( {^\circ K} \right)}} + 38.58 + \frac{{0.308(P - 1 bar)}}{{T\left( {^\circ K} \right)}}$$ where P is the total pressure in bars and T the temperature in degrees Kelvin. Combining Equation (g) with the activities of MgCO3 and CaCO3 gives the equilibrium fugacity \(f_{CO_2 }\) : (i) $$[ln f_{CO_2 } ]_T^P = - \frac{{11635.44}}{{T\left( {^\circ K} \right)}} + 21.09 + \frac{{0.154(P - 1 bar)}}{{T\left( {^\circ K} \right)}}$$ Equation (i) and the fugacities of CO2 permit to calculate the equilibrium data in terms of \(P_{CO_2 }\) and T (see Fig. 3) or P total, T and \(X_{CO_2 }\) (see Fig. 5). Combining the \(P_{total} TX_{CO_2 }\) equilibrium data of the above reaction with those of the previously investigated reaction (Metz 1976): 1 tremolite+11 dolomite ?8 forsterite+13 calcite+9 CO2+1 H2O yields the stability conditions of the four-mineral assemblage: diopside+calcian dolomite+forsterite +magnesian calcite and the stability conditions of the five-mineral assemblage: tremolite+calcian dolomite+forsterite +magnesian calcite+diopside both shown in Fig. 6. Since these assemblages are by no means rare in metamorphic siliceous dolomites (Trommsdorff 1972; Suzuki 1977; Puhan 1979) the data of Fig. 6 can be used to determine the pressure of metamorphism and to estimate the composition of the CO2-H2O fluid provided the temperature of the metamorphic event was determined using the calcite-dolomite geothermometer.  相似文献   

17.
Piemontite- and thulite-bearing assemblages from highly oxidized metapelitic and metacalcareous schists associated with braunite quartzites at Vitali, Andros island, Greece, were chemically investigated. The Mn-rich metasediments are intercalated in a series of metapelitic quartzose schists, marbles, and basic metavolcanites which were affected by a regional metamorphism of the highP/T type (T=400–500° C,P>9 kb) and a later Barrovian-type greenschist metamorphism (T=400–500° C,P~-5–6 kb). Texturally and chemically two generations of piemontite (I and II) can be distinguished which may show complex compositional zoning. Piemontite I coexisted at highP/T conditions with braunite, manganian phengite (alurgite), Mn3+-Mn2+-bearing Na-pyroxene (violan), carbonate, quartz, hollandite, and hematite. Zoned grains generally exhibit a decreasing Mn3+ and an increasing Fe3+ and Al content towards the rim. Chemical compositions of piemontite I range from 2.0 to 32.1 mole % Mn3+, 0 to 25.6 mole % Fe3+, and 60.2 to 81.2 mole % Al. Up to 12.5 mole % Ca on the A(2) site can be substituted by Sr. Piemontites formed in contact or close to braunite (±hematite) attained maximum (Mn3++Fe3+)Al?1 substitution corrresponding to about 33 mole % Mn3++Fe3+ in lowiron compositions and up to about 39 mole % Mn3++ Fe3+ at intermediate Fe3+/(Fe3++Mn3+) ratios. Piemontite II which discontinuously overgrows piemontite I or occurs as separate grains may have been formed by greenschist facies decomposition of manganian Na-pyroxenes according to the reaction: (1) $$\begin{gathered} {\text{Mn}}^{{\text{3 + }}} - Mn^{2 + } - bearing omphacite/chloromelanite \hfill \\ + CO_2 + H_2 O + HCl \pm hermatite \hfill \\ = piemontite + tremolite + albite + chlorite \hfill \\ + calcite + quartz + NaCl \pm O_2 . \hfill \\ \end{gathered} $$ Thulites crystallized in coexistence with Al-rich piemontite II. All thulites analysed are low-Fe3+ manganian orthozoisites with Mntot~-Mn3+ substituting for Al on the M(3) site. Their compositions range from 2.9 to 7.2 mole % Mn3+, 0 to 1.2 mole % Fe3+, and 91.8 to 96.7 mole % Al. Piemontites II in thulite-bearing assemblages range from 5.8 to 15.9 mole % Mn3+, 0 to 3.7 mole % Fe3+, and 83.7 to 93.6 mole % Al. By contrast, piemontites II in thulite-free assemblages are similarly enriched in Mn3+ + Fe3+ — and partially in Sr2+ — as core compositions of piemontite I (21.1 to 29.6 mole % Mn3+, 2.0 to 16.5 mole % Fe3+, 60.6 to 68.4 mole % Al, 0 to 29.4 mole % Sr in the A(2) site). The analytical data presented in this paper document for the first time a continuous low-Fe3+ piemontite solid solution series from 5.8 to 32.1 mole % Mn3+. Aluminous piemontite II is enriched by about 3 mole % Mn3++Fe3+ relative to coexisting thulite in Fe3+-poor samples and by about 6 mole % Mn3++Fe3+ in more Fe3+-rich samples. Mineral pairs from different samples form a continuous compositional loop. Compositional shift of mineral pairs is attributed to the effect of a variable fluid composition at constantP fluid andT on the continuous reaction: (2) $$\begin{gathered} piemontite + CO_2 \hfill \\ = thulite + calcite + quartz \hfill \\ + Mn^{2 + } Ca_{ - 1} [calcite] + H{_2} O + O{_2} \hfill \\ \end{gathered} $$ Further evidence for a variable \(x_{H_2 O} \) and/or \(f_{O_2 } \) possibly resulting from fluid infiltration and local buffering during the greenschist metamorphism is derived from the local decomposition of piemontite, braunite, and rutile to form spessartine, calcite, titanite, and hematite by the reactions: (3) $$\begin{gathered} piemontite + braunite + CO_2 \hfill \\ = sperssartine + calcite + quartz \pm hermatite \hfill \\ + H{_2} O + O{_2} \hfill \\ \end{gathered} $$ and more rarely: (4) $$\begin{gathered} piemontite + quartz + rutile + braunite \hfill \\ = spessartine + titanite + hematite + H{_2} O + O{_2} . \hfill \\ \end{gathered} $$   相似文献   

18.
The system Fe-Si-O: Oxygen buffer calibrations to 1,500K   总被引:1,自引:0,他引:1  
The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ΔG r o , ΔH r o , and ΔS r o were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\) /T relations (T in K): $$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T? \(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.  相似文献   

19.
Experimental exchanges between plagioclases (synthesized from gels) and aqueous solutions (0.5N–8N) were carried out according to the reaction $$\begin{gathered} 2NaA1Si_3 O_8 + CaC1_2 \hfill \\ \leftrightarrow CaA1_2 Si_2 O_8 + 4SiO_2 + 2NaC1. \hfill \\ \end{gathered}$$ Distribution coefficients defined by $$K_D = \frac{{X_{An} }}{{(X_{Ab} )^2 }}\frac{{(X_{NaC1} )^2 }}{{X_{CaC1_2 } }}$$ were determined at 700° C and 1 kbar. From previous studies it is known that variations in the concentration of the aqueous solutions have no influence upon K D if the fluid is a single phase. In this study, variation of K D with the concentration of the solutions is interpreted as the result of fluid unmixing to vapour and brine phases. This implies boiling of CaCl2-NaCl-H2O fluids analogous to that known for the system NaCl-H2O. Experimental data permit calculation of the compositions of vapours and estimation of those of the brines for fluids in which Ca/Na<0.5. Boiling has an effect upon the exchange between feldspars and solutions (metasomatism) and must be considered when determining the activity coefficients.  相似文献   

20.
Understanding the identity and stability of the hydrolysis products of metals is required in order to predict their behavior in natural aquatic systems. Despite this need, the hydrolysis constants of many metals are only known over a limited range of temperature and ionic strengths. In this paper, we show that the hydrolysis constants of 31 metals [i.e. Mn(II), Cr(III), U(IV), Pu(IV)] are nearly linearly related to the values for Al(III) over a wide range of temperatures and ionic strengths. These linear correlations allow one to make reasonable estimates for the hydrolysis constants of +2, +3, and +4 metals from 0 to 300°C in dilute solutions and 0 to 100°C to 5 m in NaCl solutions. These correlations in pure water are related to the differences between the free energies of the free ion and complexes being almost equal $$ \Updelta {\text{G}}^\circ \left( {{\text{Al}}^{3 + } } \right) - \Updelta {\text{G}}^\circ \left( {{\text{Al}}\left( {\text{OH}} \right)_{j}^{{\left( {3 - j} \right)}} } \right) \cong \Updelta {\text{G}}^\circ \left( {{\text{M}}^{n + } } \right) - \Updelta {\text{G}}^\circ \left( {{\text{M}}\left( {\text{OH}} \right)_{j}^{{\left( {n - j} \right)}} } \right) $$ The correlation at higher temperatures is a result of a similar relationship between the enthalpies of the free ions and complexes $$ \Updelta {\text{H}}^\circ \left( {{\text{Al}}^{3 + } } \right) - \Updelta {\text{H}}^\circ \left( {{\text{Al}}\left( {\text{OH}} \right)_{j}^{3 - j} } \right) \cong \Updelta {\text{H}}^\circ \left( {{\text{M}}^{n + } } \right) - \Updelta {\text{H}}^\circ \left( {{\text{M}}\left( {\text{OH}} \right)_{j}^{n - j} } \right) $$ The correlations at higher ionic strengths are the result of the ratio of the activity coefficients for Al(III) being almost equal to that of the metal. $$ \gamma \left( {{\text{M}}^{n + } } \right)/\gamma \left( {{\text{M}}\left( {\text{OH}} \right)_{j}^{n - j} } \right) \cong \gamma \left( {{\text{Al}}^{3 + } } \right)/\gamma \left( {{\text{Al}}\left( {\text{OH}} \right)_{j}^{3 - j} } \right) $$ The results of this study should be useful in examining the speciation of metals as a function of pH in natural waters (e.g. hydrothermal fresh waters and NaCl brines).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号