首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
苗雨  晏飞  万云冬  王元汉 《岩土力学》2008,29(7):1872-1876
杂交边界点法是一种边界类型的无网格法,它以修正变分原理和移动最小二乘近似为基础,同时具有边界元法和无网格法的优良特性。将该方法同双重互易法结合,将问题的解分为通解和特解两部分,通解使用杂交边界点方法求解,特解则利用局部径向基函数近似。该方法输入数据只是求解域上离散的点,不需要额外的方程来计算域内物理量,后处理十分简便。数值算例表明,该方法是一种计算精度很高的数值方法,适合于岩土工程的若干问题。  相似文献   

2.
谭飞  邓帮  张东明  王元汉 《岩土力学》2010,31(Z2):75-78
将杂交边界点法与迭代法相结合,求解有自由面的渗流问题。杂交边界点法基于杂交位移变分原理和移动最小二乘近似,利用基本解插值域内的场函数,而边界上的变量则用移动最小二乘近似,是一种纯边界类型的无网格方法。利用该方法只需在边界上布点而不需要划分任何网格的特性,先假定自由面的初始位置,再进行迭代求解。数值算例表明,该方法精度较高、计算量较小,适合于求解各种具有自由面的渗流问题。  相似文献   

3.
苗雨  毛峰  王元汉  张钧  李亮辉 《岩土力学》2005,26(9):1452-1455
改进了正则化的杂交边界点方法,提出了岩土工程中一种新的数值方法。该方法将基本解的源点布在边界上,避免了自由参数的选取,将修正变分原理同移动最小二乘法结合起来,不但有边界元降维的优点,而且还是一种真正的无网格方法,输入数据只是求解域上离散分布的点,后处理十分简便。同时它适合于处理岩土工程的无限域问题。数值算例表明,它是一种计算精度很高的数值方法,适合于岩土工程中的若干问题。  相似文献   

4.
李红霞  余震果 《地下水》2014,(1):27-28,34
本文采用径向基函数配点法建立了河渠间地下水非承压稳定流问题的数值模拟模型。径向基函数配点法的计算结果与形状参数的取值密切相关。将计算所得的近似解与解析解对比产生的误差很小,说明径向基函数配点法是一种既有效又有较高精度的求解方法。  相似文献   

5.
《地下水》2017,(2)
将径向基函数配点法用于求解承压含水层中地下水向井的稳定流动问题。主要考虑存在井群情形时径向基函数配点方法的应用。通过对具体实例计算分析显示,用径向基函数配点法求解该问题的计算精度及效率较高,结果理想。  相似文献   

6.
最小二乘配点法是用于地下水流计算的一种新型、高效的无网格方法。此方法是在径向基函数配点法的基础上,对计算域进行节点离散,并布置辅助点,近似函数仍然通过节点构造,微分方程在节点和辅助点上都严格满足,从而计算精度更高。而且此方法不需要背景网格,效率高,形式简单。利用该方法计算地下水流向河、渠中的非承压含水层稳定流和非稳定流问题,算例表明,该方法有很好的精度且计算量小,比径向基函数配点法有更精确的结果。  相似文献   

7.
李树忱  周锦添  李术才 《岩土力学》2007,28(12):2549-2552
目前隧道及大型地下工程往往在裂隙岩体中开挖,而裂隙与地下空间的距离及裂隙的扩展条件,制约着隧道及地下工程的稳定性。应用能考虑孔洞和裂纹问题的新型边界积分方程与无网格加辽金法结合,建立一种新型的边界无单元法。在该方法中基本的未知量是由边界上的面力和边界上位移密度函数构成的复变量边界函数 。文中应用的边界积分公式和Muskhelishvili的积分公式直接相关。将无网格构造方法引入新型的边界积分方程,建立了新型的边界无单元法。应用该方法详细分析了含隧道和裂纹间相互关系等问题,其数值结果与解析结果吻合很好,说明该方法的正确性和可行性。  相似文献   

8.
赵小娟  周德亮 《地下水》2019,(1):28-29,50
本文中使用的径向基函数配点法是以时空配点法为基础来解决抛物型方程的一类问题。这种方法与近似求时间导数的隐式,显式法以及其他数值法不同,它不需要对离散系统的时间稳定性进行分析。用时空径向基函数配点法求解二维地下水非稳定流动问题,通过呈现有混合边界条件及只有一类边界条件两种情况下的计算结果,说明了该方法求解该问题的精度及效率较高,结果理想。  相似文献   

9.
借助于Biot 波动理论和弹性波的传播理论,采用复变函数和多级坐标法,对半空间饱和土中圆形衬砌结构对弹性稳态压缩波的散射问题进行求解和分析。利用一个半径很大的圆弧来逼近半空间直边界,将待解问题转化为稳态弹性压缩波在一个大圆孔和一个弹性衬砌结构的散射问题。通过引入势函数,将饱和土的Biot波动方程和衬砌的弹性波动方程解耦成Helmholtz 方程,借助复变函数级数展开便可以预先写出该组Helmholtz方程的通解。然后,通过引用复变量,把饱和土和衬砌结构中的应力、位移及孔压用设定的势函数表示出来,再利用半空间饱和土和衬砌结构的连续性条件和近似直边界的圆弧边界和衬砌内边界的边界条件求解出该组势函数的特解。最后,利用势函数的特解,得到饱和土中的位移,应力和孔压及衬砌结构的位移和应力;变换不同的参数求解衬砌结构内外边界的动应力和孔压的集中系数,通过对算例结果的分析得出一系列有益的结论。  相似文献   

10.
径向基点插值法(RPIM)作为一种高精度的无网格方法,其形函数采用与径向基函数结合的插值方法构造,边界条件可直接加载。将RPIM用于点源二维变分问题的求解,介绍了RPIM的近似原理;推导了点源二维问题的RPIM总体矩阵表达式,简述了背景网格积分技术,研究了高斯点数目对RPIM计算精度的影响;最后通过数值试验得出了支持域无量纲尺寸α最优选择区间与RPIM形状参数最优值。研究结果表明:RPIM求解点源二维变分问题具有较好的鲁棒性,α最优区间为1.0~1.2。  相似文献   

11.
In this paper, time-domain dynamic analysis of dam–reservoir–foundation interaction is presented by coupling the dual reciprocity boundary element method (DRBEM) in the infinite reservoir and foundation domain and the finite element method in the finite dam domain. An efficient coupling procedure is formulated by using the sub-structuring method. The effects of the reservoir bottom absorption are included in the formulations. Sharan's boundary condition for the far-end of the infinite fluid domain is implemented. To verify the proposed scheme, numerical examples are carried out by comparing with the available exact solutions and finite–finite element coupling results for the dam–reservoir interaction. A complete dam–reservoir–foundation interaction is also studied by including the bottom absorption effects. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Flow of fluids and transport of solutes in porous media are subjects of wide interest in several fields of applications: reservoir engineering, subsurface hydrology, chemical engineering, etc. In this paper we will study two-phase flow in a model consisting of two different types of sediments. Here, the absolute permeability, the relative permeabilities and the capillary pressure are discontinuous functions in space. This leads to interior boundary value problems at the interface between the sediments. The saturation Sw will be discontinuous or experience large gradients at the interface. A new solution procedure for such problems will be presented. The method combines the modified method of characteristics with a weak formulation where the basis functions are discontinuous at the interior boundary. The modified method of characteristics will provide a good first approximation for the jump in the discontinuous basis functions, which leads to a fast converging iterative solution scheme for the complete problem. The method has been implemented in a two-dimensional simulator, and results from numerical experiments will be presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
In this work, we describe a meshless numerical method based on local collocation with RBFs for the solution of the poroelasticity equation. The RBF finite collocation approach forms a series of overlapping nodal stencils, over which an RBF collocation is performed. These local collocation systems enforce the governing PDE operator throughout their interior, with the intersystem communication occurring via the collocation of field variables at the stencil periphery. The method does not rely on a generalised finite differencing approach, whereby the governing partial differential operator is reconstructed at the global level to drive the solution of the PDE. Instead, the PDE governing and boundary operators are enforced directly within the local RBF collocation systems, and the sparse global assembly is formed by reconstructing the value of the field variables at the centrepoint of the local stencils. In this way, the solution of the PDE is driven entirely by the local RBF collocation, and the method more closely resembles the approach of the full‐domain RBF collocation method. By formulating the problem in this fashion, high rates of convergence may be attained without the computational cost and numerical ill‐conditioning issues that are associated with the full‐domain RBF collocation approach. An analytical solution is formulated for a 2D poroelastic fluid injection scenario and is used to verify the proposed implementation of the method. Highly accurate solutions are produced, and convergence rates in excess of sixth order are observed for each field variable (i.e. pressure and displacement) and field‐variable derivative (i.e. pressure gradients and stresses). The stress and displacement fields resulting from the solution of the poroelasticity equation are then used to describe the formation and propagation of microfractures and microfissures, which may form in the presence of large shear strain, in terms of a continuous damage variable which modifies the mechanical and hydraulic properties of the porous medium. The formation of such hydromechanical damage, and the resulting increase in hydraulic conductivity, is investigated for a pressurised injection into sandstone. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A Dirichlet–Neumann representation method was recently proposed for upscaling and simulating flow in reservoirs. The DNR method expresses coarse fluxes as linear functions of multiple pressure values along the boundary and at the center of each coarse block. The number of flux and pressure values at the boundary can be adjusted to improve the accuracy of simulation results and, in particular, to resolve important fine-scale details. Improvement over existing approaches is substantial especially for reservoirs that contain high-permeability streaks or channels. As an alternative, the multiscale mixed finite-element (MsMFE) method was designed to obtain fine-scale fluxes at the cost of solving a coarsened problem, but can also be used as upscaling methods that are flexible with respect to geometry and topology of the coarsened grid. Both methods can be expressed in mixed-hybrid form, with local stiffness matrices obtained as “inner products” of numerically computed basis functions with fine-scale sub-resolution. These basis functions are determined by solving local flow problems with piecewise linear Dirichlet boundary conditions for the DNR method and piecewise constant Neumann conditions for MsMFE. Adding discrete pressure points in the DNR method corresponds to subdividing faces in the coarse grid and hence increasing the number of basis functions in the MsMFE method. The methods show similar accuracy for 2D Cartesian cases, but the MsMFE method is more straightforward to formulate in 3D and implement for general grids.  相似文献   

15.
A two-dimensional hybrid method for solving elastoplastic problems in engineering is presented by coupling two existing methods, namely, the boundary element method and the characteristics method. The formulation of this method is presented, as well as an excellent procedure for the determination of the boundary between elastic and plastic regions. It is shown not only that this method is a powerful and accurate method for evaluating the shape and extent of the plastic region around rock caverns, which is of prime importance for the construction of rock caverns, but also applicable to a given range of the initial stress field ratio where only compressive failure occurs. Then, some typical examples are solved in order to check the accuracy of the solution by this method. Furthermore, its successful applications are presented and discussed to determine the shape and the extent of the plastic regions around parallel, circular and rectangular openings.  相似文献   

16.
The MultiScale Finite Volume (MSFV) method is known to produce non-monotone solutions. The causes of the non-monotone solutions are identified and connected to the local flux across the boundaries of primal coarse cells induced by the basis functions. We propose a monotone MSFV (m-MSFV) method based on a local stencil-fix that guarantees monotonicity of the coarse-scale operator, and thus, the resulting approximate fine-scale solution. Detection of non-physical transmissibility coefficients that lead to non-monotone solutions is achieved using local information only and is performed algebraically. For these ‘critical’ primal coarse-grid interfaces, a monotone local flux approximation, specifically, a Two-Point Flux Approximation (TPFA), is employed. Alternatively, a local linear boundary condition can be used for the dual basis functions to reduce the degree of non-monotonicity. The local nature of the two strategies allows for ensuring monotonicity in local sub-regions, where the non-physical transmissibility occurs. For practical applications, an adaptive approach based on normalized positive off-diagonal coarse-scale transmissibility coefficients is developed. Based on the histogram of these normalized coefficients, one can remove the large peaks by applying the proposed modifications only for a small fraction of the primal coarse grids. Though the m-MSFV approach can guarantee monotonicity of the solutions to any desired level, numerical results illustrate that employing the m-MSFV modifications only for a small fraction of the domain can significantly reduce the non-monotonicity of the conservative MSFV solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号