首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
柴达木盆地北缘中侏罗统具有较好的页岩气勘探前景,深入研究该地区暗色泥页岩吸附特征及影响因素对分析区内页岩气聚集规律有一定参考意义。以柴达木盆地北缘鱼卡地区为例,对中侏罗统泥页岩岩心样品进行X射线衍射全岩矿物组成及黏土矿物相对含量、总有机碳(TOC)含量和等温吸附等分析测试。结果表明:区内泥页岩TOC含量4.76%~25.30%,平均含量为12.05%;矿物组成以黏土矿物和石英为主,黏土矿物又以伊/蒙间层矿物和高岭石为主;泥页岩最大吸附量(VL)为1.19~8.46 cm3/g,平均值3.88 cm3/g;兰氏压力(PL)为1.72~4.98 MPa,平均3.13 MPa;泥页岩的总有机碳含量与吸附能力之间存在一定的正相关关系;黏土矿物总量与吸附能力之间具有明显的正相关性,不同类型的黏土矿物对吸附能力具有不同的影响,黏土矿物中以伊/蒙间层矿物+高岭石总量对吸附能力的影响较为显著。  相似文献   

2.
柴达木盆地北缘侏罗系页岩气地质条件   总被引:1,自引:1,他引:0  
侏罗系泥页岩是柴达木盆地的主力烃源岩之一,具备形成页岩油气的地质条件。对采自柴北缘鱼卡、大煤沟、小煤沟、开源、绿草沟、大头羊等煤矿附近地表露头的11块中侏罗统泥页岩样品进行单样品多参数实验分析,探讨了陆相页岩有机地化、储层物性、含气量等参数之间的关系,建立了页岩气资源评价参数体系。结果表明,柴达木盆地北缘中侏罗世处于浅湖-半深湖湖相沉积,断裂较发育,泥页岩富含有机质,具有低孔、低渗、低熟、较高含气量等特点,具备形成页岩油气的地质条件,进一步的勘查开发需优选地层压力系数高、保存条件较好、脆性矿物含量高的页岩气甜点区。  相似文献   

3.
通过对柴北缘中部侏罗系泥页岩样品进行系统采样和测试分析,综合评价影响页岩气形成和富集的关键参数,认为柴北缘中部主要发育下侏罗统小煤沟组二段和中侏罗统石门沟组上段两套页岩气有利层段,以石门沟组上段最为有利,具有泥页岩有效厚度大、横向展布连续、有机碳平均含量大于4.0%、有机质类型以I-II型为主等有利页岩气形成的物质条件。同时泥页岩中多样储集空间类型和微裂缝为页岩气存储提供了有利场所,而矿物组成中30%左右的石英、长石等脆性矿物的存在,为后期压裂提供了有利条件。研究表明,柴达木盆地北缘具有一定的页岩气资源前景,但研究区的样品成熟度并不高,建议在页岩气研究的同时兼顾页岩油的调查评价。该项目的研究成果为今后柴达木盆地页岩油气的勘探开发提供了基础资料。  相似文献   

4.
俞宽坤 《中国地质》2016,(2):520-530
为了探讨萍乐坳陷地区乐平组泥页岩的储层特征,以野外地质调查、老井复查资料及样品的分析测试结果为基础,对研究区泥页岩的分布特征、地球化学特征、矿物组成特征及微孔隙特征等进行了较深入分析。结果表明:乐平组泥页岩在研究区分布广泛,平均厚度在100 m以上。泥页岩的有机碳含量较高,介于0.21%~23.4%,平均为1.74%,Ro为0.7%~4.06%,平均为1.88%,处于成熟—高成熟阶段,干酪根类型以II2型为主。泥页岩中脆性矿物含量较高,以石英为主,平均为47.94%,表明泥页岩具有好的压裂潜力。黏土矿物含量中等,平均为34.93%,主要为伊利石和伊蒙混层。泥页岩的孔隙度平均为3.5%,渗透率平均为0.01×10-3μm2,反映了乐平组泥页岩储层物性较好。扫描电镜下观察泥页岩微孔隙类型主要为粒间孔、粒内孔和有机质孔。孔隙形态呈较开放状态,以细颈状墨水瓶孔和四边开放的平行板状孔等为主。进一步分析表明乐平组泥页岩微孔隙发育主要受有机碳含量和石英矿物含量控制,有机碳含量越高,微孔和中孔越发育,石英含量则对宏孔贡献明显。  相似文献   

5.
采取钻孔岩心样品,采用X射线衍射、有机碳含量、镜质体反射率等测试方法,研究淮南矿区新集井田1001井煤系泥页岩组成特征、脆性及其沉积控制。结果表明:煤系泥页岩TOC质量分数偏低,为0.6%~6.05%,平均2.44%;干酪根类型以Ⅲ型为主,少量Ⅱb型,处于生油窗和湿气生成范围;泥岩矿物成分以石英和黏土矿物为主,脆性指数主要为20%~60%,平均45%,储层脆性高,可压裂性较好,具有储层改造的潜力。缺氧滞留还原环境有利于脆性矿物发育,对泥页岩脆性控制有促进作用;海相向陆相环境过渡过程中,黏土矿物含量增加,脆性矿物含量明显减少,泥页岩脆性受抑制;受海洋影响较强的还原环境对该井煤系泥页岩中脆性矿物的发育较为有利,这一结果可能在较大程度上受埋藏成岩作用的影响。   相似文献   

6.
川南地区下古生界页岩气储层矿物组成与脆性特征研究   总被引:2,自引:0,他引:2  
应用X射线衍射(XRD)分析技术,对川南地区下古生界下寒武统筇竹寺组和下志留统龙马溪组两套海相页岩气储层岩心样品进行了矿物组成与脆性特征研究。结果表明,川南地区筇竹寺组和龙马溪组海相页岩具有差异的矿物组成和含量特征。筇竹寺组页岩中,石英含量最高(28.4%~42.8%,平均35.7%),黏土矿物含量次之(25%~35.3%,平均28.7%),碳酸盐矿物含量较低(1.4%~21.7%,平均11.2%)。龙马溪组页岩中,黏土矿物和碳酸盐矿物含量高,前者为13.4%~66.1%(平均34.7%),后者为14.6%~80.0%(平均35.9%),石英含量相对较低(5.2%~41.4%,平均21.0%)。另外,这些页岩中还含有少量黄铁矿、长石、白云石等其他矿物。总的来说,该区下古生界海相页岩的矿物组成特征与北美海相页岩比较相似。川南地区筇竹寺组和龙马溪组页岩中脆性矿物丰富、含量高,前者为55.6%~73.9%(平均64.1%),后者为26.9%~86.6%(平均62.5%),整体上具有良好的脆性和可压性,有利于该区海相页岩气的压裂改造。  相似文献   

7.
页岩储层测井评价是后期压裂改造工程的基础,通过分析柴页1井常规测井曲线特征,结合特殊测井和岩心样品分析化验数据,综合评价了中侏罗统大煤沟组页岩岩性、物性、地球化学、含气性、可压裂性等特征,获得了储层评价及工程改造参数。柴页1井中侏罗统大煤沟组至少发育128.1m厚的富有机质页岩,具有高伽马、高声波时差、高中子、高电阻、低密度的特点;测井计算有利的富有机质页岩的总有机碳含量介于3.20%~4.20%之间,总含气量介于1.50~4.50m3/t之间,有利页岩层段脆性矿物含量介于45%~75%之间,划分出3个有利层组,第Ⅰ层组和第Ⅱ层组具有杨氏模量高、泊松比低的特点,有利于后期射孔压裂。  相似文献   

8.
中国已获得湖相页岩气勘探开发的重要突破,但对于咸化湖盆环境泥页岩储集层特征的研究较少。作者对柴达木盆地西部地区古近系下干柴沟组湖相泥页岩储集层开展有机地化、岩矿组成、储集层孔隙结构等特征的研究。(1)研究区泥页岩有机质丰度在0.12%~1.35%之间,具有强烈的非均质性,有机质类型以Ⅱ型为主,氯仿沥青“A”含量较高。(2)泥页岩中碳酸盐岩矿物含量最高,平均27.8%,黏土矿物和石英含量次之,有38.2%的样品检测出硬石膏,反映典型的咸化环境特征。(3)扫描电镜观察有机质孔隙发育较少,形状不规则且孔径较大,粒(晶)间孔隙直径多以微米级为主,微裂缝宽多小于1μm;低温气体吸附测试显示,中孔提供了主要的孔比表面积和孔隙体积,氯仿沥青“A”的存在对样品孔隙结构产生影响。(4)研究区泥页岩储集层中黏土矿物含量低而脆性矿物含量高,与北美页岩气产层及四川盆地龙马溪组页岩储集层岩矿特征类似,易于产生裂缝,有利于页岩气的后期开采。  相似文献   

9.
中国南方下志留统龙马溪组(S_1l)是我国页岩气勘探开发重要的目的层之一,本文通过系统梳理该地区龙马溪组矿物成分数据资料,并对21个实测露头泥质岩中的脆性矿物进行X衍射分析,结果表明龙马溪组的脆性矿物石英、长石等含量普遍较高,平均为42.52%,黏土质矿物平均含量38.80%;方解石、白云石等碳酸盐岩,平均含量为17.58%。因此,龙马溪组泥页岩中具有较高的脆性矿物含量,脆性系数大,易形成诱导裂缝,有利于页岩气的形成。  相似文献   

10.
东营凹陷泥页岩矿物组成及脆度分析   总被引:5,自引:0,他引:5  
李钜源 《沉积学报》2013,31(4):616-620
对东营凹陷泥页岩矿物组成、脆度进行了系统研究,并与北美页岩进行了对比。研究表明:东营凹陷沙三下和沙四上亚段泥页岩主要由黏土矿物、陆源碎屑矿物(主要指石英和长石)和自生非黏土矿物(主要指碳酸盐和黄铁矿)三部分组成;泥页岩黏土矿物含量平均只有25%左右,远低于海相泥岩和传统观点;石英含量平均为29%,远低于海相页岩;长石含量平均约5%,高于海相泥岩;自生的碳酸盐矿物含量较高,平均约37%;分析认为,陆相盆地面积较小、距物源区近以及相变快是导致研究区泥页岩矿物组成特征的主要原因。鉴于此,提出了新的脆度计算方法并计算了东营凹陷泥页岩的石英脆度、碳酸盐脆度和总脆度。对比发现,碳酸矿物盐含量与泥页岩脆度相关性较好,是影响泥页岩脆度的主要因素。最后指出:研究区泥页岩脆性较好,易于形成天然裂缝或被压裂,是页岩气潜在的有利储层。  相似文献   

11.
柴达木盆地北缘鱼卡凹陷发育的侏罗系泥页岩是中国北方陆相页岩气勘探的目的层系之一。为进一步明确鱼卡凹陷侏罗系泥页岩地化-储集条件,系统采集了柴页1井泥页岩岩心样品,开展了总有机碳、热解氢指数、镜质体反射率、孔隙度和渗透率、扫描电镜、矿物组成及等温吸附特征实验分析。结果表明,柴页1井中侏罗统大煤沟组泥页岩有机质类型和成熟度利于有机质孔隙发育,较高的总有机碳含量利于页岩气富集;粘土矿物的存在虽然抑制了泥页岩微孔隙的发育,但对其吸附能力有促进作用。鱼卡凹陷具有良好的页岩气生成和储集条件,是页岩气勘探的有利地区。  相似文献   

12.
柴西阿尔金山前经历了早期断陷、中期拗陷和晚期隆升的多期改造叠合,其中早、侏罗世断陷期发育陆相湖盆泥页岩。地堑半地堑同沉积断裂控制沉积格局,断陷湖盆长轴为北东向,在小梁山凹陷、七个泉断鼻带和铁木里克凸起构造带沉积半深湖深湖相的泥页岩夹薄层砂岩、粉砂岩。泥页岩空间展布受沉积相控制,因此呈北东向带状连续稳定分布,由阿尔金山前七个泉-红沟子-小梁山构造带向盆地内部厚度逐渐减薄,累积厚度超过300 m,有效厚度在50~70 m,是阿尔金山前中、下侏罗统工业性页岩气聚集成藏必备的物质保障。研究证实,阿尔金山前中、下侏罗统泥页岩干酪根显微组分腐泥组、镜质组、惰性组的平均含量分别为60.7%、33.1%和6.2%,依据Tissot和Welte分类标准,有机质干酪根类型以Ⅱ型为主。 对25个野外样品进行岩石热解测试,TOC含量稳定分布在1%~4%,Ro在0.8%~2.5%,泥页岩有机质含量高,处于成熟过成熟阶段,生气条件优越。与北美和四川盆地海相页岩相比,阿尔金山前中、下侏罗统陆相泥页岩的黏土矿物含量相对较高,平均含量为52.51%;含硅质脆性矿物含量相对较低,平均含量为37.42%。泥页岩中发育大量裂缝、微裂缝、粒间孔、粒内孔和有机质孔,有利于页岩气富集和吸附。泥页岩比表面积在9.13~18.14 m2/g,平均值为13.43 m2/g;孔体积在0.026 6~0.088 7 cm3/g,平均值0.065 41cm3/g,平均孔径在25.76~72.48 nm,平均值为47.87 nm。比表面积和孔径呈负相关,孔体积和孔径呈正相关;孔径越小,泥页岩的比表面积越大。TOC和Ro与泥页岩表面积呈正相关,表明随着有机质成熟生烃形成的有机质孔对比表面有重大影响,比表面越大为页岩气吸附提供的吸附位越多,储集性能优越。上覆灰泥岩、泥灰岩和膏盐岩盖层区域广泛分布,早期浅埋-中期深埋、多次排烃-晚期抬升有利于页岩气藏的保存。综合页岩气成藏实际地质参数,优选出小梁山凹陷、七个泉断鼻带、洪水沟断鼻带和铁木里克凸起4个有利区带。  相似文献   

13.
利用XRD、Rock-eval和气相色谱—质谱仪对准格尔南缘柴窝堡凹陷上石炭统、上二叠统及下侏罗统的泥页岩进行了地球化学和矿物学特征分析。有机地球化学实验结果指示,柴窝堡凹陷石炭纪至二叠纪经历了较长时期的淡水—微咸水沉积环境,有机质来源具有相似的母源输入特征,干酪根类型具有II型混合母质特征;有机质热演化特征表明,下侏罗统泥页岩处于低熟阶段,上石炭统与上二叠统泥页岩具有机质丰度较高、有机质类型丰富、热演化处于成熟—高成熟阶段等特点;矿物学特征显示,上二叠统泥页岩长石、石英等脆性矿物含量为73%,粘土矿物次之,指示其脆性指数较高,具有较好的可压裂性和粘土表面吸附性。结合前人认识,预测该段泥页岩中可能蕴藏着一定规模的页岩气资源,具有较好的页岩气资源前景和勘探潜力。  相似文献   

14.
Middle–Lower Jurassic terrigenous shales constitute a set of significant hydrocarbon source rocks in the Kuqa Depression of the Tarim Basin. Until recently, however, most investigations regarding this set of hydrocarbon source rocks have mainly focused on conventional oil and gas reservoirs, and little research has been conducted on the formation conditions of shale gases. This research, which is based on core samples from nine wells in the Kuqa Depression, investigated the geological, geochemical, mineralogical and porosity characteristics of the shales, analysed the geological and geochemical conditions for the formation of shale gases, and evaluated the shale gas resource potential. The results show that the distribution of the Middle–Lower Jurassic shales is broad, with thicknesses reaching up to 300–500 km. The total organic carbon (TOC) content is relatively high, ranging from 0.2 to 13.5 wt% with a mean of 2.7 wt%. The remaining hydrocarbon generative potential is between 0.1 and 22.34 mg/g, with a large range of variation and a mean value of 3.98 mg/g. It is dominated by type III kerogen with the presence of minor type II1 kerogen. The vitrinite reflectance values range from 0.517 to 1.572%, indicating the shales are in a mature or highly mature stage. The shales are mainly composed of quartz (19–76%), clay (18–68%) and plagioclase (1–10%) with mean contents of 50.36 wt%, 41.42 wt%, and 3.37 wt%, respectively. The pore spaces are completely dominated by primary porosity, secondary porosity and microfractures. The porosity is less than 10% and is mainly between 0.5 and 4%, and the permeability is generally less than 0.1 mD. These results classify the shale as a low-porosity and ultra-low-permeability reservoir. The porosity has no obvious correlation with the brittle or clay mineral contents, but it is significantly positively correlated with the TOC content. The maximum adsorbed gas content is between 0.82 and 8.52 m3/t with a mean of 3.37 m3/t. In general, the shale gas adsorption content increases with increasing the TOC content, especially when the TOC content is greater than 1.0%. The volumetric method, used to calculate the geological resources of the Middle–Lower Jurassic shales in the Kuqa Depression, shows that the geological resources of the Middle and Lower Jurassic shales reach 667.681 and 988.115 × 109 m3, respectively with good conditions for the formation of shale gas and good prospects for shale gas exploration.  相似文献   

15.
The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional resources are becoming increasingly urgent. The Qingshankou Formation consists of typical Upper Cretaceous continental strata, and represents a promising and practical replacement resource for shale oil in the Songliao Basin. Previous studies have shown that low-mature to mature Qingshankou shale mainly preserves type Ⅰ and type Ⅱ1 organic matter, with relatively high total organic carbon(TOC) content. It is estimated that there is a great potential to explore for shale oil resources in the Qingshankou Formation in this basin. However, not enough systematic research has been conducted on pore characteristics and their main controlling factors in this lacustrine shale reservoir. In this study, 19 Qingshankou shales from two wells drilled in the study area were tested and analyzed for mineral composition, pore distribution and feature evolution using Xray diffraction(XRD), scanning electron microscopy(SEM), low-pressure nitrogen gas adsorption(N2-GA), and thermal simulation experiments. The XRD results show that clay, quartz, and feldspar are the dominant mineral constituents of Qingshankou shale. The clay minerals are mostly illite/smectite mixed layers with a mean content of 83.5%, followed by illite, chlorite, and kaolinite. There are abundant deposits of clay-rich shale in the Qingshankou Formation in the study area, within which many mineral and organic matter pores were observed using SEM. Mineral pores contribute the most to shale porosity;specifically, clay mineral pores and carbonate pores comprise most of the mineral pores in the shale. Among the three types of organic matter pores, type B is more dominant the other two. Pores with diameters greater than 10 nm supply the main pore volume;most are half-open slits and wedge-shaped pores. The total pore volume had no obvious linear relationship with TOC content, but had some degree of positive correlation with the content of quartz + feldspar and clay minerals respectively. However, it was negatively correlated with carbonate mineral content. The specific surface area of the pores is negatively related to TOC content, average pore diameter, and carbonate mineral content. Moreover, it had a somewhat positive correlation with clay mineral content and no clear linear relationship with the content of quartz + feldspar. With increases in maturity, there was also an increase in the number of carbonate mineral dissolution pores and organic matter pores, average pore diameter, and pore volume, whereas there was a decrease in specific surface area of the pores. Generally, the Qingshankou shale is at a low-mature to mature stage with a TOC content of more than 1.0%, and could be as thick as 250 m in the study area. Pores with diameters of more than 10 nm are well-developed in the shale. This research illustrates that there are favorable conditions for shale oil occurrence and enrichment in the Qingshankou shale in the study area.  相似文献   

16.
X-ray diffraction analysis of black shale of Upper Triassic Member Chang 7 of the Yanchang Formation in southeastern Ordos Basin showed that black shales were deposited in brackish, strongly reducing, semi-deep-deep lacustrine facies, and mainly composed of quartz, feldspar, carbonate (dolomite), clay minerals (illite and il- lite/smectite) and a certain amount of pyrite. The mineral composition characteristics of this set of black shales are similar to those of highly productive shale gas in North America, for example shallow burial, low clay mineral and abundant brittle mineral, so the strata are conducive to the development of cracks and fractures. Thus, this area is favorable for shale oil/gas exploration and development.  相似文献   

17.
为揭示陆相页岩微观孔隙结构特征,应用低温氮气吸附-解吸实验,结合扫描电镜分析、有机碳测定及X射线衍射等手段,分析页岩有机质和矿物组成,厘清孔隙结构和分形特征,并探究其影响因素。结果表明:沙河子组陆相页岩矿物组成以黏土矿物、石英和长石为主。储集空间类型主要为黏土矿物粒内孔、长石溶蚀孔和颗粒边缘孔,有机孔隙不发育。氮吸附曲线主要呈现为Ⅳ类吸附曲线,发育H2和H3两类迟滞回线,其中H3型比表面积较低,平均孔径较大,宏孔含量较高。页岩孔体积主要由介孔和宏孔贡献,比表面积主要由介孔贡献。孔径分布呈现双峰态,左峰约为2.7 nm,右峰分布在20~70 nm。页岩发育两段分形特征,分形维数显示H3型页岩孔隙结构非均质性及复杂性较弱。孔隙结构主要受矿物组成控制,与TOC无明显相关性,微孔含量与比表面积越高,宏孔含量与平均孔径越高,页岩孔隙结构越复杂,越不利于页岩气的运移及产出。陆相页岩因沉积环境控制下赋存的腐殖型有机质,从本质上影响了其孔隙空间、孔隙结构及页岩气富集特征,与海相页岩区别显著。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号