首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the influence of population density on radio-frequency interference(RFI) affecting radio astronomy.We use a new method to quantify the threshold of population density in order to determine the most suitable lower limit for site selection of a radio quiet zone(RQZ).We found that there is a certain trend in the population density-RFI graph that increases rapidly at lower values and slows down to almost flat at higher values.We use this trend to identify the thresholds for population density that produce RFI.Using this method we found that,for frequencies up to 2.8 GHz,low,medium and high population densities affecting radio astronomy are below 150 ppl km-2,between 150 ppl km-2and 5125 ppl km-2,and above5125 ppl km-2respectively.We also investigate the effect of population density on the environment of RFI in three astronomical windows,namely the deuterium,hydrogen and hydroxyl lines.We find that a polynomial fitting to the population density produces a similar trend,giving similar thresholds for the effect of population density.We then compare our interference values to the standard threshold levels used by the International Telecommunication Union within these astronomical windows.  相似文献   

2.
We present a general analytical procedure for computing the number density of voids with radius above a given value within the context of gravitational formation of the large-scale structure of the Universe out of Gaussian initial conditions. To this end, we develop an accurate (under generally satisfied conditions) extension of the unconditional mass function to constrained environments, which allows us both to obtain the number density of collapsed objects of certain mass at any distance from the centre of the void, and to derive the number density of voids defined by collapsed objects. We have made detailed calculations for the spherically averaged mass density and halo number density profiles for particular voids. We also present a formal expression for the number density of voids defined by galaxies of a given type and luminosity. This expression contains the probability for a collapsed object of certain mass to host a galaxy of that type and luminosity (i.e. the conditional luminosity function) as a function of the environmental density. We propose a procedure to infer this function, which may provide useful clues as to the galaxy formation process, from the observed void densities.  相似文献   

3.
We discuss, on the basis of general relativity, the density distribution of stars around a black hole at the centre of a globular cluster. We show that the radial density profile depends on the ratio of specific heats γ and the results by Peebles and by Bahcall and Wolf are particular cases with γ 4/3. We give also the projected density profiles, obtained by numerical integration, for ready comparison with observations.  相似文献   

4.
Radio observations of young supernova remnants (SNRs) can shed light on the early evolution of SNRs. We selected G1.9+0.3 which is the youngest SNR in the Milky Way Galaxy for a study. We compiled the radio flux densities currently available and converted them to the same frequency, which leaves us the evolution of the flux density for the past nearly 50 years. We found that the flux density increased before 2008 and decreased afterwards, meaning the flux density reaching the maximum at an age of about 150–155 yr. We attributed the brightening of the SNR to the increase of either magnetic field or the accelerated high energy electrons. Based on the age at which the flux density reached the peak, combined with the previous numerical simulation, we discussed the ejecta mass of the supernova and kinetic energy released by the supernova explosion.  相似文献   

5.
We present the results of a numerical study of the fluid f, p and the gravitational w modes for increasingly relativistic non-rotating polytropes. The results for f and w modes are in good agreement with previous data for uniform density stars, which supports an understanding of the nature of the gravitational wave modes based on the uniform density data. We show that the p modes can become extremely long-lived for some relativistic stars. This effect is attributed to the change in the perturbed density distribution as the star becomes more compact.  相似文献   

6.
We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. We compute the torque on the black hole caused by the Lense–Thirring precession, and hence compute the alignment and precession time-scales. We generalize the case with viscosity and hence surface density independent of radius to more realistic density distributions for which the surface density is a decreasing function of radius. We find that the alignment time-scale does not change greatly but the precession time-scale is more sensitive. We also determine the effect on this time-scale if we truncate the disc. For a given truncation radius, the time-scales are less affected for more sharply falling density distributions.  相似文献   

7.
8.
We have constructed models of axisymmetric, circumstellar envelopes for Be star discs by successfully combining two numerical codes: a non-local thermodynamic equilibrium (non-LTE) radiative transfer code which calculates the level populations and disc temperature distribution self-consistently, and a hydrodynamical code. The output of one code is used as input to the other code, and hence evolving density and thermal structures may be examined. The temperatures, disc density and velocity distribution are used to investigate the outflowing viscous disc model for Be stars. We find that these simulations place constraints on the power-law density decrease in the disc with increasing distance from the star. We find that the power-law index for the line-forming region of the disc lies between 3 and 3.5 with a small dispersion.  相似文献   

9.
We continue with our previous work on statistics of velocity centroids, to retrieve information about the scaling properties of an underlying turbulent velocity field from spectroscopic observations. We use synthetic data sets with extreme effects of velocity–density correlations that we create artificially, which also have a non-Gaussian distribution of fluctuations. We confirm that centroids can be used to obtain the scaling properties of the turbulent velocity when the ratio of the density dispersion to the mean density is less than unity, regardless of velocity–density correlations and non-Gaussianity. It was found that extreme velocity–density correlations can distort the statistics of velocity centroids, impeding the recovery of the turbulent velocity spectral index from centroids. We show that such correlations introduce high-order moments to the maps of centroids, which we disregarded in previous work, but that they are only important when the density dispersion is large in comparison with the mean density. It was also found that non-Gaussian velocity and/or density distort the statistics of centroids too, but to a lower degree than extreme cross-correlations.  相似文献   

10.
Cosmological simulations suggest that dark matter haloes are not spherical, but typically moderately to strongly triaxial systems. We investigate methods to convert spherical potential–density pairs into axisymmetric ones, in which the basic characteristics of the density profile (such as the slope at small and large radii) are retained. We achieve this goal by replacing the spherical radius r by an oblate radius m in the expression of the gravitational potential  Φ( r )  .
We extend and formalize the approach pioneered by Miyamoto & Nagai to be applicable to arbitrary potential–density pairs. Unfortunately, an asymptotic study demonstrates that, at large radii, such models always show a   R −3  disc superposed on a smooth roughly spherical density distribution. As a result, this recipe cannot be used to construct simple flattened potential–density pairs for dynamical systems such as dark matter haloes. Therefore, we apply a modification of our original recipe that cures the problem of the discy behaviour. An asymptotic analysis now shows that the density distribution has the desired asymptotic behaviour at large radii (if the density falls less rapidly than   r −4  ). We also show that the flattening procedure does not alter the shape of the density distribution at small radii: while the inner density contours are flattened, the slope of the density profile is unaltered.
We apply this recipe to construct a set of flattened dark matter haloes based on the realistic spherical halo models by Dehnen & McLaughlin. This example illustrates that the method works fine for modest flattening values, whereas stronger flattening values lead to peanut-shaped density distributions.  相似文献   

11.
We determine the velocity distribution and space density of a volume-complete sample of A and F stars, using parallaxes and proper motions from the Hipparcos satellite. We use these data to solve for the gravitational potential vertically in the local Galactic disc, by comparing the Hipparcos measured space density with predictions from various disc models. We derive an estimate of the local dynamical mass density of 0.102±0.010 pc−3, which may be compared with an estimate of 0.095 M pc−3 in visible disc matter. Our estimate is found to be in reasonable agreement with other estimates by Crézé et al. and Pham, also based on Hipparcos data. We conclude that there is no compelling evidence for significant amounts of dark matter in the disc.  相似文献   

12.
In this note extended Chaplygin gas equation of state includes bulk and shear viscosities suggested. Bulk viscosity assumed as power law form of density and shear viscosity considered as a constant. We study evolution of dark energy density numerically for several forms of scale factor, and analytically under some assumptions corresponding to early universe. We found our model is stable for infinitesimal viscous parameters.  相似文献   

13.
At redshifts z ≳2, most of the baryons reside in the smooth intergalactic medium which is responsible for the low column density Ly α forest. This photoheated gas follows a tight temperature–density relation which introduces a cut-off in the distribution of widths of the Ly α absorption lines ( b -parameters) as a function of column density. We have measured this cut-off in a sample of nine high-resolution, high signal-to-noise ratio quasar spectra and determined the thermal evolution of the intergalactic medium in the redshift range 2.0–4.5. At a redshift z ∼3, the temperature at the mean density shows a peak and the gas becomes nearly isothermal. We interpret this as evidence for the reionization of He  ii .  相似文献   

14.
《Icarus》1986,68(3):522-533
We discuss the steady-state structure of the nonlinear density waves generated in a planetary ring at the Lindblad resonances of a satellite. We show that strong density waves lead to an enhancement of the background surface density in the wave zone.  相似文献   

15.
Weak gravitational lensing surveys have the potential to probe mass density fluctuation in the Universe directly. Recent studies have shown that it is possible to model the statistics of the convergence field at small angular scales by modelling the statistics of the underlying density field in the highly non-linear regime. We propose a new method to model the complete probability distribution function of the convergence field as a function of smoothing angle and source redshift. The model relies on a hierarchical ansatz for the behaviour of higher order correlations of the density field. We compare our results with ray-tracing simulations and find very good agreement over a range of smoothing angles. Whereas the density probability distribution function is not sensitive to the cosmological model, the probability distribution function for the convergence can be used to constrain both the power spectrum and cosmological parameters.  相似文献   

16.
We investigate the number density of maxima in the cosmological galaxy density field smoothed with a filter as a probe of clustering. In previous work it has been shown that this statistic is closely related to the slope of the linear power spectrum, even when the directly measured power spectrum is non-linear. In the present paper we investigate the sensitivity of the peak number density to various models with differing power spectra, including rolling index models, cosmologies with massive neutrinos and different baryon densities. We find that rolling index models which have given an improved fit to CMB/LSS (cosmic microwave background/large scale structure) data yield a ∼10 per cent difference in peak density compared to the scale invariant case. Models with 0.3 eV neutrinos have effects of similar magnitude and it should be possible to constrain them with data from current galaxy redshift surveys. Baryon oscillations in the power spectrum also give rise to distinctive features in the peak density. These are preserved without modification when measured from the peak density in fully non-linear N -body simulations. Using the simulations, we also investigate how the peak density is modified in the presence of redshift distortions. Redshift distortions cause a suppression of the number of peaks, largely due to fingers of God overlapping in redshift space. We find that this effect can be modelled by using a modification of the input power spectrum. We also study the results when the simulation density field is traced by galaxies obtained by populating haloes with a halo occupation distribution consistent with observations. The peak number density is consistent with that in the dark matter for filter scales  >4  h −1 Mpc  , for which we find good agreement with the linear theory predictions. In a companion paper we analyse data from the 2dF Galaxy Redshift Survey.  相似文献   

17.
We investigate the clustering properties of 13 QSO lines of sight in flat space, with average redshifts from z ≈2 to 4. We estimate the 1D power spectrum and the integral density of neighbours, and discuss their variation with respect to redshift and column density. We compare the results with standard CDM models, and estimate the power spectrum of Lyman- α clustering as a function of both redshift and column density. We find that (a) there is no significant periodicity or characteristic scale; (b) the clustering depends on both column density and redshift; (c) the clustering increases linearly only if at the same time the H  i column density decreases strongly with redshift. The results remain qualitatively the same, assuming an open cosmological model.  相似文献   

18.
We investigate a spatially flat cold dark matter model (with the matter density parameter     with a primordial feature in the initial power spectrum. We assume that there is a bump in the power spectrum of density fluctuations at wavelengths     , which corresponds to the scale of superclusters of galaxies . There are indications for such a feature in the power spectra derived from redshift surveys and also in the power spectra derived from peculiar velocities of galaxies. We study the mass function of clusters of galaxies, the power spectrum of the cosmic microwave background (CMB) temperature fluctuations, the rms bulk velocity and the rms peculiar velocity of clusters of galaxies. The baryon density is assumed to be consistent with the big bang nucleosynthesis value. We show that with an appropriately chosen feature in the power spectrum of density fluctuations at the scale of superclusters, the mass function of clusters, the CMB power spectrum, the rms bulk velocity and the rms peculiar velocity of clusters are in good agreement with the observed data.  相似文献   

19.
利用美国甚长基线阵对3个致密陡谱源3C43、3C48和3C454进行中心频率1.6GHz的观测,获得总流量图和各个子源的结构等信息.对比已有的数据,分析源3C43和3C454的流量变化和各个子源的位置移动,发现3C43的总流量、各子源流量、各子源的相对位置在14年内比较稳定;3C454的总流量和各子源流量也比较稳定,但两个子源相对核心的偏离速度分别是光速的21.6和17.7倍,存在明显的视超光速现象.同时通过对L波段4个频率的总流量结果进行谱指数拟合,获得源3C43和3C454的谱指数分别是0.63和0.86,符合致密陡谱源谱指数α≥0.5的定义,也与已有的结果吻合较好.  相似文献   

20.
We investigate the relationship between the star formation rate per unit area and the surface density of the interstellar medium (ISM; the local Kennicutt–Schmitt law) using a simplified model of the ISM and a simple estimate of the star formation rate based on the mass of gas in bound clumps, the local dynamical time-scales of the clumps and an efficiency parameter of around  ε≈ 5  per cent. Despite the simplicity of the approach, we are able to reproduce the observed linear relation between star formation rate and surface density of dense (molecular) gas. We use a simple model for the dependence of H2 fraction on total surface density to argue why neither total surface density nor the H  i surface density is a good local indicator of star formation rate. We also investigate the dependence of the star formation rate on the depth of the spiral potential. Our model indicates that the mean star formation rate does not depend significantly on the strength of the spiral potential, but that a stronger spiral potential, for a given mean surface density, does result in more of the star formation occurring close to the spiral arms. This agrees with the observation that grand design galaxies do not appear to show a larger degree of star formation compared to their flocculent counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号