首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The algorithm ztrace of Monaco & Efstathiou is applied to the IRAS PSCz catalogue to reconstruct the initial conditions of our local Universe with a resolution down to ~5  h 1 Mpc. The one-point probability distribution function (PDF) of the reconstructed initial conditions is consistent with the assumptions that: (i) IRAS galaxies trace mass on scales of ~5  h 1 Mpc and (ii) the statistics of the primordial density fluctuations are Gaussian. We use simulated PSCz catalogues, constructed from N -body simulations with Gaussian initial conditions, to show that local non-linear bias can cause the recovered initial PDF (assuming no bias) to be non-Gaussian. However, for plausible bias models, the distortions of the recovered PDF would be difficult to detect using the volume finely sampled by the PSCz catalogue. So, for Gaussian initial conditions, a range of bias models remain compatible with our PSCz reconstruction results.  相似文献   

3.
We use the spherical evolution approximation to investigate non-linear evolution from the non-Gaussian initial conditions characteristic of the local f nl model. We provide an analytic formula for the non-linearly evolved probability distribution function (PDF) of the dark matter which shows that the underdense tail of the non-linear PDF in the f nl model should differ significantly from that for Gaussian initial conditions. Measurements of the underdense tail in numerical simulations may be affected by discreteness effects, and we use a Poisson counting model to describe this effect. Once this has been accounted, our model is in good quantitative agreement with the simulations. In principle, our calculation is an important first step in programs which seek to reconstruct the shape of the initial PDF from observations of large-scale structures in the Lyα forest and the galaxy distribution at later times.  相似文献   

4.
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p -order hierarchical amplitudes S p , in both real and redshift space. We compare our results with numerical simulations, focusing on the     standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for     , where σ L is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for     . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for     , the redshift-space PDF, [ P δ ( z )], is, to a good approximation, a simple rescaling of the real-space PDF, P [ δ ], i.e.,     where σ and σ ( z ) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at     , but provides a good fit to the ΛCDM models for σ L as large as 0.8.  相似文献   

5.
6.
The use of photometric redshifts in cosmology is increasing. Often, however these photo- z are treated like spectroscopic observations, in that the peak of the photometric redshift, rather than the full probability density function (PDF), is used. This overlooks useful information inherent in the full PDF. We introduce a new real-space estimator for one of the most used cosmological statistics, the two-point correlation function, that weights by the PDF of individual photometric objects in a manner that is optimal when Poisson statistics dominate. As our estimator does not bin based on the PDF peak, it substantially enhances the clustering signal by usefully incorporating information from all photometric objects that overlap the redshift bin of interest. As a real-world application, we measure quasi-stellar object (QSO) clustering in the Sloan Digital Sky Survey (SDSS). We find that our simplest binned estimator improves the clustering signal by a factor equivalent to increasing the survey size by a factor of 2–3. We also introduce a new implementation that fully weights between pairs of objects in constructing the cross-correlation and find that this pair-weighted estimator improves clustering signal in a manner equivalent to increasing the survey size by a factor of 4–5. Our technique uses spectroscopic data to anchor the distance scale and it will be particularly useful where spectroscopic data (e.g. from BOSS) overlap deeper photometry (e.g. from Pan-STARRS, DES or the LSST). We additionally provide simple, informative expressions to determine when our estimator will be competitive with the autocorrelation of spectroscopic objects. Although we use QSOs as an example population, our estimator can and should be applied to any clustering estimate that uses photometric objects.  相似文献   

7.
We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, ξJ, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S J  = ξ J J −12. We compare our analytic results with N -body simulations, which turn out to be in very good agreement up to scales where σ ≈ 1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.  相似文献   

8.
The cloud-in-cloud problem is studied in the context of the extension to non-Gaussian density fields of the PS approach for the calculation of the mass function. As an example of a non-Gaussian probability distribution function (PDF), we consider the chi-square distribution with various degrees of freedom. We generate density fields in cubic boxes with periodic boundary conditions, and then determine the number of points considered collapsed at each scale through a hierarchy of smoothing windows. We find that the mass function we obtain differs from that predicted using the extended PS formalism, particularly for low values of σ and for those PDFs that differ most from a Gaussian.  相似文献   

9.
We present predictions for the one-point probability distribution and cumulants of the transmitted QSO flux in the high redshift Lyman- α forest. We make use of the correlation between the Lyman- α optical depth and the underlying matter density predicted by gravitational instability theory and seen in numerical hydrodynamic simulations. We have modelled the growth of matter fluctuations using the non-linear shear‐free dynamics, an approximation which reproduces well the results of perturbation theory for the cumulants in the linear and weakly non-linear clustering regime. As high matter overdensities tend to saturate in spectra, the statistics of the flux distribution are dominated by weakly non-linear overdensities. As a result, our analytic approach can produce accurate predictions, when tested against N -body simulation results, even when the underlying matter field has root-mean-square fluctuations larger than unity. Our treatment can be applied to either Gaussian or non-Gaussian initial conditions. Here we concentrate on the former case, but also include a study of a specific non-Gaussian model. We discuss how the methods and predictions we present can be used as a tool to study the generic clustering properties of the Lyman- α forest at high redshift. With such an approach, rather than concentrating on simulating specific cosmological models, we may be in a position to directly test our assumptions for the Gaussian nature of the initial conditions, and the gravitational instability origin of structure itself. In a separate paper we present results for two-point statistics.  相似文献   

10.
We study the properties of density perturbations of a two-component plasma with a temperature difference on a homogeneous and isotropic background. For this purpose, we extend the general relativistic gauge-invariant and covariant (GIC) perturbation theory to include a multifluid with a particular equation of state (ideal gas) and imperfect fluid terms due to the relative energy flux between the two species. We derive closed sets of GIC vector and subsequently scalar evolution equations. We then investigate solutions in different regimes of interest. In particular, we study long-wavelength and arbitrary-wavelength Langmuir and ion-acoustic perturbations. The harmonic oscillations are superposed on a Jeans-type instability. We find a generalized Jeans criterion for collapse in a two-temperature plasma, which states that the species with the largest sound velocity determines the Jeans wavelength. Furthermore, we find that within the limit for gravitational collapse, initial perturbations in either the total density or charge density lead to a growth in the initial temperature difference. These results are relevant for the basic understanding of the evolution of inhomogeneities in cosmological models.  相似文献   

11.
In order to understand star formation it is important to understand the dynamics of atomic and molecular clouds in the interstellar medium (ISM). Non-linear hydrodynamic flows are a key component to the ISM. One route by which non-linear flows arise is the onset and evolution of interfacial instabilities. Interfacial instabilities act to modify the interface between gas components at different densities and temperatures. Such an interface may be subject to a host of instabilities, including the Rayleigh–Taylor, Kelvin–Helmholtz, and Richtmyer–Meshkov instabilities. Recently, a new density interface instability was identified. This self-gravity interfacial instability (SGI) causes any displacement of the interface to grow on roughly a free-fall time-scale, even when the perturbation wavelength is much less than the Jeans length. In previous work, we used numerical simulations to confirm the expectations of linear theory and examine the non-linear evolution of the SGI. We now continue our study by generalizing our initial conditions to allow the acceleration due to self-gravity to be non-zero across the interface. We also consider the behaviour of the SGI for perturbation wavelengths near the Jeans wavelength. We conclude that the action of self-gravity across a density interface may play a significant role in the ISM either by fuelling the growth of new instabilities or modifying the evolution of existing instabilities.  相似文献   

12.
We use the present observed number density of large X-ray clusters to constrain the amplitude of matter density perturbations induced by cosmic strings on the scale of 8  h −1 Mpc ( σ 8), in both open cosmologies and flat models with a non-zero cosmological constant. We find a slightly lower value of σ 8 than that obtained in the context of primordial Gaussian fluctuations generated during inflation. This lower normalization of σ 8 results from the mild non-Gaussianity on cluster scales, where the one-point probability distribution function is well approximated by a χ 2 distribution and thus has a longer tail than a Gaussian distribution. We also show that σ 8 normalized using cluster abundance is consistent with the COBE normalization.  相似文献   

13.
We present an analysis of star-forming gas cores in a smooth particle hydrodynamics simulation of a giant molecular cloud. We identify cores using their deep potential wells. This yields a smoother distribution with clearer boundaries than density. Additionally, this gives an indication of future collapse, as bound potential cores (p-cores) represent the earliest stages of fragmentation in molecular clouds. We find that the mass function of the p-cores resembles the stellar initial mass function and the observed clump mass function, although p-core masses  (∼0.7 M)  are smaller than typical density clumps. The bound p-cores are generally subsonic, have internal substructure and are only quasi-spherical. We see no evidence of massive bound cores supported by turbulence. We trace the evolution of the p-cores forward in time, and investigate the connection between the original p-core mass and the stellar mass that formed from it. We find that there is a poor correlation, with considerable scatter suggesting accretion on to the core is dependent on more factors than just the initial core mass. During the accretion process the p-cores accrete from beyond the region first bound, highlighting the importance of the core environment to its subsequent evolution.  相似文献   

14.
Using an ensemble of high-resolution 2D numerical simulations, we explore the scaling properties of cosmological density fluctuations in the non-linear regime. We study the scaling behaviour of the usual N -point volume-averaged correlations, but also examine the scaling of the entire probability density function (PDF) of the fluctuations. We focus on two important issues: (i) whether the scaling behaviour of 2D clustering is consistent with what one infers from radial collapse arguments; and (ii) whether there is any evidence from these high-resolution simulations that a regime of stable clustering is ever entered. We find that the answers are (i) yes and (ii) no. We further find that the behaviour of the highly non-linear regime in these simulations suggests the existence of a regime in which the correlation function is independent of the initial power spectrum.  相似文献   

15.
16.
Weak gravitational lensing surveys have the potential to probe mass density fluctuation in the Universe directly. Recent studies have shown that it is possible to model the statistics of the convergence field at small angular scales by modelling the statistics of the underlying density field in the highly non-linear regime. We propose a new method to model the complete probability distribution function of the convergence field as a function of smoothing angle and source redshift. The model relies on a hierarchical ansatz for the behaviour of higher order correlations of the density field. We compare our results with ray-tracing simulations and find very good agreement over a range of smoothing angles. Whereas the density probability distribution function is not sensitive to the cosmological model, the probability distribution function for the convergence can be used to constrain both the power spectrum and cosmological parameters.  相似文献   

17.
The cumulant correlators, C pq , are statistical quantities that generalize the better-known S p parameters; the former are obtained from the two-point probability distribution function of the density fluctuations while the latter describe only the one-point distribution. If galaxy clustering develops from Gaussian initial fluctuations and a small-angle approximation is adopted, standard perturbative methods suggest a particular hierarchical relationship of the C pq for projected clustering data, such as that obtained from the Automatic Plate Measuring (APM) survey. We establish the usefulness of the two-point cumulants for describing hierarchical clustering by comparing such calculations against available measurements from projected catalogues, finding very good agreement. We extend the idea of cumulant correlators to multipoint generalized cumulant correlators (related to the higher-order correlation functions). We extend previous studies in the highly non-linear regime to express the generalized cumulant correlators in terms of the underlying 'tree amplitudes' of hierarchical scaling models. Such considerations lead to a technique for determining these hierarchical amplitudes, to arbitrary order, from galaxy catalogues and numerical simulations. Knowledge of these amplitudes yields important clues about the phenomenology of gravitational clustering. For instance, we show that a three-point cumulant correlator can be used to separate the tree amplitudes up to sixth order. We also combine the particular hierarchical Ansatz of Bernardeau & Schaeffer with extended and hyper-extended perturbation theory to infer values of the tree amplitudes in the highly non-linear regime.  相似文献   

18.
The probability density function (PDF) for the magnetic field fluctuations in the Earth’s magnetospheric tail on various time scales is investigated on the basis of Geotail satellite data for 1997, 1999, and 2000. The changes in the shape and parameters of the PDF for the periods before and during the current disruption have been studied. The changes in the height of the PDF maximum P(0) have been investigated as an evolution characteristic on various time scales. Two asymptotic regimes of P(0) characterized by different power laws have been found: the changes in the PDF maximum correspond to a Gaussian process on long time scales and to a Levy distribution on short time scales. The intersection of the two asymptotes corresponds to a time scale of about 1 s. The suggested approach is universal and can be used to analyze the fluctuations in other parameters of a different nature.  相似文献   

19.
A new method is presented to obtain a non-parametric maximum likelihood estimate of the luminosity function and the selection function of a flux-limited redshift survey. The method parametrizes the selection function as a series of stepwise power laws and allows possible evolution of the luminosity function. We also propose a new technique to estimate the rate of evolution of the luminosity function. This is based on a minimization of the observed large-scale power with respect to the evolutionary model. We use an ensemble of mock surveys extracted from an N -body simulation to verify the power of this method. We apply our estimators to the 1.2-Jy survey of IRAS galaxies. We find a far-infrared luminosity function in good agreement with previously published results and evidence for rather strong evolution. If the comoving number density of IRAS galaxies is assumed to scale ∝ (1 +  z ) P , we estimate P  = 4.3 ± 1.4.  相似文献   

20.
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号