首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Ion composition measurements on board the ACTIVE satellite during the recovery phase of a strong geomagnetic storm of 10–12 April 1990 revealed extremely high concentrations (up to 103 cm−3) of the NO+, O+2, N+2 molecular ions in the topside F2-region of the European high-latitude zone. Concentrations of O+, N+, He+, H+ light ions were slightly decreased relative to prestorm quite conditions. Theoretical calculations were used to analyze the observed variations in ion concentration. Increased neutral temperature and [O2], [N2] are shown to be the main reasons for the observed ion concentration variations.  相似文献   

3.
Hydrographic and biogeochemical observations were conducted along the longitudinal section from Ise Bay to the continental margin (southern coast of Japan) to investigate changes according to the Kuroshio path variations during the summer. The strength of the uplift of the cold deep water was influenced by the surface intrusion of the Kuroshio water to the shelf region. When the intrusion of the Kuroshio surface water to the shelf region was weak in 2006, the cold and NO3-rich shelf water intruded into the bottom layer in the bay from the shelf. This bottom intrusion was intensified by the large river discharge. The nitrogen isotope ratio (δ15N) of NO3 (4–5‰) in the bottom bay water was same as that in the deeper NO3 over the shelf, indicating the supply of new nitrogen to the bay. The warm and NO3-poor shelf water intruded into the middle layer via the mixing region at the bay mouth when the Kuroshio water distributed in the coastal areas off Ise Bay in 2005. The regenerated NO3 with isotopically light nitrogen (δ15N=−1‰) was supplied from the shelf to the bay. This NO3 is regenerated by the nitrification in the upper layer over the shelf. The contribution rate of regenerated NO3 over the shelf to the total NO3 in the subsurface chlorophyll maximum layer in the bay was estimated at 56% by a two-source mixing model coupled with the Rayleigh equation.  相似文献   

4.
Spatial patterns of N dynamics in soil were evaluated within two small forested watersheds in Japan. These two watersheds were characterized by steep slopes (>30°) and high stream NO3 drainage rates (8·4 to 25·1 kg N ha−1 yr−1) that were greater than bulk precipitation N input rates (7·5 to 13·5 kg N ha−1 yr−1). Higher rates of nitrification potential at near-stream zones were reflected in greater NO3 contents for soil at the near-stream zones compared with ridge zones. Both stream discharge rates and NO3 concentrations in deep unsaturated soil at the near-stream zones were positively correlated to NO3 concentrations in stream water. These relationships, together with high soil NO3 contents at the near-stream zones, suggest that the near-stream zone was an important source of NO3 to stream water. Nitrate flux from these near-stream zones was also related to the drainage of cations (K+, Ca2+ and Mg2+). The steep slope of the watersheds resulted in small saturated areas that contributed to the high NO3 production (high nitrification rates) in the near-stream zone. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Y Van Herpe  P. A Troch 《水文研究》2000,14(14):2439-2455
Streamwater nitrate (NO3) concentrations along the main stream and at the outlet of several subcatchments within the 114\3 km2 Zwalm watershed in Flanders, Belgium, have been monitored regularly since 1991. Land use within the Zwalm catchment is predominantly agricultural, with forested regions in the south and urban concentrations in the north‐east of the catchment. Streamwater NO3 concentrations increased with increases in stream discharge rates, but in general, discharge rate explained only about 30% of the variation in NO3 concentrations. The low R2 values were attributed to the observed anticlockwise hysteresis in the NO3 concentration – discharge relationship and to differences in NO3 concentrations between both seasonal flow and various flow regimes, with winter flow explaining 51% of the variation in NO3 concentrations, whereas summer flow explained only 28% of the variation. A hypothesis was formulated in which flow regime accounts for the seasonal variation in NO3 export, postulating that the catchment seasonally alternates between two hydrological stages. The first stage occurs during wet winter periods, when the catchment drains as a single source area, whereas the second stage occurs during dry summer periods, when the groundwater store disconnects into separate subcatchments. This causes NO3 concentration peaks to be more delayed during summer storm events compared with winter storm events. Regarding flow regimes, differences between high and low flow conditions and between increasing and stable/decreasing flow were not as pronounced a differences between seasons. In contrast to the estimation of NO3 concentrations, discharge was a strong predictor (R2= 0\71) of the NO3 flux within the tributaries of the Zwalm catchment. The NO3 concentrations in the main stream increased with decreasing elevation, whereas the seasonal concentration patterns along the main channel were similar to those observed at the outlet. NO3 concentrations varied considerably among catchments and showed a high variability over time, although in general, the variation in NO3 concentration was higher between catchments than within catchments. The impact of land use is clearly reflected in the streamwater NO3 concentrations, although NO3 concentration patterns were also affected by topography and, to a lesser extent, by soil type. A gradual increase in NO3 concentrations at the outlet of the Zwalm catchment could be observed throughout the 1991 – 1998 study period, providing evidence for the general trends of increase in Flanders, which are attributed to the intensification of agricultural activities. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C4–C8 perfluorinated sulfonates (PFSAs), C6 and C8 perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C5–C13 perfluorinated carboxylic acids (PFCAs), C4 and C8 perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. ∑PFC concentrations of the river water ranged from 7.6 to 26.4 ng L−1, whereas ∑PFC concentrations of WWTP effluents were approximately 5–10 times higher (30.5–266.3 ng L−1), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.  相似文献   

9.
The concentrations of helium and carbon in fluorite associated with Cretaceous to Neogene (90–13 Ma) granitic magmatism in the Japanese arc have been measured. Concentrations of Li, U, Th and Gd were measured to correct for secondary generated 3He. The CO2/3He of fluorites are almost uniform (1.5×1010–4×1010) and in fair agreement with the range of present island arc volcanic gases. The calculated mantle C contribution in the Mesozoic subduction zone appear to have been identical to the present one (7–19%) indicating that the C flux from the mantle in supra-subduction zone environments has remained fairly constant during the past 70 million years.  相似文献   

10.
Large projectiles impacting the Earth will cause severe shock heating and chemical reprocessing of the Earth's atmosphere. This occurs during atmospheric entry and, more importantly, as a result of the supersonic plume ejected on impact. In particular, very large amounts of nitric oxide would result from the impact of the putative Cretaceous-Tertiary bolide(s). We present models of the shock chemistry, the conversion of NO to NO2 and thence to nitrous and nitric acids, and the global dispersion of the NO2 and acids. Two plausible projectiles are considered: an ice-rich long-period comet and a much smaller rock-metal asteroid. The comet produces semi-global atmospheric NO2 mixing ratios of 0.1% while the asteroid produces these high mixing ratios only in the immediate region of the impact. The comet produces concentrated nitrous and nitric acid rain with apH ≈ 0–1.5 globally. The asteroid produces rain with apH ≈ 0–1 near the impact and≈ 4–5 globally. Immediate environmental effects of these nitrogen species include inhibition of photosynthesis due to extinction of solar radiation by NO2, foliage damage due to exposure to NO2 and HNO3, toxicosis resulting from massive mobilization of soil trace metals, and respiratory damage due to exposure to NO2. The acid rain decreases the pH of the oceanic mixed layer affecting the stability of calcite with important implications for the survival of calcareous-shelled organisms and for exhalation of CO2 from the mixed layer to the atmosphere. Longer-term environmental effects perhaps≈ 1000years in duration include a global warming due to the sudden CO2 injection and the simultaneous extinction of the ocean micro-organisms which normally help remove CO2 from the atmosphere-mixed layer system. Havens for survival include carbonate-buffered lakes and burrows. This acid rain theory therefore serves to explain the peculiar selectivity of the extinctions seen at the Cretaceous-Tertiary boundary. The first few years of acid rain will lead to massive weathering rates of continental soils characterized by large ratios of the relatively insoluble metals (e.g. Be2+, Al3+, Hg2+, Cu+, Fe2+, Fe3+, Tl3+, Pb2+, Cd2+, Mn2+, Sr2+) to the more soluble metals (Ca2+, Mg2+) which should have left a clear signal in the fossils of neritic organisms and in unperturbed neritic sediments near river deltas if such sediments still exist for the Cretaceous-Tertiary time frame.  相似文献   

11.
The relationship between solute concentrations and discharge can inform an integrated understanding of hydrological and biogeochemical processes at watershed scales. Recent work from multiple catchments has shown that there is typically little variation in concentration relative to large variations in discharge. This pattern has been described as chemostatic behavior. Pond Branch, a forested headwater catchment in Maryland, has been monitored for stream nitrate (NO3?) concentrations at weekly intervals for 14 years. In the growing season and autumn of 2011 a high‐frequency optical NO3? sensor was used to supplement the long‐term weekly data. In this watershed, long‐term weekly data show that NO3? concentrations decrease with increasing discharge whereas 6 months of 15‐minute sensor observed concentrations reveal a more chemostatic behavior. High‐frequency NO3? concentrations from the sensor collected during different storm events reveal variable concentration–discharge patterns highlighting the importance of high resolution data and ecohydrological drivers in controlling solute export for biologically reactive solutes such as NO3?.  相似文献   

12.
The nutrient basis of Lake Azabach'e is studied. The distribution of pH and the concentrations of O2, Pmin, Fe, N–NH+ 4, N–NO 3, Si, and organic forms of N and P are considered. The chemical basis of biological production of Lake Azabach'e is assessed. It is found that the amount of Si is excessive everywhere and that phytoplankton production is limited by phosphate and mineral nitrogen deficiency in virtually equal degrees.  相似文献   

13.
A reliable and economical method for the estimation of nutrient export (e.g. phosphorus) in stream flow from catchments is necessary to quantify the impact of land use or land use change upon aquatic systems. The transport of phosphorus (P) from soil to water is known to impact negatively on water quality. A key observation from studies is that most P export occurs during high stream flow. However, it is not yet clear how flood-antecedent conditions affect the P export during flood events. In this study, the P loss from soil to water as represented by soluble reactive phosphorus (SRP) in stream waters from three different catchments, varying in land use, scale and location in Ireland was monitored over 1 year. This study examined the role of antecedent stream flow conditions on SRP export and identifies a catchment-specific relationship between SRP flood event load (EL) and a flow ratio (FR). The FR is defined as the ratio of the flood event volume (EV) to the pre-event volume (PEV). The latter is the cumulative flow volume for a number of days preceding the event. This PEV period was found to be longer (average 81 days) in the grassland catchments which were known to be saturated with soil P than in the forested catchments (average 21 days) with minimal soil P. This FR ratio is a measure of the antecedent hydrological state (wet or dry) of the catchment. For SRP for each catchment, a specific relationship between SRP EL and FR was identified. The annual SRP export was estimated, using this ratio and compared with the concentration/discharge (C/Q) method. The new flow ratio method was used with data from 12 flood events during the year to estimate an annual export of SRP. For the two grassland catchments in the study, using the FR method, we estimated an SRP export of 1.77 and 0.41 kg ha−1 yr−1. Using the C/Q method, for the same sites, our estimate of SRP export was 1.70 and 0.50 kg ha−1 yr−1 respectively. The C/Q method used SRP concentrations covering 40% of the year while the FR method used only 12 flood events covering less than 2% of the year. This new method which takes account of the antecedent flow state of the river is an alternative to and may be more promising than the traditional C/Q method, particularly when short duration or flood sampling of water quality is carried out.  相似文献   

14.
N2O concentrations and denitrification-related factors (NO3, SO4, dissolved organic carbon (DOC) and CO2) were investigated in the surface groundwater of a catchment in northern Germany, the Fuhrberger Feld Aquifer (FFA). We sampled 79 plots that were selected according to the three criteria of land use, historical land use conversion (1954–1995) and groundwater level. We sampled three sites within each plot. The sampling depth was 0.5 m below the groundwater surface.We found no indication for the occurrence of autotrophic denitrification in the surface groundwater. Heterotrophic denitrification was identified as the main process for N2O accumulation. The variability of N2O concentrations on the plot-scale was extremely high and was poorly explained by the three sampling criteria. Other denitrification-related variables such as NO3, SO4 and DOC were less variable. The selection criteria land use and groundwater level clearly influenced the order of magnitude of N2O concentrations in the surface groundwater. Under arable land, high NO3 concentrations resulted in high N2O concentrations. The surface groundwater under forest and pasture was almost NO3-free and had also very small N2O concentrations. Plots where the distance from the soil surface to the groundwater surface was large (>1 m up to 3.4 m) showed higher N2O concentrations in the surface groundwater than plots where the distance was small (<1 m). A larger distance from the soil surface to the groundwater leads to a longer residence time and more decomposition of DOC in the soil. Consequently the less bioavailable DOC could inhibit the efficiency of the heterotrophic denitrification in the groundwater, yielding more N2O. Elevated organic carbon levels in plots with historic land use conversion (pasture to arable) were very stable and did not influence N2O concentrations. The high within plot variability showed that an upscaling of N2O from the plot-scale to the catchment-scale is possible as long as the groundwater level regime and the land use do not change.  相似文献   

15.
《Marine pollution bulletin》2012,64(5-12):195-200
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m−2 d−1, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.  相似文献   

16.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This study analysed the importance of precipitation events from May 2003 to April 2004 on surface water chemistry and solute export from a 696 ha glaciated forested watershed in western New York State, USA. The specific objectives of the study were to determine: (a) the temporal patterns of solutes within individual storm events; (b) the impact of precipitation events on seasonal and annual export budgets; and (c) how solute concentrations and loads varied for precipitation events among seasons as functions of storm intensity and antecedent moisture conditions. Analysis of solute trajectories showed that NH4+, total Al and dissolved organic nitrogen (DON) peaked on the hydrograph rising limb, whereas dissolved organic carbon (DOC) concentrations peaked following the discharge peak. Sulphate and base‐cations displayed a dilution pattern with a minimum around peak discharge. End‐member mixing analysis showed that throughfall contributions were highest on the rising limb, whereas valley‐bottom riparian waters peaked following the discharge peak. The trajectories of NO3? concentrations varied with season, indicating the influence of biotic processes on the generation, and hence flux, of this solute. Storm events had the greatest impact on the annual budgets for NH4+, K+, total dissolved Al, DON and DOC. Storm events during summer had the greatest impact on seasonal solute budgets. Summer events had the highest hourly discharges and high concentrations of solutes. However, NO3? and DOC exports during a spring snowmelt event were considerably more than those observed for large events during other periods of the year. Comparisons among storms showed that season, precipitation amount, and antecedent moisture conditions affected solute concentrations and loads. Concentrations of solutes were elevated for storms that occurred after dry antecedent conditions. Seven of the largest storms accounted for only 15% of the annual discharge, but were responsible for 34%, 19%, 64%, 13%, 39% and 24% of the annual exports of NH4+, K+, Al, NO3?, DON and DOC respectively. These results suggest that the intense and infrequent storms predicted for future climate‐change scenarios will likely increase the exports of solutes like DOC, DON, NH4+, Al and K+ from watersheds. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A two‐dimensional variable‐density groundwater flow and transport model was developed to provide a conceptual understanding of past and future conditions of nitrate (NO3) transport and estimate groundwater nitrate flux to the Gulf of Mexico. Simulation results show that contaminant discharge to the coast decreases as the extent of saltwater intrusion increases. Other natural and/or artificial surface waters such as navigation channels may serve as major sinks for contaminant loading and act to alter expected transport pathways discharging contaminants to other areas. Concentrations of NO3 in the saturated zone were estimated to range between 30 and 160 mg?L?1 as NO3. Relatively high hydraulic vertical gradients and mixing likely play a significant role in the transport processes, enhancing dilution and contaminant migration to depth. Residence times of NO3 in the deeper aquifers vary from 100 (locally) to about 300 years through the investigated aquifer system. NO3 mass fluxes from the shallow aquifers (0 to 5.7 × 104 mg?m?2?day?1) were primarily directed towards the navigation channel, which intersects and captures a portion of the shallow groundwater flow/discharge. Direct NO3 discharge to the sea (i.e. Gulf of Mexico) from the shallow aquifer was very low (0 to 9.0 × 101 mg · m?2?day?1) compared with discharge from the deeper aquifer system (0 to 8.2 × 103 mg?m?2?day?1). Both model‐calibrated and radiocarbon tracer‐determined contaminant flux estimates reveal similar discharge trends, validating the use of the model for density‐dependent flow conditions. The modelling approach shows promise to evaluate contaminant and nutrient loading for similar coastal regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The consequences of a coastal upwelling event on physical and chemical patterns were studied in the central Gulf of Finland. Weekly mapping of hydrographical and -chemical fields were carried out across the Gulf between Tallinn and Helsinki in July–August 2006. In each survey, vertical profiles of temperature and salinity were recorded at 27 stations and water samples for chemical analyses (PO43−, NO2+NO3) were collected at 14 stations along the transect. An ordinary distribution of hydrophysical and -chemical variables with the seasonal thermocline at the depths of 10–20 m was observed in the beginning of the measurements in July. Nutrient concentrations in the upper mixed layer were below the detection limit and nutriclines were located just below or in the lower part of the thermocline. In the first half of August, a very intense upwelling event occurred near the southern coast of the Gulf when waters with low temperature and high salinity from the intermediate layer surfaced. High nutrient concentrations were measured in the upwelled water – 0.4 μmol l−1 of phosphates and 0.6 μmol l−1 of nitrates+nitrites. We estimated the amount of nutrients transported into the surface layer as 238–290 tons of phosphorus (P)-PO43− and 175–255 tons of N-NOx for a 12 m thick, 20 km wide and 100 km long coastal stretch. Taking into account a characteristic along-shore extension of the upwelling of 200 km, the phosphate-phosphorus amount is approximately equal to the average total monthly riverine load of phosphorus to the Gulf of Finland. It is shown that TS-characteristics of water masses and vertical distribution of nutrients along the study transect experienced drastic changes caused by the upwelling event in the entire studied water column. TS-analysis of profiles obtained before and during the upwelling event suggests that while welled up, the cold intermediate layer water was mixed with the water from the upper mixed layer with a share of 85% and 15%. We suggest that the coastal upwelling events contribute remarkably to the vertical mixing of waters in the Gulf of Finland. Intrusions of nutrient-rich waters along the inclined isopycnal surfaces in the vicinity of upwelling front were revealed. The upwelling event widened the separation of phosphocline and nitracline which in turn prevented surfacing of nitrate+nitrite-nitrogen during the next upwelling event observed a week after the upwelling relaxation. A suggestion is made that such widening of nutricline separation caused by similar upwelling events in early summer could create favourable conditions for late summer cyanobacterial blooms.  相似文献   

20.
Arenal volcano in Costa Rica has been erupting nearly continuously, but at a diminishing rate, since 1968, producing approximately 0.35 km3 of lavas and tephras that have shown consistent variations in chemistry and mineralogy. From the beginning of the eruption in July 1968 to early 1970 (stage 1, vol.=0.12 km3) tephras and lavas became richer in Ca, Mg, Ni, Cr, Fe, Ti, V, and Sc and poorer in Al2O3 and SiO2. Concentrations of incompatible trace elements (including Sr) decreased by 5%–20%. Phenocryst contents increased 20–50 vol%. During stage 2 (1970–1973, vol. = 0.13 km3) concentrations of compatible trace elements rose, and concentrations of incompatible trace elements either remained constant or also rose. Al2O3 contents decreased by 1 wt%. Phenocryst content increased slightly, principally due to increased orthopyroxene. During stage 3 (mid-1974 to the present, vol.= 0.10 km3) concentrations of SiO2 increased by 1 wt%, compatible trace elements decreased slightly, and incompatible trace element concentrations increased by 5% to 10%. Although crystals increased in size during stage 3, their overall abundance stayed roughly constant.Our modeling suggests that early stage-1 magmas were produced by boundary layer fractionation under high-p H2O conditions of an unseen basaltic andesitic magma that intruded into the Arenal system after approximately 500 B.P. Changes in composition during stage 2 resulted from mixing of this more mafic original magma with new magma that had a similar SiO2 content, but higher compatible and incompatible element concentrations. The changes during stage 3 resulted from continued influx of the same magma plus crystal removal.We conclude that the eruption proceeded in the following way. Before 1968 zoned stage-1 magma resided in the deep crust below Arenal. A new magma intruded into this chamber in July 1968 causing ejection of the stage-1 magmas. The intruding magma mixed with mafic portions of the original chamber producing the mixed lavas of stage 2. Continued mixing plus crystal fractionation along the chamber and conduit walls produced stage-3 lavas. The time scales of crustal level magmatic processes at Arenal range 100–103 years, which are 3–6 orders of magnitude shorter than those of larger, more silicic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号