首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This paper presents the results of 56 large‐amplitude shake table tests of a 30% scale eight‐storey controlled rocking steel frame. No significant damage or residual deformations were observed after any of the tests. The frame had four possible configurations on the basis of combinations of two higher mode mitigation mechanisms. The first mitigation mechanism was formed by allowing the upper section of the frame to rock, so as to better control the mid‐height overturning moment. The second mitigation mechanism was formed by replacing the conventional first‐storey brace with a self‐centering energy dissipative (SCED) brace, so as to better control the base shear. The mechanisms had little effect during records where higher mode effects were not apparent, but they substantially reduced the shear and overturning moment envelopes, as well as the peak floor accelerations, during more demanding records. The reduction in storey shears led to similarly reduced brace force demands. Although the peak force demands in the columns were not reduced by as much as the frame overturning moments, using an upper rocking joint allowed the column demands to be estimated without the need to assume a lateral force distribution. The tests demonstrated that multiple force‐limiting mechanisms can be used to provide better control of peak seismic forces without excessive increases in drift demands, thus enabling more reliable capacity design. These results are expected to be widely applicable to structures where the peak seismic forces are significantly influenced by higher mode effects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base‐plate‐yielding rocking systems with columns allowed to uplift with that of fixed‐base systems. The study is performed using half‐scale three‐storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/√2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed‐base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self‐limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Controlled rocking steel braced frames (CRSBFs) are low‐damage self‐centring lateral force resisting systems. Previous studies have shown that designing the energy dissipation (ED) and post‐tensioning (PT) in CRSBFs using a response modification factor of R=8 can prevent collapse of structures during earthquakes beyond the design level. However, designers have unique control over the hysteretic behaviour of the system, even after the response modification factor is selected. Additionally, recent studies have suggested that CRSBFs could also be designed using R>8 while still satisfying performance limits. This paper examines how the response modification factor and the design of the ED and PT influence the collapse performance of CRSBFs with three and six storeys where collapse occurs because of over‐rotation of the base rocking joint. In addition, the influence of using an additional rocking joint above the base to mitigate higher‐mode forces is evaluated for a 12‐storey frame. A total of 18 different designs are considered for the three buildings using different ED and PT design parameters, including different response modification factors. A suite of 44 ground motions is scaled until at least 50% of the records cause collapse, and fragility curves are generated using the truncated incremental dynamic analysis curves. The results from two different assessment methodologies show that the parameters selected have a marked influence on the collapse performance of a CRSBF. Nevertheless, even CRSBFs designed using R>8 or without supplemental ED can have acceptably low probabilities of collapse, provided that the frame members are designed to remain elastic. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
A new hybrid ductile‐rocking seismic‐resistant design is proposed which consists of a code‐designed buckling‐restrained braced frame (BRBF) that yields along its height and also partially rocks on its foundation. The goal of this system is to cost‐effectively improve the performance of BRBFs, by reducing drift concentrations and residual deformations, while taking advantage of their large ductility and their reliable limit on seismic forces and accelerations along a building's height. A lock‐up device ensures that the full code‐compliant lateral strength can be achieved after a limited amount of column uplift, and supplemental energy dissipation elements are used to reduce the rocking response. This paper outlines the mechanics of the system and then presents analyses on rocking frames with both ductile and elastic braces in order to highlight the large higher mode demands on elastic rocking frames. A parametric study using nonlinear time‐history analysis of BRBF structures designed according to the proposed procedure for Los Angeles, California is then presented. This study investigates the system's seismic response and the effect of different energy dissipation element properties and allowable base rotation values before the lock‐up is engaged. Finally, the effect of vertical mass modeling on analysis results was investigated. These studies demonstrated that the hybrid ductile‐rocking system can in fact improve the global peak and residual deformation response as well as reduce brace damage. This enhanced performance could eliminate the need for expensive repairs or demolition that are otherwise to be expected for conventional ductile fixed base buildings that sustain severe damage.  相似文献   

5.
Experimental research into the seismic performance of buildings with passive oil dampers has so far been restricted to large-scale testing of frames erected on laboratory shaking tables that ignore the foundation soil below. This simplification of the problem falls short of replicating dynamic soil-structure interaction that would occur in the field. This paper presents the first experimental attempt at utilising high gravity dynamic centrifuge testing to replicate the response of a damped building at a reduced model scale. The paper compares the dynamic response of two similar two-degree-of-freedom model sway frames, one control (bare) frame and one frame equipped with miniature oil dampers, both structures founded on shallow raft foundations in dry dense sand. The miniature oil dampers successfully mitigate floor accelerations, drifts, and storey shear forces in the damped frame with minor modification to the frame stiffness. For strong, near resonance motions, global rocking of the undamped frame associated with physical uplifting of the foundation from the soil surface and subsequent yielding of sand beneath has led to floor acceleration levels, which are comparable to those obtained in the damped building fitted with miniature oil dampers. Assessment of the instrumentation installed on the miniature oil dampers reveals a viscoelastic damper behaviour with a dependency on stroke magnitude and on velocity.  相似文献   

6.
Rocking isolation has been increasingly studied as a promising design concept to limit the earthquake damage of civil structures. Despite the difficulties and uncertainties of predicting the rocking response under individual earthquake excitations (due to negative rotational stiffness and complex impact energy loss), in a statistical sense, the seismic performance of rocking structures has been shown to be generally consistent with the experimental outcomes. To this end, this study assesses, in a probabilistic manner, the effectiveness of using rocking isolation as a retrofit strategy for single-column concrete box-girder highway bridges in California. Under earthquake excitation, the rocking bridge could experience multi-class responses (eg, full contacted or uplifting foundation) and multi-mode damage (eg, overturning, uplift impact, and column nonlinearity). A multi-step machine learning framework is developed to estimate the damage probability associated with each damage scenario. The framework consists of the dimensionally consistent generalized linear model for regression of seismic demand, the logistic regression for classification of distinct response classes, and the stepwise regression for feature selection of significant ground motion and structural parameters. Fragility curves are derived to predict the response class probabilities of rocking uplift and overturning, and the conditional damage probabilities such as column vibrational damage and rocking uplift impact damage. The fragility estimates of rocking bridges are compared with those for as-built bridges, indicating that rocking isolation is capable of reducing column damage potential. Additionally, there exists an optimal slenderness angle range that enables the studied bridges to experience much lower overturning tendencies and significantly reduced column damage probabilities at the same time.  相似文献   

7.
The 2012 Emilia earthquake (in Northern Italy) caused extensive damage to existing prefabricated reinforced concrete structures. These buildings were found being extremely vulnerable because, being designed for vertical loads only, they featured friction‐based connections between structural elements, most commonly between beams and columns. Given the large diffusion of these structures, their seismic retrofit is critical. Various techniques have been proposed in the literature, in most of which friction‐based connections are removed by inserting mechanical connectors that will make beam‐column connections hinged. These approaches lead to a significant increase of the base shear and therefore require strengthening of columns. The paper presents dissipative devices based on carbon‐wrapped steel tubes to be used as an alternative low‐damage solution for the retrofit of beam‐column connections. The first part of the paper presents results of experimental tests on the devices and discusses their dissipative behaviour. The succeeding parts of the paper present numerical analyses on simple structures reinforced with the proposed device. The results of the numerical study show how the introduction of the dissipative devices produces a significant reduction of forces transmitted to the structure, by comparing the seismic response of simple frame structures equipped with dissipative devices with the response of equivalent elastic systems.  相似文献   

8.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The wall–frame systems have many known advantages, namely increase of the system's lateral strength and stiffness thereby allowing for a good tangential inter‐storey drift control, and the retention of a satisfactory energy dissipation capacity. However, rocking of the wall could occur as a result of uplifting wall base or concentrated plastic hinge deformations. Problems arising from this phenomenon have significant impact on the system behaviour and hence require extended study. This paper focuses on the wall‐rocking phenomenon due to the concentrated plastic hinge rotation at the wall base. To facilitate a comprehensive evaluation, a six‐storey three‐bay RC wall–frame structure is investigated with comparison to a bare ductile frame by means of earthquake simulation tests. The results revealed that, despite a superior performance over the ductile frame under low to moderate seismic actions, the wall–frame structure deteriorated more rapidly than the bare frame during advanced inelastic response. The increasingly significant rocking of the wall resulted in severe material damage at localized critical regions. Mitigating the wall rocking is seen to be a key to the further improvement of the system performance, and the extent to which this may be achieved by incorporating the three‐dimensional effects is explicitly illustrated by an analytical evaluation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Although modern seismic codes have undoubtedly led to safer structures, the seismic vulnerability of metropolitan areas is unavoidably governed by that of older buildings, which constitute the vast majority of the current building stock. Quite alarmingly, even relatively moderate intensity earthquakes have been proven capable of challenging their structural integrity, leading to severe damage or collapse. Therefore, there is an urgent need to assess the vulnerability of existing structures and to evaluate the efficiency of novel retrofit techniques. This paper studies experimentally the seismic performance of an existing three‐storey building, retrofitted through addition of shear walls. Emphasis is placed on the foundation of the shear walls, and two design alternatives are comparatively assessed: (a) conventional design according to current seismic codes and (b) ‘rocking isolation’ by reducing the size of the foundation. A series of reduced‐scale shaking table tests are conducted at the Laboratory of Soil Mechanics of the National Technical University of Athens. The physical model encompasses the structural system, along with the foundations, and the soil. The nonlinearity of structural members is simulated through specially designed and carefully calibrated artificial plastic hinges. The vulnerability of the original structure is confirmed, as it is found to collapse with a soft‐storey mechanism when subjected to moderate intensity shaking. The conventionally retrofitted structure is proven capable of sustaining larger intensity shaking, and the rocking‐isolated structure is shown to offer increased safety margins. Thanks to its inherent self‐centering mechanism, the rocking system is characterized by reduced permanent drifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Controlled rocking steel frames have been proposed as an efficient way to avoid the structural damage and residual deformations that are expected in conventional seismic force resisting systems. Although the base rocking response is intended to limit the force demands, higher mode effects can amplify member design forces, reducing the viability of the system. This paper suggests that seismic forces may be limited more effectively by providing multiple force‐limiting mechanisms. Two techniques are proposed: detailing one or more rocking joints above the base rocking joint and providing a self‐centring energy dissipative (SCED) brace at one or more levels. These concepts are applied to the design of an eight‐storey prototype structure and a shake table model at 30% scale. A simple numerical model that was used as a design tool is in good agreement with frequency characterization and low‐amplitude seismic tests of the shake table model, particularly when multiple force‐limiting mechanisms are active. These results suggest that the proposed mechanisms can enable better capacity design by reducing the variability of peak seismic force demands without causing excessive displacements. Similar results are expected for other systems that rely on a single location of concentrated nonlinearity to limit peak seismic loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
基于预定损伤法对钢框架构件主要设计参数进行损伤敏感度分析,研究主要设计参数与钢框架结构梁、柱损伤的关系;揭示钢框架结构梁、柱的损伤及梁、柱线刚度比、结构高宽比、柱轴压比、锈蚀率对楼层损伤的影响规律;获得楼层的损伤与整体结构损伤的关系,最终建立钢框架结构的损伤演化模型。研究成果可为建立地震激励下钢框架结构的损伤模型提供理论基础和数据支持。  相似文献   

13.
This paper presents the development, experimental testing, and numerical modelling of a new hybrid timber‐steel moment‐resisting connection that is designed to improve the seismic performance of mid‐rise heavy timber moment‐resisting frames (MRF). The connection detail incorporates specially designed replaceable steel links fastened to timber beams and columns using self‐tapping screws. Performance of the connection is verified through experimental testing of four 2/3 scale beam‐column connections. All 4 connection specimens met the acceptance criteria specified in the AISC 341‐10 provisions for steel moment frames and exhibit high strength, ductility, and energy dissipation capacity up to storey drifts exceeding 4%. All of the timber members and self‐tapping screw connections achieved their design objective, remaining entirely elastic throughout all tests and avoiding brittle modes of failure. To assess the global seismic performance of the newly developed connection in a mid‐rise building, a hybrid timber‐steel building using the proposed moment‐resisting connection is designed and modelled in OpenSees. To compare the seismic performance of the hybrid MRF with a conventional steel MRF, a prototype steel‐only building is also designed and modelled in OpenSees. The building models are subject to a suite of ground motions at design basis earthquake and maximum credible earthquake hazard levels using non‐linear time history analysis. Analytical results show that drifts and accelerations of the hybrid building are similar to a conventional steel building while the foundation forces are significantly reduced for the hybrid structure because of its lower seismic weight. The results of the experimental program and numerical analysis demonstrate the seismic performance of the proposed connection and the ability of the hybrid building to achieve comparable seismic performance to a conventional steel MRF.  相似文献   

14.
This paper investigates the planar rocking response of an array of free‐standing columns capped with a freely supported rigid beam in an effort to explain the appreciable seismic stability of ancient free‐standing columns that support heavy epistyles together with the even heavier frieze atop. Following a variational formulation, the paper concludes to the remarkable result that the dynamic rocking response of an array of free‐standing columns capped with a rigid beam is identical to the rocking response of a single free‐standing column with the same slenderness yet with larger size, that is a more stable configuration. Most importantly, the study shows that the heavier the freely supported cap beam is (epistyles with frieze atop), the more stable is the rocking frame regardless of the rise of the center of gravity of the cap beam, concluding that top‐heavy rocking frames are more stable than when they are top light. This ‘counter intuitive’ finding renders rocking isolation a most attractive alternative for the seismic protection of bridges with tall piers, whereas its potential implementation shall remove several of the concerns associated with the seismic connections of prefabricated bridges. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The seismic response of rocking frames that consist of a rigid beam freely supported on rigid freestanding rectangular piers has received recent attention in the literature. Past studies have investigated the special case where, upon planar rocking motion, the beam maintains contact with the piers at their extreme edges. However, in many real scenarios, the beam‐to‐pier contact lies closer to the center of the pier, affecting the overall stability of the system. This paper investigates the seismic response of rocking frames under the more general case which allows the contact edge to reside anywhere in‐between the center of the pier and its extreme edge. The study introduces a rocking block model that is dynamically equivalent to a rocking frame with vertically symmetric piers of any geometry. The impact of top eccentricity (ie, the distance of the contact edge from the pier's vertical axis of symmetry) on the seismic response of rocking frames is investigated under pulse excitations and earthquake records. It is concluded that the stability of a top‐heavy rocking frame is highly influenced by the top eccentricity. For instance, a rocking frame with contacts at the extreme edges of the piers can be more seismically stable than a solitary block that is identical to one of the frame's piers, while a rocking frame with contacts closer to the centers of the piers can be less stable. The concept of critical eccentricity is introduced, beyond which the coefficient of restitution contributes to a greater reduction in the response of a frame than of a solitary pier.  相似文献   

16.
Improving seismic performance is one of the critical objectives in earthquake engineering. With the development of economy and society, reparability and fast resilience of a structure are becoming increasingly important. Reinforced concrete (RC) frame structure is prone to soft story mechanism. As a result, deformation and damage are so concentrated that reparability is severely hampered. Rocking wall provides an available approach for deformation control in RC frame by introducing a continuous component along the height. Previous researches mostly focus on seismic responses of rocking wall frame structures, while damage mode and reparability have not been investigated in detail. In this study, a novel infilled rocking wall frame (IRWF) structure is proposed. A half‐scaled IRWF model was designed according to Chinese seismic design code. The model was subjected to cyclic pushover testing up to structure drift ratio of 1/50 (amplitude 1/50), and its reparability was evaluated thereafter. Retrofit was implemented by wrapping steel plates and installing friction dampers. The retrofitted model was further loaded up to amplitude 1/30. The IRWF model showed excellent reparability and satisfactory seismic performance on deformation control, damage mode, hysteresis behavior, and beam‐to‐column joint rotation. After retrofitting, capacity of the model was improved by 11% with limited crack distribution. The model did not degrade until amplitude 1/30, due to shear failure in frame beams. The retrofit procedure was proved effective, and reparability of the IRWF model was demonstrated. Seismic resilience tends to be achieved in the proposed system.  相似文献   

17.
In this study, a series of shaking table tests are carried out on scaled models of two seismically isolated highway bridges to investigate the effect of rocking motion and vertical acceleration on seismic performance of resilient sliding isolators. In addition, performance of RSI is compared with system having solely natural rubber bearings. Test results show that variation of normal force on sliders due to rocking effect and vertical acceleration makes no significant difference in response of RSI systems. In addition, analytical response of prototype isolated bridge and the model used in experiments is obtained analytically by using non‐linear model for isolation systems. It is observed that for seismically isolated bridges, dynamic response of full‐scale complex structures can be predicted with acceptable accuracy by experiments using a simple model of the structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The usefulness of energy dissipation devices to reduce seismic response of structures is now well established. For a given installation of such devices in a structure, one can easily compute the level of response reduction achieved. However, the solution of an inverse problem of how many devices one would need to achieve a desired level of response reduction in a structure, or to achieve an expected level of performance from a structural system, is not quite as straightforward and well formulated. In this paper, a method is presented to obtain the amount of viscous and visco‐elastic damping one would need to obtain a desired level of response reduction. The needed supplemental devices are also optimally distributed in the structure to achieve the best performance. To solve the optimal problem, a gradient‐based optimization approach is used. To illustrate the application, numerical results for a 24‐storey building structure are presented where the objective is to achieve the maximum reduction in the performance functions expressed in terms of the inter‐storey drifts, base shear, or floor accelerations. Other forms of performance functions can also be treated similarly. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Controlled rocking steel braced frames (CRSBFs) have been proposed as a low‐damage seismic force resisting system with reliable self‐centring capabilities. Vertical post‐tensioning tendons are designed to self‐centre the system after rocking, and energy dissipation may be provided to limit the peak displacements. The post‐tensioning and energy dissipation can be designed using simple methods that rely primarily on the first‐mode response. However, the frame member forces are highly influenced by the higher‐mode response, resulting in more complex methods to design the frame members. This paper examines previous proposals and also proposes two new capacity design methods for CRSBFs. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static method that does not require any modifications to the elastic frame model, instead using theory‐based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration. The dynamic procedure is used to design two sets of CRSBFs with three, six, nine, twelve and eighteen stories, one set using a response modification factor of R = 8 and the other using up to R = 20. Based on the results of 800 nonlinear time history analyses, both methods are generally more accurate than the previous capacity design methods and at least as simple to implement. Finally, the displacement results suggest that taller CRSBFs designed using could still limit interstorey drifts to approximately 2.5% at the maximum considered earthquake level in the cases considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper details a direct displacement-based design procedure for steel eccentrically braced frame (EBF) structures and gauges its performance by examining the non-linear dynamic response of a series of case study EBF structures designed using the procedure. Analytical expressions are developed for the storey drift at yield and for the storey drift capacity of EBFs, recognising that in addition to link beam deformations, the brace and column axial deformations can provide important contributions to storey drift components. Case study design results indicate that the ductility capacity of EBF systems will tend to be relatively low, despite the large local ductility capacity offered by well detailed links. In addition, it is found that while the ductility capacity of EBF systems will tend to reduce with height, this is not necessarily negative for seismic performance since the displacement capacity for taller EBF systems will tend to be large. To gauge the performance of the proposed DBD methodology, analytical models of the case study design solutions are subject to non-linear time-history analyses with a set of spectrum-compatible accelerograms. The average displacements and drifts obtained from the NLTH analyses are shown to align well with design values, confirming that the new methodology could provide an effective tool for the seismic design of EBF systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号