首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two natural clinopyroxene single crystals were investigated, an aegirine-augite (AEG) and a magnesian hedenbergite (HED). Both samples were carefully characterized by electron microprobe, X-ray diffraction, and Mössbauer spectroscopy. Magnetic susceptibility measurements of powdered samples reveal low temperature antiferromagnetic coupling and Curie-Weiss behaviour with T N =7.5(5)?K, Θ P =?19(1)?K for AEG, and T N =31(1)?K, Θ P =+21(1)?K for HED, respectively. Low temperature Mössbauer spectra exhibit relaxation phenomena. Magnetic susceptibility measurements of the single crystals show the direction of the magnetic moments to be lying within the a/c plane for both samples: 50(±2)° from a and 57(±2)° from c in AEG, and 45(±2)° from a and 60(±2)° from c in HED, respectively. The antiferromagnetic interchain interaction competes with the ferromagnetic intrachain interaction in both pyroxenes. In the magnesian hedenbergite a field induced magnetic transition is found. Its dependence on temperature, magnetic field and crystallographic direction is investigated and described.  相似文献   

2.
Polycrystalline material of a sulfate apatite with chemical composition Na6Ca4(SO4)6F2 or (Na2Ca4)Na4(SO4)6F2 has been synthesized by solid state reactions. Basic crystallographic data are as follows: hexagonal symmetry, a?=?9.3976(1) Å, c?=?6.8956(1) Å, V?=?527.39(1) Å3, Z?=?1, space group P63/m. For structural investigations the Rietveld method was employed. Thermal expansion has been studied between 25 and 600 °C. High temperature (HT) powder diffraction data as well as thermal analysis indicate that the apatite-type compound undergoes a reconstructive phase transition in the range between 610 and 630 °C. Single-crystals of the HT-polymorph were directly grown from the melt. Structural investigations based on single-crystal diffraction data of the quenched crystals performed at ?100 °C showed orthorhombic symmetry (space group Pna21) with a?=?12.7560(8) Å, b?=?8.6930(4) Å, c?=?9.8980(5) Å, V?=?1097.57(10) Å3 and Z?=?2. Unit cell parameters for a quenched polycrystalline sample of the HT-form obtained at ambient conditions from a LeBail-fit are as follows: a?=?12.7875(1) Å, b?=?8.7255(1) Å, c?=?9.9261(1) Å, V?=?1107.53(2) Å3. The lattice parameters of both modifications are related by the following approximate relationships: a HT?≈?2c RT, b HT?≈?-(½a RT?+?b RT), c HT?≈?a RT. The HT-modification is isotypic with the corresponding potassium compound K6Ca4(SO4)6F2. The pronounced disorder of the sulphate group even at low temperatures has been studied by maximum entropy calculations. Despite the first-order character of the transformation clusters of sulfate groups surrounding the fluorine anions can be identified in both polymorphs. Each of the three next neighbor SO4-tetrahedra within a cluster is in turn surrounded by 8–9 M-cations (M: Na,Ca) defining cage-like units. However, in the apatite structure the corresponding three tricapped trigonal prisms are symmetry equivalent. Furthermore, the central fluorine atom of each cluster is coordinated by three next M-neighbors (FM3-triangles), whereas in the HT-polymorph a four-fold coordination is observed (FM4-tetrahedra).  相似文献   

3.
The orthopyroxene crystal structure can be viewed as the stacking of alternating tetrahedral and octahedral layers parallel to the (100) plane. Easy glide occurs in the (100) plane at the level of the octahedral layer to prevent breakage of the strong Si-O bonds. Dislocations with c and b Burgers vectors have been activated in (100) by room temperature indentation in an orthoenstatite gem quality single crystal. Investigations in transmission electron microscopy show that the b dislocations (b?9 Å) are not dissociated while the c's (c=5.24 Å) are dissociated into four partials. This result is interpreted by considering the oxygen sublattice as a distorted FCC one. The four c partials are thus Shockley partials bounding three stacking faults. For the two outer ones, synchroshear of the cations is necessary to keep unchanged their sixfold coordination; the oxygen sublattice is locally transformed into a HCP lattice. This accounts for the observed low splitting (?100 Å) of these faults as compared to the median one (?500 Å) which does not affect the oxygen sublattice and does not require cation synchroshear. In a Fe rich orthopyroxene (eulite), semi coherent exsolution lamellae have been studied. Either only c edge dislocations or both b and c edge dislocations occur in the phase boundaries depending upon the thickness of the lamellae. Only the c dislocations are dissociated. From the observed spacing between these mismatch dislocations a crude estimate of the exsolution temperature is proposed T ex ? 700° C.  相似文献   

4.
Troilite close to FeS, with 0.17 weight percent Cr as main impurity, was obtained from the Agpalilik meteorite. Powder Mössbauer spectroscopy was made in the temperature range 77–645 K. The full Hamiltonian was applied in the fittings. Assuming the asymmetry parameter η to be constant on passing from the high-temperature NiAs-type structure to the medium-temperature MnP-type structure yields a quadrupole splitting (dq=0.5e2 qQ(1+(η2)/3)1/2) value of ?0.25(2) mm/s for these phases. In low-temperature troilite |dq|=0.85 mm/s at room temperature. The combinations of (η, θ, φ) in troilite giving identical spectra range from (0, 49°, -) to (1, 45°, 50°) for negative V zz or from (0.3, 57°, 78°) to (1, 58°, 54°) for positive V zz . Assuming a negative V zz and Bc gives a θ value in agreement with the shortest Fe-S join being the V zz orientation. The magnetic spin flip of 90° is proposed to occur in the MnP-phase only. The MnP phase-troilite transition occurs at lower temperatures and is more sluggish than in pure FeS.  相似文献   

5.
P, T, \(X_{{\text{CO}}_{\text{2}} }\) relations of gehlenite, anorthite, grossularite, wollastonite, corundum and calcite have been determined experimentally at P f =1 and 4 kb. Using synthetic starting minerals the following reactions have been demonstrated reversibly
  1. 2 anorthite+3 calcite=gehlenite+grossularite+3 CO2.
  2. anorthite+corundum+3 calcite=2 gehlenite+3 CO2.
  3. 3anorthite+3 calcite=2 grossularite+corundum+3CO2.
  4. grossularite+2 corundum+3 calcite=3 gehlenite+3 CO2.
  5. anorthite+2 calcite=gehlenite+wollastonite+2CO2.
  6. anorthite+wollastonite+calcite=grossularite+CO2.
  7. grossularite+calcite=gehlenite+2 wollastonite+CO2.
In the T, \(X_{{\text{CO}}_{\text{2}} }\) diagram at P f =1 kb two isobaric invariant points have been located at 770±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.27 and at 840±10°C, \(X_{{\text{CO}}_{\text{2}} }\) =0.55. Formation of gehlenite from low temperature assemblages according to (4) and (2) takes place at 1 kb and 715–855° C, \(X_{{\text{CO}}_{\text{2}} }\) =0.1–1.0. In agreement with experimental results the formation of gehlenite in natural metamorphic rocks is restricted to shallow, high temperature contact aureoles.  相似文献   

6.
Single crystals of hexagonal and monoclinic pyrrhotite, Fe1?xS, have been experimentally deformed by uniaxial compression at 300 MPa confining pressure, and at a strain rate of 1 × 10?5 s?1 in the temperature range from 200° C to 400° C. Very high anisotropy characterizes the mechanical behaviour of the crystal structure. During compression parallel to thec-axis, when no slip system may be activated, the maximum strength is observed. One or two degrees of non-parallelism between [c] and σ1 results in slip on the basal plane, illustrating the very low resistance of the lattice against shear in this plane. At σ1 Λ(0001)=45°, i.e. when maximum resolved shear stress is attained on the basal plane, the strength reaches a minimum. Thecritical resolved shear stress (CRSS) increases from less than 4.7 MPa at 400° C to 52 MPa at 200° C. A new slip system, \((10\overline 1 0)\parallel \left\langle {1\overline 2 10} \right\rangle \) prism slip, is described. It is activated only at high angles (>70°) between σ1 and [c]. The CRSS of the prism slip ranges from 7 MPa (400° C) to 115 MPa (200° C). Twinning on \((10\overline 1 2)[(10\overline 1 2):(1\overline 2 10)]\) , earlier reported by several authors, has been produced only at the highest temperature either as secondary feature during pressure release (compression ‖[c]) or in heterogeneously strained areas (compression ⊥[c]). As twinning and prism slip attain their maximum values of the Schmidt factor under nearly equal stress conditions it is postulated that the former of the two deformation modes has the higher shear resistance.  相似文献   

7.
The temperature dependences of the crystal structure and superstructure intensities in sodium nitrate, mineral name nitratine, NaNO3, were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction. Nitratine transforms from $R{\overline{3}} c\;\hbox{to}\;R{\overline{3}} m$ at T c = 552(1) K. A NO3 group occupies, statistically, two positions with equal frequency in the disordered $R{\overline{3}} m$ phase, but with unequal frequency in the partially ordered $R{\overline{3}} c$ phase. One position for the NO3 group is rotated by 60° or 180° with respect to the other. The occupancy of the two orientations in the $R{\overline{3}} c$ phase is obtained from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x ? 1, where S is 0 at T c and 1 at 0 K. The NO3 groups rotate in a rapid process from about 541 to T c, where the a axis contracts. Using a modified Bragg–Williams model, a good fit was obtained for the normalized intensities (that is, normalized, NI1/2) for the (113) and (211) reflections in $R{\overline{3}} c\hbox {\,NaNO}_{3},$ and indicates a second-order transition. Using the same model, a reasonable fit was obtained for the order parameter, S, and also supports a second-order transition.  相似文献   

8.
The crystal structures of two new compounds (H3O)2[(UO2)(SeO4)2(H2O)](H2O)2 (1, orthorhombic, Pnma, a = 14.0328(18), b = 11.6412(13), c = 8.2146(13) Å, V = 134.9(3) Å3) and (H3O)2[(UO2)(SeO4)2(H2O)](H2O) (2, monoclinic, P21/c, a = 7.8670(12), b = 7.5357(7), c = 21.386(3) Å, β = 101.484(12)°, V = 1242.5(3) Å3) have been solved by direct methods and refined to R 1 = 0.076 and 0.080, respectively. The structures of both compounds contain sheet complexes [(UO2)(SeO4)2]2? formed by cornershared [(UO2)O4(H2O)] bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (100) plane in structure 1 and to (?102) in structure 2. The [(UO2)(SeO4)2(H2O)]2? layers are linked by hydrogen bonds via interlayer groups H2O and H3O+. The sheet topologies in structures 1 and 2 are different and correspond to the topologies of octahedral and tetrahedral complexes in rhomboclase (H2O2)+[Fe(SO4)2(H2O)2] and goldichite K[Fe(SO4)2(H2O)2](H2O)2, respectively.  相似文献   

9.
Polarized electronic absorption spectra, Ea(∥X), Eb(∥Y) and Ec(∥Z), in the energy range 3000–5000?cm–1 were obtained for the orthorhombic thenardite-type phase Cr2SiO4, unique in its Cr2+-allocation suggesting some metal-metal bonding in Cr2+Cr2+ pairs with Cr-Cr distance 2.75?Å along [001]. The spectra were scanned at 273 and 120?K on single crystal platelets ∥(100), containing optical Y and Z, and ∥(010), containing optical X and Z, with thicknesses 12.3 and 15.6?μm, respectively. Microscope-spectrometric techniques with a spatial resolution of 20?μm and 1?nm spectral resolution were used. The orientations were obtained by means of X-ray precession photographs. The xenomorphic, strongly pleochroic crystal fragments (X deeply greenish-blue, Y faint blue almost colourless, Z deeply purple almost opaque) were extracted from polycrystalline Cr2SiO4, synthesized at 35?kbar, above 1440?°C from high purity Cr2O3, Cr (10% excess) and SiO2 in chromium capsules. The Cr2SiO4-phase was identified by X-ray diffraction (XRD). Four strongly polarized bands, at about 13500 (I), 15700 (II), 18700 (III) and 19700 (IV) cm–1, in the absorption spectra of Cr2SiO4 single crystals show properties (temperature behaviour of linear and integral absorption coefficients, polarization behaviour, molar absorptivities) which are compatible with an assignment to localized spin-allowed transitions of Cr2+ in a distorted square planar coordination of point symmetry C2. The crystal field parameter of Cr2+ is estimated to be 10?Dq?10700?cm–1. A relatively intense, sharp band at 18400?cm–1 and three other minor features can, from their small half widths, be assigned to spin-forbidden dd-transitions of Cr2+. The intensity of such bands strongly decreases on decreasing temperature. The large half widths, near 5000?cm–1 of band III are indicative of some Cr-Cr interactions, i.e. δ-δ* transitions of Cr2 4+, whereas the latter alone would be in conflict with the strong polarization of bands I and II parallel [100]. Therefore, it is concluded that the spectra obtained can best be interpreted assuming both dd-transitions of localized d-electrons at Cr2+ as well as δ-δ* transitions of Cr2 4+ pairs with metal-metal interaction. To explain this, a dynamic exchange process 2 Crloc 2+?Cr2, cpl 4+ is suggested wherein the half life times of the ground states of both exchanging species are significantly longer than those of the respective optically excited states, such that the spectra show both dd- and δ-δ*-transitions.  相似文献   

10.
Metamorphic biotites examined by transmission electron microscopy contain planar defects on the (001) plane, superlattices, twins and a microstructure causing streaking of k≠3n rows. Analysis of the fringe contrast shows that the fault vectors associated with the planar defects are either R 1=±1/3 [010], R 2=±1/6 [310] or R 3=±1/6 [3 \(\bar 1\) 0]. Structural considerations indicate that a stacking fault R 1, R 2 or R 3 is most likely to exist in the octahedral layer rather than the potassium layer. The result of such a fault on a unit layer of mica is effectively to rotate it through ±120° about c* (equivalent to the common mica twin law). These stacking faults can provide the mechanism for producing the ±120° rotations associated with the common mica polytypes. Furthermore, many of the observed microstructures can be generated by these stacking faults.  相似文献   

11.
The stability relations between cordierite and almandite in rocks, having a composition of CaO poor argillaceous rocks, were experimentally investigated. The starting material consisted of a mixture of chlorite, muscovite, and quartz. Systems with widely varying Fe2+/Fe2++Mg ratios were investigated by using two different chlorites, thuringite or ripidolite, in the starting mixture. Cordierite is formed according to the following reaction: $${\text{Chlorite + muscovite + quartz}} \rightleftharpoons {\text{cordierite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}}$$ . At low pressures this reaction characterizes the facies boundary between the albite-epidotehornfels facies and the hornblende-hornfels facies, at medium pressures the beginning of the cordierite-amphibolite facies. Experiments were carried out reversibly and gave the following equilibrium data: 505±10°C at 500 bars H2O pressure, 513±10°C at 1000 bars H2O pressure, 527±10°C at 2000 bars H2O pressure, and 557±10°C at 4000 bars H2O pressure. These equilibrium data are valid for the Fe-rich starting material, using thuringite as the chlorite, as well as for the Mg-rich starting mixture with ripidolite. At 6000 bars the equilibrium temperature for the Mg-rich mixture is 587±10°C. In the Fe-rich mixture almandite was formed instead of cordierite at 6000 bars. The following reaction was observed: $${\text{Thuringite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Experiments with the Fe-rich mixture, containing Fe2+/Fe2++Mg in the ratio 8∶10, yielded three stability fields in a P,T-diagram (Fig.1):
  1. Above 600°C/5.25 kb and 700°C/6.5 kb almandite+biotite+Al2SiO5 coexist stably, cordierite being unstable.
  2. The field, in which almandite, biotite and Al2SiO5 are stable together with cordierite, is restricted by two curves, passing through the following points:
    1. 625°C/5.5 kb and 700°C/6.5 kb,
    2. 625°C/5.5 kb and 700°C/4.0 kb.
  3. At conditions below curves 1 and 2b, cordierite, biotite, and Al2SiO5 are formed, but no garnet.
An appreciable MnO-content in the system lowers the pressures needed for the formation of almandite garnet, but the quantitative influence of the spessartite-component on the formation of almandite could not yet be determined. the Mg-rich system with Fe2+/Fe2++Mg=0.4 garnet did not form at pressures up to 7 kb in the temperature range investigated. Experiments at unspecified higher pressures (in a simple squeezer-type apparatus) yielded the reaction: $${\text{Ripidolite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Further experiments are needed to determine the equilibrium data. The occurence of garnet in metamorphic rocks is discussed in the light of the experimental results.  相似文献   

12.
13.
Electric dipole polarizabilities have been calculated from first principles of quantum mechanics for the BO 3 3? , CO 3 2? , NO 3 ? series and for NO 2 ? and LiNO3(g). Calculated trends in average polarizability and polarizability anisotropy in the BO 3 3? -NO 3 ? series are in agreement with experiment and can be qualitatively interpreted in terms of the varying energies of the a1′, a2″ and e′ symmetry unoccupied MO's of the oxyanions. Embedding a CO 3 2? ion in a D3h symmetry array of divalent cations reduces both the average polarizability and its anisotropy, particularly when diffuse s and p functions are included in the calculation. Calculations on the gas phase LiNO3 molecule and on the free NO 3 ? ion in the distorted geometry found in LiNO3(g) allow us to separate polarizability contributions internal to the NO 3 ? and Li+ ions from those which arise from the Li+-NO 3 ? interaction. The Li+-NO 3 ? interaction term so obtained is much smaller than the NO 3 ? contribution but is in turn larger than the Li+ contribution, suggesting that the inclusion of this interaction term is essential for obtaining accurate results for ion pairs. Although static polarizabilities are in reasonable agreement with experiment for NO 3 ? the wavelength dispersion of the polarizability is underestimated by about a factor of two, apparently as a result of inadequacies in the quantum mechanical method. Calculated values are also presented for 14N NMR shieldings in the nitrogen oxyanions but these are in only qualitative agreement with the experimental values. Similarly, calculated values of magnetic susceptibility are in only qualitative agreement with experiment although trends along the BO 3 3? -NO 3 ? series are properly reproduced.  相似文献   

14.
The cation distribution in the synthetic samples of olivine-type structure with composition (Fe x Mn1?x )2SiO4 was determined at room temperature and confirms previous Mössbauer results. At low temperature an antiferromagnetic ordering is observed. The magnetic structures can be described in the crystallographic cell (i.e. k=0). They are interpreted on the basis of the irreducible representations (modes) of the symmetry groups which are compatible with Pnma. The dominant modes observed for all compounds, including Fe2SiO4 and Mn2SiO4, only differ in their direction. The main direction of magnetization is dominated by the Fe2+ single-ion anisotropy. At 4.2K, for x=0.29, it is parallel to the c-axis, whereas for x=0.76 the direction is parallel to the b-axis. The anisotropy of the M1-sites dominates in the first case, whereas M2-anisotropy dominates in the second case. The influence of temperature is demonstrated for x=0.50 where c is the main direction at 4.2K, when it is b at 38K.  相似文献   

15.
The nicotinamide (pyridine-3-carboxamide, nia) complexes of silver(I), [Ag(nia)2(NO3)]·H2O (1), [Ag(nia)2(NO3)] (2), and {K[Ag(nia)2](NO3)2} n (3), were prepared and characterised by IR spectroscopy and TG/DTA thermal methods. The solid state structures of 2 and 3 were determined by single-crystal X-ray diffraction analysis. In both complexes two nicotinamide ligands are coordinated to silver(I) through the nitrogen atom of the pyridine ring in a near-linear fashion. In 2, additional coordination by two oxygen atoms of one nitrate group leads to the distorted tetrahedral coordination environment of silver(I). In 3, nitrate ions bridge potassium cations giving rise to a 2D coordination network which is further stabilised by cross-bridging of each two potassium atoms in [1 0 0] direction by complex cations, [Ag(nia)2]+. Despite different aggregation of 2 and 3 in the solid state, both complexes demonstrate quite similar thermal stability. The amide self-complementary hydrogen bonds appear to be the main driving force for establishing the crystal structures of both 2 and 3.  相似文献   

16.
The high-grade assemblage Cd-Ga-Si-Qz can be thermodynamically modelled from available calorimetric data on the metastable reaction: (I) $$3 MgCd \rightleftarrows 2 Py + 4 Si + 5 Qz$$ naturalK D Fe-Mg between garnet and cordierite and experimental results on cordierite hydration. In the system SiO2-Al2O3-MgO-H2O, reaction (I) becomes (II) $$3 MgCd \cdot nH_2 O \rightleftarrows 2 Py + 4 Si + 5 Qz + 3 nH_2 O$$ . However, hydrous cordierite is neither a hydrate nor a solid solution between water and anhydrous cordierite and when nH2O (number of moles of H2O in Cd) is plotted against \(P_{H_2 O} \) , the resulting isotherms are similar to adsorption isotherms characteristic of zeolitic minerals. Reaction (II) can thus be considered as a combination of reaction (I) with a physical equilibrium of the type nH2O (in Cd)?nH2O (in vapor phase). Starting from a point on equilibrium (I), introduction of H2O into anhydrous Mg-cordierite lowers the chemical potential of MgCd and hence stabilizes this mineral to higher pressure relative to the right-hand assemblage in reaction (I). The pressure increment of stabilization,ΔP, above the pressure limit of anhydrous cordierite stability at constantT, has been calculated using the standard thermodynamics of adsorption isotherms. Cordierite is regarded as a mixture of Mg2Al4Si5O18 and H2O. The activity of H2O in the cordierite is evaluated relative to an hypothetical standard state extrapolated from infinite H2O dilution, by using measured hydration data. The activity of Mg2Al4Si5O18 in the cordierite is then obtained by integration of the Gibbs-Duhem equation, and the pressure stabilization increment,ΔP, computed by means of the relation: $$\Delta V_s \Delta P \cong - RT\ln a_{MgCd}^{MgCd \cdot nH2O} \left( {\Delta V indepentdent of P and T} \right)$$ . Thus, one may contour theP-T plane in isopleths of nH2O=constant within the area of Mg-cordierite stability allowed by the hydration data for \(P_{H_2 O} = P_{total} \) . The present model indicates greater stabilization of cordierite by H2O than the model of Newton and Wood (1979) and the calculated curve for metastable breakdown of hydrous MgCd is consistent with experimental data on cordierite breakdown at \(P_{H_2 O} = P_{total} \) . Mg/(Mg+Fe) isopleths have been derived for cordierites of varying nH2O in the SiO2-Al2O3-MgO-FeO-H2O system using the additional assumptions that (Fe, Mg) cordierite and (Fe, Mg) garnet behave as ideal solutions, and that typical values of the distribution coefficient of Fe and Mg between coexisting garnet and cordierite observed in natural parageneses can be applied to the calculations. The calculated stable breakdown curve of Fe-cordierite under conditions of \(P_{H_2 O} = P_{total} \) to almandine, sillimanite, quartz and vapor has a positive slope (dP/dT) apparently in contrast to the experimental negative slope. This may be explained by hydration kinetics, which could have allowed systematic breakdown of cordierites of metastable hydration states in the experiments. The bivariant Cd-Ga fields calibrated from the present model are, potentially, good petrogenetic indicators, as, given the iron-magnesium ratio of garnet and cordierite and the hydration number of cordierite, the temperature, pressure and water fugacity are uniquely determined. As this geothermobarometer is in part based on the water content of cordierite, it can be used only if there is some assurance that the actual hydration is inherited from high-grade metamorphic conditions. Such conditions could be realised if the slope of unloading-cooling retrograde metamorphism is more or less parallel to a cordierite isohydron.  相似文献   

17.
The polarized (Ea′, Eb and Ec) electronic absorption spectra of five natural chromium-containing clinopyroxenes with compositions close to chromdiopside, omphacite, ureyite-jadeite (12.8% Cr2O3), jadeite, and spodumene (hiddenite) were studied. The polarization dependence of the intensities of the Cr3+ bands in the clinopyroxene spectra cannot be explained by the selection rules for the point groups C 2 or C 2v but can be accounted for satisfactorily with the help of the higher order pseudosymmetry model, i.e. with selection rules for the point symmetry group C 3v. The trigonal axis of the pseudosymmetry crystal field forms an angle of 20.5° with the crystallographic direction c in the (010) plane. D q increases from diopside (1542 cm?1) through omphacite (1552 cm?1), jadeite (1574 cm?1) to spodumene (1592 cm?1). The parameter B which is a measure of covalency for Cr3+-O bonds at M1 sites in clinopyroxene depends on the Cr3+ concentration and the cations at M2 sites.  相似文献   

18.
The power law regression equation, <R(M–O)> = 1.46(<ρ(r c)>/r)?0.19, relating the average experimental bond lengths, <R(M–O)>, to the average accumulation of the electron density at the bond critical point, <ρ(r c)>, between bonded pairs of metal and oxygen atoms (r is the row number of the M atom), determined at ambient conditions for oxide crystals, is similar to the regression equation R(M–O) = 1.41(ρ(r c)/r)?0.21 determined for three perovskite crystals at pressures as high as 80 GPa. The pair are also comparable with the equation <R(M–O)> = 1.43(<s>/r)?0.21 determined for oxide crystals at ambient conditions and <R(M–O)> = 1.39(<s>/r)?0.22 determined for geometry-optimized hydroxyacid molecules that relate the geometry-optimized bond lengths to the average Pauling bond strength, <s>, for the M–O bonded interactions. On the basis of the correspondence between the equations relating <ρ(r c)> and <s> with bond length, it seems plausible that the Pauling bond strength might serve a rough estimate of the accumulation of the electron density between M–O bonded pairs of atoms. Similar expressions, relating bond length and bond strength hold for fluoride, nitride and sulfide molecules and crystals. The similarity of the expressions for the crystals and molecules is compelling evidence that molecular and crystalline M–O bonded interactions are intrinsically related. The value of <ρ(r c)> = r[(1.41)/<R(M–O)>]4.76 determined for the average bond length for a given coordination polyhedron closely matches the Pauling’s electrostatic bond strength reaching each the coordinating anions of the coordinated polyhedron. Despite the relative simplicity of the expression, it appears to be more general in its application in that it holds for the bulk of the M–O bonded pairs of atoms of the periodic table.  相似文献   

19.
Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2V meas = 50(10)°, 2V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe 0.53 2+ Mn0.38Mg0.08)Σ0.99(Ti2.44Fe 0.80 3+ Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [d, Å (I, %) (hkl)]: 5.19 (40) (110), 3.53 (40) ( $\overline 3 $ 11), 2.96 (100) ( $\overline 3 $ 13, 311), 2.80 (50) (020), 2.14 (50) ( $\overline 4 $ 22, $\overline 3 $ 15, 313), 1.947 (50) (024, 223), 1.657 (40) ( $\overline 4 $ 07, $\overline 4 $ 33, 331). The holotype specimen of perrierite-(La) is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, with the registration number 4059/1.  相似文献   

20.
The electron paramagnetic resonance (EPR) spectra of Fe3+ in a well cristallized kaolinite from Decazeville in France are well resolved. It is shown that in this sample there are mainly two slightly different spectra, well separated at low temperature and characterized at -150° C by the constants B 2 0 = 0.112 cm?1, B 2 2 = 0.0688 cm?1 for one and B 2 0 = 0.116 cm?1, B 2 2 = 0.0766 cm?1 for the second. These two spectra arise from Fe3+ substituted for Al3+ at the two octahedral positions in equal amounts. The temperature dependence of EPR spectra was studied and was explained by a modification of the octahedral sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号