首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Chemistry》2005,93(2-4):131-147
Data on the distribution of dissolved inorganic carbon (DIC) and partial pressure of CO2 (pCO2) were obtained during a cruise in the North Sea during late summer 2001. A 1° by 1° grid of 97 stations was sampled for DIC while the pCO2 was measured continuously between the stations. The surface distributions of these two parameters show a clear boundary located around 54°N. South of this boundary the DIC and pCO2 range from 2070 to 2130 μmol kg−1 and 290 to 490 ppm, respectively, whereas in the northern North Sea, values range between 1970 and 2070 μmol kg−1 and 190 to 350 ppm, respectively. The vertical profiles measured in the two different areas show that the mixing regime of the water column is the major factor determining the surface distributions. The entirely mixed water column of the southern North Sea is heterotrophic, whereas the surface layer of the stratified water column in the northern North Sea is autotrophic. The application of different formulations for the calculation of the CO2 air–sea fluxes shows that the southern North Sea acts as a source of CO2 for the atmosphere within a range of +0.8 to +1.7 mmol m−2 day−1, whereas the northern North Sea absorbs CO2 within a range of −2.4 to −3.8 mmol m−2 day−1 in late summer. The North Sea as a whole acts as a sink of atmospheric CO2 of −1.5 to −2.2 mmol m−2 day−1 during late summer. Compared to the Baltic and the East China Seas at the same period of the year, the North Sea acts a weak sink of atmospheric CO2. The anticlockwise circulation and the short residence time of the water in the North Sea lead to a rapid transport of the atmospheric CO2 to the deeper layer of the North Atlantic Ocean. Thus, in late summer, the North Sea exports 2.2×1012 g C month−1 to the North Atlantic Ocean via the Norwegian trench, and, at the same period, absorbs from the atmosphere a quantity of CO2 (0.4 1012 g C month−1) equal to 15% of that export, which makes the North Sea a continental shelf pump of CO2.  相似文献   

2.
《Marine Chemistry》1987,21(2):117-133
An automated instrument for the coulometric detection of total carbon dioxide (TCO2) was developed from the manual prototype of Johnson et al. Pure CO2 was used to calibrate the detector, the whole analytical procedure was controlled by a microcomputer, and the unit was compact enough for field and shipboard use. Some 67 samples from the Askö field station on the Baltic Sea (salinity = 6; TCO2 ranging from 1224.3 to 1276.1 μmol l−1 with a mean of 1245.6 μmol l−1) and 31 samples from Swedish lakes (TCO2 ranging from 19.5 to 252.3 μmol l−1 with a mean of 72.9 μmol l−1) were analyzed. The pooled standard deviation of these analyses was ± 1.0 μmol l−1 (% CV of 0.08 and 1.3%, respectively). Precisions of < 0.1% were routine for waters exceeding 1000 μmol l−1 TCO2. At Askö on the Baltic Sea, the mean absolute difference between coulometric and pH-alkalinity determinations of TCO2 on 22 parallel samples was 6.7 μmol kg−1 or 0.5% of the mean. Community metabolism studies gave maximum rates of net production (TCO2 uptake) and respiration (TCO2 production) of 0.9-1.2 and 0.3-0.5 μmol l−1 b−1, respectively. The results of this study provide solutions to the problems observed with the earlier manual prototype.  相似文献   

3.
Cd, Cu, Fe, Ni, Pb and Zn were determined in 123 samples from the Baltic Sea proper. The trace metals were extracted directly on board the vessel, using a dithiocarbamate-Freon procedure. Final analyses of the extracts are performed onshore by atomic absorption spectrometry.Similar trace-metal concentrations are found in different areas of the Baltic proper. Most values fall in the following ranges: Cd, 30–60 ng 1?1; Cu, 0.6–1.0 μg 1?1; Fe, 0.3–0.9 μg 1?1; Ni, 0.6–0.9 μg 1?1; Pb, 0.05–0.2 μg 1?1; and Zn, 1.5–3.5 μg 1?1. The metal-concentrations are generally independent of depth. However, copper exhibits a small but significent decrease in concentration below 80 m.Filtration did not affect trace-metal concentrations, with the exception of iron in waters from lower layers. Similarly, storage under acid conditions was shown to affect only the concentration of iron. An electro-chemical technique was also used to determine Cu in some samples.  相似文献   

4.
This study presents dissolved molybdenum, uranium and vanadium profiles from eight stations in the main Baltic subregions. The elements were analysed by a new analytical procedure based on total-reflection X-ray fluorescence (TXRF). Mo and U reveal a strong, positive correlation with salinity (with r = 0.95 and 0.93, respectively). The estimated end-member concentrations (for S = 35 × 10?3) are consistent with North Atlantic Ocean water values, indicating conservative mixing with Baltic river waters as the dominating process. In contrast, dissolved V shows relatively low levels, with mean surface and deep layer values of 2.7 and 1.7 nmol kg?1, respectively. Compared with recently investigated Atlantic Ocean waters (normalized to S = 35 × 10?3), Baltic waters are deplated in dissolved V by more than 60%. The removal is attributed to scavenging processes by terrigenous and/or biogenic material during the course of mixing. However, the data did not indicate that precipitation or other removal processes were significant in the anaerobic waters.  相似文献   

5.
Concentrations of U and Th isotopes in Okinawa Trough and East China Sea sediment cores were determined by isotope dilution inductively coupled plasma-mass spectrometry (ID-ICP-MS) to investigate the behavior of redox sensitive uranium in suboxic hemipelagic sediments and determine their significance in oceanic uranium balance. 238U concentrations and 238U/232Th activity ratios in the East China Sea sediments showed no remarkable variation with depth. However, 238U and 238U/232Th ratios in the Okinawa Trough sediments were low in the surface oxidizing layer but increased where the suboxic condition was encountered. The distribution profiles of 230Th and 232Th concentrations were relatively constant with depth in both the Okinawa Trough and East China Sea sediment cores. These results suggested that there has been post-depositional precipitation of authigenic uranium within the suboxic Okinawa Trough sediment column. The post-depositional precipitation rates of authigenic uranium were estimated to be 47 ± 5 to >62 ± 8 ng cm−2 yr−1; these rates were comparable to those previously reported for several anoxic sediments. A mechanism controlling precipitation of uranium may be the downward diffusion of uranium U(VI), reduction to U(IV) and finally precipitation onto the solid phase. The accumulation rate of uranium for the Okinawa Trough sediments was approximately eight times higher than the world average rate reported for suboxic sediments. This removal of uranium in the oceanic budget increases the importance of the suboxic sediment sink.  相似文献   

6.
In two experiments, the human pharmaceutical propranolol negatively affected the physiology of two test organisms, Fucus vesiculosus and Gammarus spp. from a Baltic Sea littoral community in a concentration of 1000 μg l−1. Some effects were also observed for the lower, more ecologically relevant concentrations (10 μg l−1 and 100 μg l−1). The effects on F. vesiculosus not only increased with increasing concentration, but also with exposure time; while the effects on Gammarus spp. were more inconsistent over time. No clear effects of the pharmaceuticals diclofenac and ibuprofen were observed for any of the organisms. Physiological parameters measured were GP:R-ratio, chlorophyll fluorescence and release of coloured dissolved organic matter, respiration and ammonium excretion. Pharmaceutical substances are repeatedly detected in the Baltic Sea which is the recipient for STP effluents from more than 85 million people living in the catchment area, but the knowledge of their effects on non-target organisms is still very limited.  相似文献   

7.
Soluble uranium concentrations in the Ogeechee and Savannah Rivers are 0.046 ± 0.005 and 0.026 ± 0.01 μg/l, respectively. Particulate concentrations are approximately similar in the Ogeechee River but are about four times the soluble concentration in the Savannah River. River end-member 234U/238U ratios range from 1.04 ± 0.04 to 1.08 ± 0.12. Observations suggest that uranium is removed from estuarine waters at low salinities during low discharge.  相似文献   

8.
Seawater samples are collected in the spring of 2013 from the Taiwan Strait for the analysis of uranium(U)concentrations and isotopic compositions using MC-ICP-MS, and the geochemical behavior patterns of U in the Taiwan Strait are then investigated. Average concentrations of individual U isotopes are(3.23±0.14) μg/kg for 238 U,(2.34±0.09)×10~(–2) μg/kg for ~(235)U and(2.05±0.07)×10~(–4) μg/kg for 234 U. Correspondingly, the U isotopic compositions are 155±18 for δ234U and 138±2 for 238U:235U. The U concentrations and isotopic ratios in the Taiwan Strait are similar to those of open ocean seawater, suggesting the dominance of the open ocean input to the strait's U pool.However, river input, as suggested by the slightly lower salinity than that of the open ocean, also affected the U concentrations and isotopic compositions in the strait. From a compilation of U concentrations in the Taiwan Strait and adjacent areas, including the Jiulong Estuary and Zhujiang Estuary, the Xiamen Bay and the northern South China Sea, a strong and significant relationship between U concentration and salinity [U:S; U=(0.093 4±0.002 4)S+(0.092 0±0.061 5)] is revealed, suggesting conservative mixing of U in the Taiwan Strait. To better understand the U geochemistry in the Taiwan Strait, a multiple endmembers mixing model is applied to estimate the contributions of potential sources. The open ocean seawater contributed 69%–95% of U in the Taiwan Strait, with river water approximately 2%, and dust deposition only around 0.13%. Therefore, the model results supported the open ocean input source and the conservative mixing behavior of U derived from the observation of U concentrations and isotopic ratios and U:S ratios. The sediment interstitial water may be an important source of U to the Taiwan Strait with a possible contribution of 3%–29%, consistent with previous investigations based on radium isotopes.However, further investigations are warranted to examine the U concentration in the sediment interstitial water and its input to the overlying seawater in the Taiwan Strait.  相似文献   

9.
The uranium content and activity ratio A234U/A238U were determined in open ocean water, marine plankton, marine algae and sea water in the environment in which plankton and algae live. The average uranium content of 3.34±0.28×10−6 g/l and the average activity ratio of 1.13±0.04 were obtained in open ocean water. The uranium contents in plankton and algae were respectively from 1.7 to 7.8×10−7 g/g and 0.4 to 23.5×10−7 g/g on dry basis with the respective concentration factors of 48 to 260 and 10 to 733. The activity ratio in plankton and algae ranged from 1.07 to 1.18 which coincided well with those in the environmental sea water.  相似文献   

10.
An analysis of the variations in the concentrations of 137Cs and 90Sr radionuclides in the Baltic Sea surface waters after the accident at the Chernobyl nuclear power plant was performed. An instability of the 137Cs concentration values during the short-term observations was found, when these values were differed 2-to 3-fold. The concentrations of 90Sr appeared to be more stable; meanwhile, their deviations sometimes exceeded the ranges of the experimental errors. By the variations in the monthly average values of the radionuclide concentrations in the surface waters of the Baltic Sea in 1989–1995, no trend of the water self-purification was observed. The theoretical results obtained confirmed the potential of the formation and propagation of patches with increased concentrations of 137Cs in the southeastern part of the Baltic Sea. The most reliable factor that controlled the process of self-purification of the Baltic Sea water appeared to be the mean annual value of the concentration of radionuclides. Pronounced divergences were obtained between the measured and calculated mean annual concentrations of 137Cs and 90Sr radionuclides in the surface waters of the Baltic Sea in 1989–2001. These divergences are explained by the potential influence of the waters from the Gulf of Bothnia and by other additional supplies of radionuclides to the marine environment, which were not included into the mathematical models.  相似文献   

11.
Fluxes of dissolved forms of iron and manganese across the sediment–water interface were studied in situ in the Gulf of Finland and the Vistula Lagoon (Baltic Sea), and in the Golubaya Bay (Black Sea) from 2001 to 2005. Fluxes were measured using chamber incubations, and sediment cores were collected and sliced to assess the porewater and solid phase metal distribution at different depths. Measured and calculated benthic fluxes of manganese and iron were directed out of sediment for all sites and were found to vary between 70–4450 and 5–1000 µmole m− 2 day− 1 for manganese and iron, respectively. The behavior of the studied metals at various redox conditions in the near-bottom water and in the sediment was the main focus in this study. Our results show the importance of bottom water redox conditions for iron fluxes. We measured no fluxes at oxic conditions, intermediate fluxes at anoxic conditions (up to 200 μmole m− 2 day− 1) and high fluxes at suboxic conditions (up to 1000 μmole m− 2 day− 1). Total dissolved iron fluxes were generally dominated by iron(II). Contribution of iron(III) to the total iron flux did not exceed 20%. Obtained fluxes of manganese at all studied regions showed a linear correlation (r2 = 0.97) to its concentration in the porewater of the top sediment layer (0–5 mm) and did not depend on dissolved oxygen concentrations of bottom water. Organically complexed iron and manganese were in most cases not involved in the benthic exchange processes.  相似文献   

12.
The dynamics controlling the response of the Baltic Sea to changed atmospheric and hydrologic forcing are reviewed and demonstrated using simple models. The response time for salt is 30 times longer than for heat in the Baltic Sea. In the course of a year, the Baltic Sea renews most of its heat but only about 3% of its salt. On the seasonal scale, surface temperature and ice-coverage are controlled by the atmospheric conditions over the Baltic Sea as demonstrated by e.g. the strong inter-annual variations in winter temperature and ice-coverage due to variations in dominating wind directions causing alternating mild and cold winters. The response of surface temperature and ice-coverage in the Baltic Sea to modest climate change may therefore be predicted using existing statistics. Due to the long response time in combination with complicated dynamics, the response of the salinity of the Baltic Sea cannot be predicted using existing statistics but has to be computed from mechanistic models. Salinity changes primarily through changes in the two major forcing factors: the supply of freshwater and the low-frequency sea level fluctuations in the Kattegat. The sensitivity of Baltic Sea salinity to changed freshwater supply is investigated using a simple mechanistic steady-state model that includes baroclinic geostrophic outflow from the Kattegat, the major dynamical factor controlling the freshwater content in the Kattegat and thereby the salinity of water flowing into the Baltic Sea. The computed sensitivity of Baltic Sea surface salinity to changes of freshwater supply is similar to earlier published estimates from time-dependent dynamical models with higher resolution. According to the model, the Baltic Sea would become fresh at a mean freshwater supply of about 60 000 m3 s−1, i.e. a 300% increase of the contemporary supply. If the freshwater supply in the different basins increased in proportion to the present-day supply, the Bothnian Bay would become fresh already at a freshwater supply of about 37 000 m3 s−1 and the Bothnian Sea at a supply of about 45 000 m3 s−1. The assumption of baroclinic geostrophic outflow from the Kattegat, crucial for the salinity response of the Baltic Sea to changed freshwater supply, is validated using daily salinity profiles for the period 1931–1977 from lightship Läsö Nord.  相似文献   

13.
The ability of 17α-ethinylestradiol (EE2) to elevate vitellogenin levels were investigated in male flounder Platichthys flesus and vitellogenin concentrations in flounders from the Danish coastal environment were determined. Male flounders were exposed to 17α-ethinylestradiol (EE2) via food or water. Average vitellogenin concentrations in the control fish ranged between 25 and 100 ng mL1. Exposure to 5.1, 8.1 and 16.8 ng EE2 L1 in water and 500 and 5000 ng EE2 kg1 body weight (bw) every second day in the food increased the plasma vitellogenin concentration in a concentration and time dependent manner, whereas exposure to 2.7 ng EE2 L1 in water for 21 d and 5 and 50 ng EE2 kg1 bw for 12 days in the food did not. EE2 could be detected in liver and testes (but not in muscle) after exposure to 8.1 and 16.8 ng EE2 L1 in the water and 5000 ng EE2 kg1 bw in the food; the highest concentration was 6 ng g1 wet weight in liver. The majority of the male flounders collected from nine coastal Danish sites from 1999 to 2004 had vitellogenin concentrations below 100 ng mL1, and only at two sites moderate estrogenic inputs were indicated.  相似文献   

14.
The aqueous speciation of rhenium at the temperatures on or near the Earth's surface, especially in anoxic environments, is not well known. For the first time, the relative importance of ReO4 and the neutral rhenium species, Re(OH)40, is thermodynamically modeled in anoxic environments at ambient temperature where ReS2 or its solid solution(s) is likely to control the solubility. This thermodynamic model suggests that ReO4 is an insignificant species in anoxic environments. In comparison to observed total rhenium concentrations in anoxic waters (from ∼3 to ∼30 pmol/kg), the contribution from ReO4 would be less than 10−8 ppb (∼4×10−5 pmol/kg). In contrast, the neutral rhenium species is an important species in anoxic environments. At ΣH2S=10−4 molal, 10−2 ppb (∼40 pmol/kg) of Re(OH)40 can exist in equilibrium with ReS2 in the HS field at a pH of about 9 or under the oxygen fugacity conditions imposed by the HS/SO42− redox couple, demonstrating its importance in anoxic environments. Applications of the present study to the Black Sea indicate that rhenium concentrations in the anoxic water column at depths ranging from 105 to ∼390 m can be successfully modeled as Re(OH)40, implying that the dominant species in solution may be Re(OH)40.  相似文献   

15.
The activity concentrations of dissolved137Cs have been determined in the water column and137Cs and134Cs in the sediments and the sediment porewaters of the southern Baltic Sea. The mean activity concentration of dissolved137Cs in the Gdansk Deep declined from 109 Bq m−3in June 1986 to 61 Bq m−3in 1999. In sediments, the activity concentrations of137Cs (33-231 Bq kg−1) were highest in muds and the activity concentrations of134Cs were about 6% of the total Cs activity. The Chernobyl contribution to137Cs activity was between 43% and 77%. The porewater activity concentrations of137Cs in muddy sediments were in the range 71 to 3900 Bq m−3and were higher than those in the overlying seawater. The diffusive flux of dissolved137Cs from the muddy sediments was estimated in the range 5 to 480 Bq m−2year−1. The flux of137Cs from sediment porewaters of the southern Baltic Sea was about 45% of the total, including fluxes of137Cs from wet and dry atmospheric deposition and the fluvial inputs. The results were used to elucidate the rate of recovery of the sediments and the waters of the southern Baltic from Chernobyl-derived137Cs.  相似文献   

16.
In 1984, on a transect covering the whole Baltic Sea and parts of the adjacent North Sea, 160 water samples were taken and analysed for their concentrations of particulate and dissolved metals. In addition, the suspended materials were investigated for their elemental bulk composition.The particulate fractions represented from about 5% (Cd, Cu and Ni) to 50% (Fe and Pb) of the total (particulate plus dissolved) concentrations. For some elements (Ba, Cd, Cu, Pb and Zn), the particulate matter from the surface microlayer was enriched with respect to those suspended materials taken from 0.2 m depth. This could reflect the atmospheric input of metal-rich aerosols. In anoxic deep waters, maximum contents of Zn (6400 μg g−1), Cu (1330 μg g−1) and Cd (12 μg g−1) were observed in the particulate matter, indicating sulphidic forms. On the other hand, under oxic conditions the distribution coefficients (Kd) decreased with the water depth (Cd, Fe and Pb).Relative to global background levels, the particulate matter contained metal “excesses” amounting to more than 90% of the total contents (Cd, Mn, Pb and Zn). Automated electron probe X-ray microanalysis (EPXMA) revealed that the elemental composition of sediments is mainly governed by post-depositional processes of early diagenesis and is only weakly related to the composition of suspended matter in the overlying water body. For instance, in relation to surface mud sediments of the central Baltic net-sedimentation basins, Zn, Cd, Cu and Mn had 30–100% higher levels in the suspended materials. The general pattern of metal contents of particulate matter taken from 10 m depth on a transect between the Bothnian Bay and the North Sea were—possibly as a result of anthropogenic inputs—rather similar for Pb, Zn and Cu. For Fe and Mn, the distribution patterns along the transect were probably governed by the natural loading characteristics and by the biogeochemistry of those elements.  相似文献   

17.
《Marine Chemistry》2001,75(3):229-248
Dissolved and particulate mercury and methylmercury concentrations were determined in the Southern Bight of the North Sea and the Scheldt estuary in the period 1991–1999. Mercury and methylmercury concentrations are higher before 1995 than after 1995, especially in the fluvial part.The North Sea: In the offshore stations, dissolved Hg concentrations are generally higher in winter than in summer while the reverse is true for particulate Hg KD values (KD=the concentration of particulate Hg (HgP in pmol kg−1) divided by the concentration of dissolved Hg (HgD in pmol l−1)) range from 100,000 to 1000,000 l kg−1. Dissolved methylmercury concentrations vary from 0.05 to 0.25 pmol l−1 in summer and from d.l. to 0.23 pmol l−1 in winter and particulate methylmercury concentrations from 1.8 to 36 pmol g−1 in summer and from 0.9 to 21 pmol g−1 in winter. The KD ranges from 9,000 to 219,000 l kg−1.The Scheldt estuary: In winter, dissolved Hg concentrations are elevated in the upper estuary, decrease exponentially in the low salinity range followed by a very slow decrease towards the mouth. In summer, they are low in the fluvial part, increase in the low salinity range or in the mid-estuary and sometimes show an increase in the lower estuary. Particulate Hg concentrations do not show any seasonal trend.Dissolved MMHg concentrations are much lower in winter, when maximum concentrations are found in the upper estuary, than in summer. In summer, the MMHg concentrations are low at low salinity, they show a first increase in the salinity range from 3 to 12, a decrease in the mid-estuary and a second increase in the lower estuary.The highest particulate MMHg concentrations are found in the upper estuary, while in the lower estuary generally lower and more constant values are observed. The ratio of dissolved MMHg to dissolved Hg (cruise averages between 1.3% and 20%), is higher than the ratio of particulate MMHg to particulate Hg (cruise averages of 0.27–0.90%). The KD values for MMHg are lower in the summer (30,000–65,000) than in autumn and winter (77,000–114,000).The Scheldt river: In the fluvial part of the Scheldt, dissolved increases in the most upstream stations, while particulate Hg shows no particular pattern. Dissolved MMHg ranges from 0.1 to 0.39 pmol l−1 and particulate MMHg from 3.1 to 43.5 pmol g−1. The MMHg concentrations are comparable to those found in the estuary and no seasonal variations could be observed.  相似文献   

18.
Between 1980 and 1984 extensive studies were carried out in the Baltic Sea on trace metals (Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in water, suspended matter and sediments. The results enabled the influence of different factors on metal distribution patterns to be considered. The vertical profiles of dissolved and particulate metals in waters of the central deep basins reflect influences caused by oxygen deficiency and anoxic conditions in near-bottom water layers. Peculiarities at Station BY15 in the Gotland Deep included high dissolved Fe, Mn and Co concentrations and remarkable enrichment of Zn (0.64%), Cd (51 μg g−1) and Cu (0.15%) in particulate matter from the anoxic zone. Manganese-rich particles were accumulated above this layer.In fine-grained soft sediments below anoxic deep waters, maximum contents of Cd, Cu and Zn were observed, relative to other coring sites, between Bothnian Bay and Lübeck Bight. The Hg content in sediments probably reflects the joint flocculation with organic matter. Land-based sources seem to play the leading part for maximum lead contents.  相似文献   

19.
Concentrations of dissolved oxygen and sulfide, and of dissolved and particulate iron, manganese, and phosphate were measured as functions of salinity at a station in the Chesapeake Bay during stratification and deep water anoxia in spring and summer, 1981. The observed concentration/salinity profiles showed that oxygen was transported in a direction opposite to that of salt, while dissolved sulfide was transported in the same direction as salt through the anoxic water to be oxidized in oxygen consumption zones located below the steepest parts of the halocline. Both oxygen and sulfide were transported conservatively on 18 June. Their fluxes were 1·2 and 2 mol m−2 d−1, respectively. The oxygen flux was 30% of that stoichiometrically needed to oxidize the sulfide transported, suggesting that the oxygen consumption zone was advancing to shallower, less saline water, thus increasing the volume of anoxic water. Although oxygen was transported conservatively, sulfide was produced as it was transported through the anoxic water on 8 July.The anoxic water was supersaturated with respect to ferrous sulfide on 18 June, but most of the anoxic water was saturated on 8 July. Precipitation of ferrous sulfide had little effect on the sulfide flux on 18 June. The manganese(II) concentration/salinity profile exhibited a maximum in the oxygen consumption zone on 18 June. On 8 July the profile was independent of salinity at high salinities. Iron(II) and manganese(II) consumed little if any oxygen in the oxygen consumption zone.Soluble reactive phosphate was transported conservatively through the anoxic water on 18 June. It was produced as it was transported on 8 July. All of the phosphate was consumed in the oxygen consumption zones by sulfide oxidizing bacteria. On 18 June its flux, estimated to be 2·8 mmol m−2 d−1, was less than 10% of that required for bacterial oxidation of the sulfide reaching the oxygen consumption zone. The rest was oxidized chemically. The growth and activity of the bacteria were limited by the rate at which soluble reactive phosphate was transported to the oxygen consumption zone.Little or none of the sulfide, iron(II), or phosphate originated in the bottom sediment at the station. The results indicate that they were transported into the water sampled from deeper more saline water downstream, suggesting that they originated in the deep trough that extends along the spine of the Bay. Manganese(II), however, resulted from the reduction and dissolution of oxidized manganese particles as they sank into the anoxic water.  相似文献   

20.
Organic-rich sediments and coexisting phosphorites from the continental shelf off South West Africa have been analysed for uranium and thiorum by alpha-spectrometry. The uranium concentrations in the sediments range from 10 to 55 ppm, with an isotopic composition close to that of sea-water, indicating that uranium is passing into the sediments at the present time. The phosphorites occur in the sediments as thin unconsolidated laminae and as lithified nodules and pellets, with uranium contents ranging from 79 to 158 ppm. Based on the uranium isotopic composition, only the unconsolidated phosphorite laminae are recent, while the lithified nodules and pellets, with 234U/238U and 230Th/234U ratios close to radio-active equilibrium, appear to be inherited from a previous period of phosphorite deposition. Deposition of uranium appears to take place predominantly by incorporation into carbonate fluorapatite growing authigenically within the sediment. Uranium accumulation rates, computed from 14C-dated sections of the sediment cores, and using only uranium values with modern isotopic composition, range from 232 to 765 μg/cm2 per 1,000 years. These results stress the importance of organic-rich sediments containing authigenic phosphorite beneath areas of high organic productivity as a major sink for uranium in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号