首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of the terrestrial heat flux at 76 localities along 2 profiles across the Mid-Atlantic Ridge at 19.5°N and 8.5°S latitude are presented. Two high heat-flow values were measured 800 to 1000 km east of the ridge crest at 8.5°S, but no high values were found at the ridge crest at this latitude. Detailed surveys and heat-flow measurements near the ridge crests on both profiles indicate that bottom topography influences the heat-flow variability. The average heat flow on both profiles, about 1.4 to 1.5 × 10−6 cal/cm2 sec, is close to the average for other ocean basins, in contrast to previous studies indicating lower heat flow for the Atlantic.  相似文献   

2.
Temperature data from deep petroleum exploration wells and thermal conductivity estimates based on net rock analysis data have been used to make terrestrial heat flow estimates along two profiles across the sedimentary strata of the Mackenzie Delta, northern Yukon, and offshore Beaufort Sea regions.Both profiles exhibit low heat flow values that range from 34 mWm–2 to 58 mWm–2, and little change occurs over large distances in the continental part of the area. Low heat flow values (<40 mWm–2) occur in the Beaufort-Mackenzie Basin and Rapid Depression, both of which are areas of thick successions of Cretacecus and Tertiary clastic sedimentary strata. High heat flow values of almost 80 mWm–2 occur to the south in the Taiga Nahoni Foldbelt and values as high as 60 mWm–2 are indicated along the Aklavik Arch Complex, northeast of Aklavik.The regional variations of effective thermal conductivity are insufficient to account for the heat flow variations along the profiles, and so these may indicate deep radiogenic or other heat sources.  相似文献   

3.
During two months in spring, 1983, a multidisciplinary study, project CESAR, was undertaken from the sea ice across the eastern Alpha Ridge, Arctic Ocean. In the geothermal program, 10 gradiometer profiles were obtained; 63 determinations of in situ sediment thermal conductivity were obtained with the same probe, and 714 measurements of conductivity using the needle probe method were obtained on nearby core.Weighted means of the thermal conductivity of the sediment are 1.26 W/mK (in situ) and 1.34 W/mK (core), consistent with the compacted sediment encountered across the ridge and with the lithology. Calculated terrestrial heat flow values, corrected for the regional topography, range from 37 to 72 mWm−2; the average is 56+/−8 mWm−2.Some temperature and heat flow versus depth profiles exhibit non-linearities that can be explained by physically reasonable (but otherwise unsubstantiated) variations in bottom water temperatures preceding the measurements; models are hypothesized that reduce the curvatures. Two heat flow values considerably higher than others in the area may be explained by higher bottom water temperature over several years, while the low value is consistent with a recent deposition from a slump. This hypothetical modelling reduces the scatter of heat flows and reduces the average to 53+/−6 mWm−2.The CESAR heat flow is somewhat greater than expected for a purely continental fragment but is consistent with crust of oceanic origin. The heat flow is similar to values obtained in Cretaceous back-arc basins. Based on the oceanic heat flow-age relationship, the heat flow constrains the age of the ridge to 60–120 million years. The heat flow observed on other aseismic features in the world's oceans suggests that the Alpha Ridge has experienced no significant tectono-thermal event in the last 100 million years.  相似文献   

4.
Summary The temperature-depth distribution was calculated to a depth of 70 km along the 520 km long Taratashskiy refraction profile crossing the Ural Mts., approximately along latitude 56°N. The steady-state model was solved numerically using the finite-difference method, the vertical distribution of heat production was derived from the observed seismic velocities. It was shown that at the Moho boundary, the mantle heat flow varied between 10 and 25 mWm–2, and the Moho temperature amounted to 300–550°C for the two versions studied.  相似文献   

5.
The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5–9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s–1 in a laterally constrained (25–50 km wide) jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s–1 and 0.36 × 103 m2 s–1, respectively, during winter, and 11.4 × 103 m2 s–1 and 0.36 x 103 m2 s–1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and across-slope eddy correlations. The mean across-slope velocity associated with mass flux is about 4 × 10–3 m s–1 shelfward across the shelf break during winter and 2 × 10–3 m s–1 during summer. The drifters also sampled local patterns of circulation, and indicate that the source of water for the seasonal Fair Isle and East Shetland currents are the same, and drawn from Atlantic overflows at the Hebrides shelf.  相似文献   

6.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

7.
The geopotential scale factor R o = GM/W o (the GM geocentric gravitational constant adopted) and/or geoidal potential Wo have been determined on the basis of the first year's (Oct 92 – Dec 93) ERS-1/TOPEX/POSEIDON altimeter data and of the POCM 4B sea surface topography model: R o °=(6 363 672.58°±0.05) m, W o °=(62 636 855.8°±0.05)m 2 s –2 . The 2°–°3 cm uncertainty in the altimeter calibration limits the actual accuracy of the solution. Monitoring dW o /dt has been projected.  相似文献   

8.
Remote sensing studies of the Central Andean volcanic province between 18°–27°S with the Landsat Thematic Mapper have revealed the presence of 28 previously undescribed breached volcanic cones and 14 major volcanic debris avalanche deposits, of which only 3 had previously been identified. Several of the debris avalanche deposits cover areas in excess of 100 km2 and have volumes of the order of 10 km3. H/L ratios for the deposits have a median of 0.1 and a mean of 0.11, values similar to those determined for deposits described in other regions. Surface morphologies commonly include the hummocky topography of small hillocks and enclosed basins that is typical of avalanche deposits, but some examples exhibit smoother surfaces characterised by longitudinal grooves and ridges. These differences may result from the effects of flow confinement by topography or from variations in resistance to shearing in the materials involved. Breached composite cones and debris avalanche deposits tend to occur at right angles to regional tectonic elements, suggesting possible seismic involvement in triggering collapse and providing an additional consideration for assessment of areas at risk from collapse. The low denudation rate in the Central Andes, coupled with the predominance of viscous dacite lavas in volcanic edifices, produces unusually steep cones which may result in a higher incidence of volcano collapse than in other regions. A statistical survey of 578 composite volcanoes in the study area indicates that a majority of cones which achieve edifice heights between 2000–3000 m may undergo sector collapse.  相似文献   

9.
After the March–April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380±45 metric tons/day (T/D) on 7/24/86 to 27±6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870°C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870°C with an oxygen fugacity near the Ni–NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3–6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9–84.8 mol% H2O). Values of D and 18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390°–642°C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%–97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107–102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200°–650°C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock.  相似文献   

10.
Rupture process of the 19 August 1992 Susamyr, Kyrgyzstan, earthquake   总被引:2,自引:2,他引:0  
The Susamyr earthquake of August 19, 1992 in Kyrgyzstan is one of the largest events (Ms = 7.4, Mb = 6.8) of this century in this region of Central Asia. We used broadband and long period digital data from IRIS and GEOSCOPE networks to investigate the source parameters, and their space-time distribution by modeling both body and surface waves. The seismic moment (M0 = 6.8 × 1019 N m) and the focal mechanism were determined from frequency-time analysis (FTAN) of the fundamental mode of long period surface waves (100–250 s). Then, the second order integral moments of the moment-rate release were estimated from the amplitude spectra of intermediate period surface waves(40–70 s). From these moments we determined a source duration of 11–13 s, major and minor axes of the source of 30 km and 10–22 km, respectively; and an instant centroid velocity of 1.2 km/s. Finally, we performed a waveform inversion of P and SH waves at periods from 5–60 s. We found a source duration of 18–20 s, longer than the integral estimate from surface wave amplitudes. All the other focal parameters inverted from body waves are similar to those obtained by surface waves ( = 87° ± 6°, = 49° ± 6°, = 105° ± 3°, h = 14 ± 2 km, and M0 = 5.8 ± 0.7 × 1019 N m). The initial rupture of this shallow earthquake was located at the south-west border of Susamyr depression in the western part of northern Tien Shan. A finite source analysis along the strike suggests a westward propagation of the rupture. The main shock of this event was preceded 2 s earlier by small foreshock. The main event was almost immediately followed by a very strong series of aftershocks. Our surface and body wave inversion results agree with the general seismotectonic features of the region.  相似文献   

11.
A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS] Fe2+ HS (H NBS + )–1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (–II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (–II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.  相似文献   

12.
Zusammenfassung Zwischen 50° bis 85°N Breite wurde die atmosphärische CO2-Konzentration während mehrerer Messflüge registriert. Diese war oberhalb der Tropopause bis zu 7 ppm (im Mittel etwa 2 ppm) niedriger als in der oberen Troposphäre. Im Jahresmittel entspricht diese CO2-Konzentrationsdifferenz einem Fluss von etwa 10–2 g CO2/cm2 Jahr aus der nördlichen Troposphäre in die Stratosphäre. Die Bedeutung dieser CO2-Konzentrationsunterschiede für den atmosphärischen CO2-Haushalt sowie für die Strahlungsbilanz im Tropopausenniveau kann erst nach Vorlage weiterer, über das ganze Jahr verteilter Messdaten erfolgen.
Summary CO2-concentration was measured during several flights in northern latitudes (50°–85°). Above Tropopause CO2-concentration was up to 7 ppm (as a mean some 2 ppm) smaller than in upper troposphere. As a mean this difference in CO2-concentration cm2 year conforms to a CO2-flux of some 10–2 g CO2/cm2 year from northern troposphere into stratosphere. The importance of these CO2-differences for atmospheric CO2-system and for radiation balance in tropopause-height may be considered as soon as more CO2-concentration data for the whole year are available.
  相似文献   

13.
Summary The real area of contact has been determined, and measurements of the maximum and average surface temperatures generated during frictional sliding along precut surfaces in Tennessee sand-stone have been made, through the use of thermodyes. Triaxial tests have been made at 50 MPa confining pressure and constant displacement rates of 10–2 to 10–6 cm/sec, and displacements up to 0.4 om. At 0.2 cm of stable sliding, the maximum temperature decreases with decreasing nominal displacement rate from between 1150° to 1175°C at 10–2 cm/sec to between 75° to 115°C at 10–3 cm/sec. The average temperature of the surface is between 75 and 115°C at 10–2 cm/sec, but shows no rise from room temperature at 10–3 cm/sec. At 0.4 cm displacement, and in the stick-slip mode, as the nominal displacement rate decreases from 10–3 to 10–6 cm/sec, the maximum temperature decreases from between 1120° to 1150°C to between 1040° to 1065°C. The average surface temperature is 115° to 135°C at displacement rates from 2.6×10–3 to 10–4 cm/sec.With a decrease in the displacement rate from 10–2 to 10–6 cm/sec, the real area of contact increases from about 5 to 14 percent of the apparent area; the avergge area of asperity contact increases from 2.5 to 7.5×10–4 cm2. Although fracture is the dominate mechanism during stick-up thermal softening and creep may also contribute to the unstable sliding process.  相似文献   

14.
Summary This study is a follow up of the investigation of some magnetic properties and metastability of greigite in samples obtained from Miocene claystones in the Kruné hory (Erzgebirge) Piedmont basins (Bohemia). Three different methods of upgrading the smythite were applied; the magnetic properties of the concentrates are compared. The thermal conversion of smythite sets in at 200°C while greigite converts at 250°C. The first intermediate products to be formed are iron sulphides, marcasite clearly dominating over pyrite and pyrrhotite. Apart from a Fe3+ sulphate with a composition of Fe2(SO4)3, oxidation of these sulphides gives rise to -Fe2O3. The result of the subsequent decomposition of the mentioned sulphate is the formation of -Fe2O3, which retains the sulphate structure. The final product of the thermal decomposition at 800°C is -Fe2O3. In the smythite concentrate the conversion to Fe3+ sulphate and -Fe2O3 is about twice as intensive as in greigite. No direct conversion to -Fe2O3 was found. During the thermal process self-reversals of remanence were observed, in various samples as many as four reversals in the temperature interval from 340 to 590°C. The occurrences of self-reversals of remanence were only observed at high degrees of thermal demagnetization, of the order of 10–2 down to 10–3 in the temperature interval of sulphide origin (below 400°C), and of the order of 10–4 down to 10–6 in the temperature interval of Fe-oxides origin (above 400°C).Presented at the 3rd Conference on New Trends in Geomagnetism, Castle of Smolenice, Czechoslovakia, June 22–29, 1992  相似文献   

15.
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, 300 m-wide lake with strongly mineralized acid–sulfate–chloride water. The lake water has a temperature of 26–34°C, pH=<0.5–1.3, Stot=2500–4600 ppm and Cl=5300–12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62−+S5O62−+S6O62−=2400 – 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4–Se of 20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well.Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment.Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.  相似文献   

16.
This paper presents chemical and isotopic data for thermal waters, gases and S deposits from Volcan Puracé (summit elevation 4600 m) in SW Colombia. Hot gas discharges from fumaroles in and around the summit crater, and thermal waters discharge from three areas on its flanks. The waters from all areas have D values of-75±1, indicating a single recharge area at high elevation on the volcano. Aircorrected values of3He/4He in thermal waters range from 3.8 to 6.7 RA, and approach those for crater fumarole gas (6.1–7.1 RA), indicating widespread addition of magmatic volatiles. An economic S deposit (El Vinagre) is being mined in the Rio Vinagre fault zone at 3600 m elevation. Sulfur isotopic data are consistent with a magmatic origin for S species in thermal waters and gases, and for the S ore deposit. Isotopic equilibration between S species may have occurred at 220±40°C, which overlaps possible equilibration temperatures (170±40°C) determined by a variety of other geothermometers for neutral thermal waters. Apparent CH4–CO2 equilibration temperatures for gases from thermal springs (400±50°C) and crater fumaroles (520±60°C) reflect higher temperatures deeper in the system. Hot magmatic gas ascending through the Rio Vinagre fault zone is though to have precipitated S and generated thermal waters by interaction with descending meteoric waters.  相似文献   

17.
Summary Temperature and conductivity measurements show, that in the Southern part of Transdanubia (the part of Hungary which lies Westwards from Danube) the heat flow is about 2–2.4·10–6 cal/cm2 sec. Eastward from the Danube, in the Hungarian Plain estimates are even higher, and vary between 2.3·10–6 and 2.8·10–6 cgs. The gradient of temperature is everywhere quite high, 5.0 resp. 5.8·10–4 deg. C/cm on the average. Thus, at a depth of 1000 m, the virgin rock temperature is about 60–70 deg. C, at 2000 m about 110–130 deg. C.  相似文献   

18.
Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3?, locally SO42?. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+ and Si. Concentrations of Ca2+ exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+ likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m?2·s?1 for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.  相似文献   

19.
Variation in13C/12C and18O/16O ratios in the shell carbonate of several species of land snails was studied along a climatic gradient in semi-arid to arid areas in the southern Levant.13C was found to be enriched in snails from communities having plants with a C4 photosynthetic pathway. Depleted δ13C values were found in areas with high mean annual rainfall, apparently due to higher input of metabolic CO2 as a result of greater snail activity. Shell carbonate δ18O values show a weak relation to the δ18O values of rainwater. The shell δ18O values are enriched by 2–8‰ relative to isotopic equilibrium with environmental waters. Enrichment is suggested to result from metabolic effects on body water (with lower activity producing greater enrichment) but evaporation could also be a factor. Consistent differences in both13C and18O were found among species and may relate to the time when shell deposition occurs. As with most paleoenvironmental indicators, the application of shell isotopes is complicated by the multiplicity of controls of isotopic composition.  相似文献   

20.
Discharge from subaereal and submarine gas vents of the Baia di Levante beach gases from the Vulcano Island were sampled for major and trace gas components in May and November 1995.Chemical compositions and equilibrium calculations suggest three different groups of CO2-rich gas emissions depending on their distance from the La Fossa crater: (1) gas vents close to the Faraglione area are characterised by high H2S contents, high calculated equilibrium temperatures based on inorganic species and relatively high proportion of alkene compounds; (2) gas vents close to Vulcanello are characterised by low calculated equilibrium temperatures and low amounts of alkenes; and (3) Pontile sample has the highest equilibrium CO2 pressure (up to 68 bars) which may account for the observed absence of benzene. The relative large variability of H2S in the Baia di Levante beach gas discharge may be attributed to either different interactions between iron sulphides and weakly acid waters or catalytic effect of elemental sulphur on the de-hydrogenation of cyclo-hexane. Thermodynamic calculations suggest that the main inorganic species and CH4 may have re-equilibrated at relatively shallow depth (10–200 m b.s.l. and 30–600 m b.s.l. for a lithostatic and hydrostatic pressure, respectively). The slow kinetics of reactions in the CnH2n/CnH2n+2 systems, with respect to that of CH4–CO–CO2, may explain the observed propene/propane ratios, which can only be reached at reaction temperatures of 300–350°C. This low speed of reactions can also explain the observed disequilibrium of C1–C4 alkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号