首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vertical stratification of carbon dioxide (CO2) injected into a deep layered aquifer made up of high-permeability and low-permeability layers, such as Utsira aquifer at Sleipner site in Norway, is investigated with a Buckley–Leverett equation including gravity effects. In a first step, we study both by theory and simulation the application of this equation to the vertical migration of a light phase (CO2), in a denser phase (water), in 1D vertical columns filled with different types of porous media: homogeneous, piecewise homogeneous, layered periodic and finally heterogeneous. For each case, we solve the associated Riemann problems and propose semi-analytical solutions describing the spatial and temporal evolution of the light phase saturation. These solutions agree well with simulation results. We show that the flux continuity condition at interfaces between high-permeability and low-permeability layers leads to CO2 saturation discontinuities at these interfaces and, in particular, to a saturation increase beneath low-permeability layers. In a second step, we analyze the vertical migration of a CO2 plume injected into a 2D layered aquifer. We show that the CO2 vertical stratification under each low-permeability layer is induced, as in 1D columns, by the flux continuity condition at interfaces. As the injection takes place at the bottom of the aquifer the velocity and the flux function decrease with elevation and this phenomenon is proposed to explain the stratification under each mudstone layer as observed at Sleipner site.  相似文献   

2.
During geologic storage of carbon dioxide (CO2), trapping of the buoyant CO2 after injection is essential in order to minimize the risk of leakage into shallower formations through a fracture or abandoned well. Models for the subsurface behavior of the CO2 are useful for the design, implementation, and long-term monitoring of injection sites, but traditional reservoir-simulation tools are currently unable to resolve the impact of small-scale trapping processes on fluid flow at the scale of a geologic basin. Here, we study the impact of solubility trapping from convective dissolution on the up-dip migration of a buoyant gravity current in a sloping aquifer. To do so, we conduct high-resolution numerical simulations of the gravity current that forms from a pair of miscible analogue fluids. Our simulations fully resolve the dense, sinking fingers that drive the convective dissolution process. We analyze the dynamics of the dissolution flux along the moving CO2–brine interface, including its decay as dissolved buoyant fluid accumulates beneath the buoyant current. We show that the dynamics of the dissolution flux and the macroscopic features of the migrating current can be captured with an upscaled sharp-interface model.  相似文献   

3.
Geological storage of carbon dioxide (CO2) is a promising technology for reducing atmospheric emissions. The large discrepancy in the time- and length-scales between up-dip migration of buoyant supercritical CO2 and the sinking fingers of dissolved CO2 poses a challenge for numerical simulations aimed at describing the fate of the plume. Hence, several investigators have suggested methods to simplify the problem, but to date there has been no reference solution with which these simplified models can be compared. We investigate the full problem of Darcy-based two-phase flow with gravity-current propagation and miscible convective mixing, using high-resolution numerical simulations. We build on recent developments of the Automatic Differentiation - General Purpose Research Simulator (AD-GPRS) at Stanford. The results show a CO2 plume that travels for 5000 years reaching a final distance of 14 km up-dip from the injection site. It takes another 2000 years before the CO2 is completely trapped as residual (40%) and dissolved (60%) CO2. Dissolution causes a significant reduction of the plume speed. While fingers of dissolved CO2 appear under the propagating gravity current, the resident brine does not become fully saturated with CO2 anywhere under the plume. The overall mass transfer of CO2 into the brine under the plume remains practically constant for several thousands of years. These results can be used as a benchmark for verification, or improvements, of simplified (reduced-dimensionality, upscaled) models. Our results indicate that simplified models need to account for: (i) reduced dissolution due to interaction with the plume, and (ii) gradual reduction of the local dissolution rate after the fingers begin to interact with the bottom of the aquifer.  相似文献   

4.
Abstract

A new non-linear model of mixing and convection based on a modelling of two buoyant interacting fluids is applied to penetrative convection in the upper ocean due to surface cooling. In view of simple algebra, the model is one-dimensional. Dissipation is included, but no mean shear is present. A non-similar analytical solution is found in the case of a well-mixed layer bounded below by a sharp thermocline treated as a boundary layer. This solution is valid if the Richardson number, R i , defined as the ratio of the total mixed-layer buoyancy to a characteristic rms vertical velocity, is much greater than unity. The model predicts a deepening rate proportional to R i ?3/4. The thermocline remains of constant thickness, and the ratio thermocline thickness to mixed-layer depth decreases as R i ?3/4 as the mixed layer deepens. If the surface flux is constant, the mixed-layer depth increases with time as t ½. The vertical structure throughout the mixed layer and thermocline is given by the analytical solution, and vertical profiles of mean temperature and vertical fluxes are plotted. Computed profiles and available laboratory data agree remarkably well. Moreover, the accuracy of the simple analytical results presented here is comparable to that of sophisticated turbulence numerical models.  相似文献   

5.
We compare two methods for determining the upscaled water characteristics and saturation-dependent anisotropy in unsaturated hydraulic conductivity from a field-scale injection test. In both approaches an effective medium approximation is used to reduce a porous medium of M textures to an equivalent homogenous medium. The first approach is a phenomenological approach based on homogenization and assumes that moisture-based Richards’ equation can be treated like the convective–dispersive equation (CDE). The gravity term, dKz(θ)/d(θ), analogous to the vertical convective velocity in the CDE, is determined from the temporal evolution of the plume centroid along the vertical coordinate allowing calculation of an upscaled Kz(θ). As with the dispersion tensor in the CDE, the rate of change of the second spatial moment in 3D space is used to calculate the water diffusivity tensor, D(θ), from which an upscaled K(θ) is calculated. The second approach uses the combined parameter scale inverse technique (CPSIT). Parameter scaling is used first to reduce the number of parameters to be estimated by a factor M. Upscaled parameters are then optimized by inverse modeling to produce an upscaled K(θ) characterized by a pore tortuosity–connectivity tensor, L. Parameters for individual textures are finally determined from the optimized parameters by inverse scaling using scale factors determined a priori. Both methods produced upscaled K(θ) that showed evidence of saturation dependent anisotropy. Flow predictions with the STOMP simulator, parameterized with upscaled parameters, were compared with field observations. Predictions based on the homogenization method were able to capture the mean plume behavior but could not reproduce the asymmetry caused by heterogeneity and lateral spreading. The CPSIT method captured the effects of heterogeneity and anisotropy and reduced the mean squared residual by nearly 90% compared to local-scale and upscaled parameters from the homogenization method. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830.  相似文献   

6.
三峡水库澎溪河消落区土-气界面CO2和CH4通量初探   总被引:1,自引:0,他引:1  
李哲  张利萍  王琳  郭劲松  高旭  方芳  蒋滔 《湖泊科学》2013,25(5):674-680
水库近岸湿地(消落区)温室气体(CO2、CH4)产汇是水库温室气体效应问题的重要组成部分.本文以三峡水库支流澎溪河的白家溪、养鹿两处大面积消落区为研究对象,于2010年6 9月水库低水位运行期间,对近岸消落区土-气界面CO2、CH4通量进行监测.白家溪消落区土-气界面CO2通量均值为12.38±2.42 mmol/(m2·h);CH4通量均值为0.0112±0.0064 mmol/(m2·h).养鹿消落区CO2、CH4通量均值分别为10.54±5.17、0.14±0.16 mmol/(m2·h).总体上,6 9月土-气界面CO2通量呈增加趋势,而CH4通量水平呈现显著的递减趋势.消落区土地出露后植被恢复,在一定程度上促进了土壤有机质含量的增加,使得6 9月CO2释放通量的总体趋势有所增加.消落区退耕后,其甲烷氧化菌的活性得到恢复,加之在土地出露曝晒过程中土壤透气性增强,使得消落区土壤对大气中CH4吸收氧化潜势增强.尽管如此,仍需进一步的研究以明晰消落区土-气界面CO2、CH4产汇的主要影响因素.  相似文献   

7.
Measurements of turbulent fluctuations of horizontal and vertical components of velocity, salinity and suspended particulate matter are presented. Turbulent Prandtl numbers are found to increase with stratification and to become larger than 1. Consequently, the vertical turbulent mass transport is suppressed by buoyancy forces, before the turbulent kinetic energy (TKE) and vertical turbulent momentum exchange are inhibited. With increasing stratification, the buoyancy fluxes do not cease, instead they become countergradient. We find that buoyantly driven motions play an active role in the transfer of mass. This is in agreement with trends derived from Monin–Obukhov scaling. For positive Richardson flux numbers (Ri f ), the log velocity profile in the near-bed layer requires correction with a drag reduction. For negative Ri f , the log velocity profile should be corrected with a drag increase, with increasing |Ri f |. This highlights the active role played by buoyancy in momentum transfer and the production of TKE. However, the data do not appear to entirely follow Monin–Obukhov scaling. This is consistent with the notion that the turbulence field is not in equilibrium. The large stratification results in the decay of turbulence and countergradient buoyancy fluxes act to restore equilibrium in the energy budget. This implies that there is a finite adjustment timescale of the turbulence field to changes in velocity shear and density stratification. The energy transfers associated with the source and sink function of the buoyancy flux can be modeled with the concept of total turbulent energy.  相似文献   

8.
On 27 February 2007, a new eruption occurred on Stromboli which lasted until 2 April. It was characterized by effusive activity on the Sciara del Fuoco and by a paroxysmal event (15 March). This crisis represented an opportunity for us to refine the model that had been developed previously (2002–2003 eruption) and to improve our understanding of the relationship between the magmatic dynamics of the volcano and the geochemical variations in the fluids. In particular, the evaluation of the dynamic equilibrium between the volatiles (CO2 and SO2) released from the magma and the corresponding fluids discharged from the summit area allowed us to evaluate the level of criticality of the volcanic activity. One of the major accomplishments of this study is a 4-year database of summit soil CO2 flux on the basis of which we define the thresholds (low–medium–high) for this parameter that are empirically based on the natural volcanological evolution of Stromboli. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are also presented. It is noteworthy that geochemical signals of volcanic unrest have been clearly identified before, during and after the effusive activity. These signals were found almost simultaneously in the degassing plume (SO2 flux) and in soil degassing (CO2 flux) at the summit, although the two degassing processes are shown to be clearly different. The interpretation of the results will be useful for future volcanic surveillance at Stromboli.  相似文献   

9.
The flow caused by the discharge of freshwater underneath a glacier into an idealized fjord is simulated with a 2D non-hydrostatic model. As the freshwater leaves horizontally the subglacial opening into a fjord of uniformly denser water it spreads along the bottom as a jet, until buoyancy forces it to rise. During the initial rising phase, the plume meanders into complex flow patterns while mixing with the surrounding fluid until it reaches the surface and then spreads horizontally as a surface seaward flowing plume of brackish water. The process induces an estuarine-like circulation. Once steady-state is reached, the flow consists of an almost undiluted buoyant plume rising straight along the face of the glacier that turns into a horizontal surface layer thickening as it flows seaward. Over the range of parameters examined, the estuarine circulation is dynamically unstable with gradient Richardson number at the sheared interface having values of <1/4. The surface velocity and dilution factors are strongly and non-linearly related to the Froude number. It is the buoyancy flux that primarily controls the resulting circulation with the momentum flux playing a secondary role.  相似文献   

10.
Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997–September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.Editorial responsibility: H. Shinohara  相似文献   

11.
Measurements of turbulent fluctuations of velocity, salinity, and suspended particulate matter (SPM) are presented. The data show persistent countergradient buoyancy fluxes. These countergradient fluxes are controlled by the ratio of vertical turbulent kinetic energy (VKE) and available potential energy (APE) terms in the buoyancy flux equation. The onset of countergradient fluxes is found to approximately coincide with larger APE than VKE. It is shown here that the ratio of VKE to APE can be written as the square of a vertical Froude number. This number signifies the onset of the dynamical significance of buoyancy in the transport of mass. That is when motions driven by buoyancy begin to actively determine the vertical turbulent transport of mass. Spectral and quadrant analyses show that the occurrence of countergradient fluxes coincides with a change in the relative importance of turbulent energetic structures and buoyancy-driven motions in the transport of mass. Furthermore, these analyses show that with increasing salinity-induced Richardson number (Ri), countergradient contributions expand to the larger scales of motions and the relative importance of outward and inward interactions increases. At the smaller scales, at moderate Ri, the countergradient buoyancy fluxes are physically associated with an asymmetry in transport of fluid parcels by energetic turbulent motions. At the large scales, at large Ri, the countergradient buoyancy fluxes are physically associated with convective motions induced by buoyancy of incompletely dispersed fluid parcels which have been transported by energetic motions in the past. Moreover, these convective motions induce restratification and enhanced settling of SPM. The latter is generally the result of salinity-induced convective motions, but SPM-induced buoyancy is also found to play a role.  相似文献   

12.
Vertically integrated models are frequently applied to study subsurface flow related to CO2 storage scenarios in saline aquifers. In this paper, we study the impact of capillary-pressure hysteresis and CO2 trapping on the integrated constitutive parameter functions. Our results show that for the initial drainage and a subsequent imbibition, trapping is the dominant contributor to hysteresis in integrated models. We also find that for advective processes like injection and plume migration in a sloped aquifer the correct treatment of the hysteretic nature of the capillary fringe is likely of secondary importance. However, for diffusive/dispersive processes such as a redistribution of the CO2 plume due to buoyancy and capillary forces, the hysteretic nature of the capillary fringe may significantly impact the final distribution of the fluids and the timescale of the redistribution.  相似文献   

13.
湖泊、河流等内陆水体是连接陆地生态系统和海洋的“长程碳环路”的重要节点,也是温室气体二氧化碳(CO2)排放源,在调节陆地、海洋间的碳迁移转换中发挥着重要作用。相对于自然水体,城市水体因面积小、水深浅且受监测方法限制,水-气界面碳通量经常被忽略。为探讨我国亚热带城市水体温室气体排放特征,本研究以湖南省长沙市典型城市水体,包括洋湖、西湖、松雅湖、月湖4个湖泊和湘江长沙段为研究对象,分别于2022年4和10月采用光化学反馈-腔增强吸收光谱法(OF-CEAS)和扩散模型法对水-气界面CO2通量进行对比测定。结果表明,长沙城市湖泊与河流春季为CO2排放源,秋季为吸收汇,河流水-气界面CO2通量呈显著季节差异。河湖之间CO2通量在春季表现为显著差异,秋季差异不显著。CO2通量与水体溶解氧、水体总氮浓度等呈显著正相关。2种方法的CO2通量对比测定在湖泊上显著相关,但对河流而言相关性不显著。研究揭示的城市湖泊与河流CO2气体的排放特征有利于深入探究城市水体碳的迁移转化,可对全面了解全球气候变化过程和河湖湿地温室气体减排和调控提供科学支撑。  相似文献   

14.
The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m?2 day?1, with an average of 27.1 g m?2 day?1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.  相似文献   

15.
Near-surface soil CO2 gas-phase concentration (C) and concomitant incident rainfall (Pi) and through-fall (Pt) depths were collected at different locations in a temperate pine forest every 30 min during the 2005 and 2006 growing seasons (and then averaged to the daily timescale). At the daily scale, C temporal variations were well described by a sequence of monotonically decreasing functions interrupted by large positive jumps induced by rainfall events. A stochastic model was developed to link rainfall statistics responsible for these jumps to near-surface C dynamics. The model accounted for the effect of daily rainfall variability, both in terms of timing and amount of water, and permitted an analytical derivation of the C probability density function (pdf) using the parameters of the rainfall pdf. Given the observed positive correlation between daily C and soil CO2 fluxes to the atmosphere (Fs), the effects of various rainfall regimes on the statistics of Fs can be deduced from the behavior of C under different climatic conditions. The predictions from this analytical model are consistent with flux measurements reported in manipulative experiments that varied rainfall amount and frequency.  相似文献   

16.
Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring–neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5–10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring–neap cycle may have important implications for biogeochemical cycles within the bay.  相似文献   

17.
The injection of CO2 at the Ketzin pilot CO2 storage site started in June 2008 and ended in August 2013. During the 62 months of injection, a total amount of about 67 kt of CO2 was injected into a saline aquifer. A third repeat three‐dimensional seismic survey, serving as the first post‐injection survey, was acquired in 2015, aiming to investigate the recent movement of the injected CO2. Consistent with the previous two time‐lapse surveys, a predominantly west–northwest migration of the gaseous CO2 plume in the up‐dip direction within the reservoir is inferred in this first post‐injection survey. No systematic anomalies are detected through the reservoir overburden. The extent of the CO2 plume west of the injection site is almost identical to that found in the 2012 second repeat survey (after injection of 61 kt); however, there is a significant decrease in its size east of the injection site. Assessment of the CO2 plume distribution suggests that the decrease in the size of the anomaly may be due to multiple factors, such as limited vertical resolution, CO2 dissolution, and CO2 migration into thin layers, in addition to the effects of ambient noise. Four‐dimensional seismic modelling based on dynamic flow simulations indicates that a dynamic balance between the newly injected CO2 after the second repeat survey and the CO2 migrating into thin layers and being dissolved was reached by the time of the first post‐injection survey. In view of the significant uncertainties in CO2 mass estimation, both patchy and non‐patchy saturation models for the Ketzin site were taken into consideration.  相似文献   

18.
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity.  相似文献   

19.
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity.  相似文献   

20.
A series of 707 measurements at Masaya in 2005, 2006, and 2007 reveals that SO2 emissions 15km downwind of the active vent appear to be ~33% to ~50% less than those measured only 5km from the vent. Measurements from this and previous studies indicate that dry deposition of sulfur from the plume and conversion of SO2 to sulfate aerosols within the plume each may amount to a maximum of 10% loss, and are not sufficient to account for the larger apparent loss measured. However, the SO2 measurement site 15km downwind is located on a ridge over which local trade winds, and the entrained plume, accelerate. Greater wind speeds cause localized dilution of the plume along the axis of propagation. The lower concentrations of SO2 measured on the ridge therefore lead to calculations of lower fluxes when calculated at the same plume speed as measurements from only 5km downwind, and is responsible for the apparent loss of SO2. Due to the importance of SO2 emission rates with respect to hazard mitigation, petrologic studies, and sulfur budget calculations, measured fluxes of SO2 must be as accurate as possible. Future campaigns to measure SO2 flux at Masaya and similar volcanoes will require individual plume speed measurements to be taken at each flux measurement site to compensate for dilution and subsequent calculation of lower fluxes. This study highlights the importance of a comprehensive understanding of a volcano’s interaction with its surroundings, especially for low, boundary layer volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号