首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Realistic projections of the future climate and how this translates to water availability is crucial for sustainable water resource management. However, data availability constrains the capacity to simulate streamflow and corresponding hydrological processes. Developing more robust hydrological models and methods that can circumvent the need for large amounts of hydro-climatic data is crucial to support water-related decisions, particularly in developing countries. In this study, we use natural isotope tracers in addition to hydro-climate data within a newly developed version of the spatially-distributed J2000iso as an isotope-enabled rainfall-runoff model simulating both water and stable isotope (δ2H) fluxes. We pilot the model for the humid tropical San Carlos catchment (2500 km2) in northeastern Costa Rica, which has limited time series, but spatially distributed data. The added benefit of simulating stable isotopes was assessed by comparing different amounts of observation data using three model calibration strategies (i) three streamflow gauges, (ii) three gauges with stream isotopes and (iii) isotopes only. The J2000iso achieved a streamflow Kling–Gupta efficiency (KGE) of 0.55–0.70 across all the models and gauges, but differences in hydrological process simulations emerged when including stable water isotopes in the rainfall-runoff calibration. Hydrological process simulation varied between the standard J2000 rainfall-runoff model with a high simulated surface runoff proportion of 37% as opposed to the isotope version with 84%–89% simulated baseflow or interflow. The model solutions that used only isotope data for calibration exhibited differences in simulated interflow, baseflow and model performance but captured bulk water balances with a reasonable match between the simulated and observed hydrographs. We conclude that J2000iso has shown the potential to support water balance modelling for ungauged catchments using stable isotope, satellite and global reanalysis data sets.  相似文献   

2.
The primary objective of the study is to propose a strategy for rainfall–runoff model calibration at ungauged sites. This strategy comprises two main components: (1) development of the regional analysis method to synthesize the flow duration curves at ungauged sites; and (2) utilization of the synthetic flow duration curves for model calibration. Since the regional analysis method can synthesize the flow duration curves at ungauged sites, the continuous rainfall–runoff model coupled with a global optimization method were applied in southern Taiwan using the synthetic flow duration curve as an objective for model calibration. The results reveal that the regional flow duration curve and the strategy for model calibration at ungauged sites have good performances in the study area. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
基于卫星遥感的太湖蓝藻水华时空分布规律认识   总被引:14,自引:6,他引:8  
由于大尺度水文模型和无资料区水文研究是当前国际水文研究的重点和难点,通过参数区域化方法来估计大尺度区域和无资料区的模型参数值成为了研究的热点之一将HBV模型应用于东江流域及其子流域,采用代理流域法和全局乎均法来估计该区域内无资料流域的模型参数研究表明:HBV模型能较好得用于东江流域径流模拟;交叉检验中,较小的序和ME值对应的参数,其转移效果不一定比较大的R^2和ME值对应的参数转移效果差;全局平均法中,面积权重平均值和泰森多边形插值后平均并不能明显改进子流域算术平均值估计无资料流域的模型参数的模拟结果;两者都能有效用于东江流域无资料流域的参数估计,且效果相差不大。  相似文献   

4.
Regional frequency analysis is an important tool in estimating design flood for ungauged catchments. Index flood is an important component in regionalized flood formulas. In the past, many formulas have been developed based on various numbers of calibration catchments (e.g. from less than 20 to several hundred). However, there is a lack of systematic research on the model uncertainties caused by the number of calibration catchments (i.e. what is the minimum number of calibration catchment? and how should we choose the calibration catchments?). This study uses the statistical resampling technique to explore the impact of calibration catchment numbers on the index flood estimation. The study is based on 182 catchments in England and an index flood formula has been developed using the input variable selection technique in the data mining field. The formula has been used to explore the model uncertainty due to a range of calibration catchment numbers (from 15 to 130). It is found that (1) as expected, the more catchments are used in the calibration, the more reliable of the models developed are (i.e. with a narrower band of uncertainty); (2) however, poor models are still possible with a large number of calibration catchments (e.g. 130). In contrast, good models with a small number of calibration catchments are also achievable (with as low as 15 calibration catchments). This indicates that the number of calibration catchments is only one of the factors influencing the model performance. The hydrological community should explore why a smaller calibration data set could produce a better model than a large calibration data set. It is clear from this study that the information content in the calibration data set is equally if not more important than the number of calibration data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

The calibration of hydrological models is formulated as a blackbox optimization problem where the only information available is the objective function value. Distributed hydrological models are generally computationally intensive, and their calibration may require several hours or days which can be an issue for many operational contexts. Different optimization algorithms have been developed over the years and exhibit different strengths when applied to the calibration of computationally intensive hydrological models. This paper shows how the dynamically dimensioned search (DDS) and the mesh adaptive direct search (MADS) algorithms can be combined to significantly reduce the computational time of calibrating distributed hydrological models while ensuring robustness and stability regarding the final objective function values. Five transitional features are described to adequately merge both algorithms. The hybrid approach is applied to the distributed and computationally intensive HYDROTEL model on three different river basins located in Québec (Canada).  相似文献   

6.
Abstract

One of the main challenges faced by hydrologists and water engineers is the estimation of variables needed for water resources planning and management in ungauged river basins. To this end, techniques for transposing information, such as hydrological regional analyses, are widely employed. A method is presented for regionalizing flow-duration curves (FDCs) in perennial, intermittent and ephemeral rivers, based on the extended Burr XII probability distribution. This distribution shows great flexibility to fit data, with accurate reproduction of flow extremes. The performance analysis showed that, in general, the regional models are able to synthesize FDCs in ungauged basins, with a few possible drawbacks in the application of the method to intermittent and ephemeral rivers. In addition to the regional models, we summarize the experience of using synthetic FDCs for the indirect calibration of the Rio Grande rainfall–runoff model parameters in ungauged basins.

Editor D. Koutsoyiannis

Citation Costa, V., Fernandes, W., and Naghettini, M., 2013. Regional models of flow-duration curves of perennial and intermittent streams and their use for calibrating the parameters of a rainfall–runoff model. Hydrological Sciences Journal, 59 (2), 262–277.  相似文献   

7.
Traditional procedures for rainfall–runoff model calibration are generally based on the fit of individual values of simulated and observed hydrographs. We use here an alternative option that is carried out by matching, in the optimisation process, a set of streamflow statistics. Such an approach has the significant advantage to enable also a straightforward regional calibration of model parameters, based on the regionalisation of the selected statistics. The minimisation of the set of objective functions is carried out by using the AMALGAM algorithm, leading to the identification of behavioural parameter sets. The procedure is applied to a set of river basins located in central Italy: the basins are treated alternatively as gauged and ungauged and, as a term of comparison, the results obtained with a traditional time-domain calibration are also presented. With respect to previous applications of analogous procedures, we investigate here the identification of the target statistics depending on the purposes of the application, and in particular when the focus is on the reproduction of the low-flows. The results show that a suitable choice of the statistics to be optimised leads to interesting results in real world case studies as far as the reproduction of the different flow regimes is concerned.  相似文献   

8.
Efficiency of hydrological models mostly depends on the quality of the calibration performed prior to use. In this paper, an automatic calibration framework for the distributed hydrological model HYDROTEL is proposed. The calibration procedure was performed for three watersheds characterized with different hydroclimatological conditions: the Sassandra located in Ivory Coast, Africa, and the Montmorency and Beaurivage watersheds located in Quebec (Canada). Results of one‐a‐time (OAT) sensitivity analysis showed that the order of the most sensitive parameters differs for each watershed. Thus, the sensitivity depends on the hydroclimatic and physiographic characteristics of the watersheds. Co‐linearity indices showed that all model parameters were identifiable, that is, none of the studied parameters could be explained by a combination of the other parameters. Following these findings, an automatic calibration was run. Results indicated there was good agreement between simulated and measured streamflows at the outlet of each watershed; Nash–Sutcliffe efficiency (NSE) ranging between 0.77 and 0.92 and R2 ranging from 0.87 to 0.97. When comparing NSE and R2 values obtained using a process‐oriented, multiple‐objective, manual calibration strategy, a slight increase in model efficiency was reached with the automatic calibration procedure (4.15% for NSE and 2.95% for R2) improving predictions of peak flows for the Montmorency and Beaurivage watersheds (temperate climate conditions) and flows beyond the rainfall season in the Sassandra watershed. The proposed automatic calibration procedure introduced in this paper may be applied to other distributed hydrological model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In hydrological modelling, the challenge is to identify an optimal strategy to exploit tools and available observations in order to enhance model reliability. The increasing availability of data promotes the use of new calibration techniques able to make use of additional information on river basins. In the present study, a lumped hydrological model—designed with the aim of utilizing remotely sensed data—is introduced and calibrated, adopting four different schemes that adopt, to varying extents, available physical information. The physically consistent conceptualization of the hydrological model used allowed development of a step by step calibration based on a combination of information, such as remotely sensed data describing snow cover, recession curves obtained from streamflow measurements, and time series of surface run‐off obtained with a baseflow mathematical filter applied to the streamflow time‐series. Results suggest that the use of physical information in the calibration procedure tends to increase model reliability with respect to approaches where the parameters are calibrated using an overall statistic based, considerably or exclusively, on streamflow data.  相似文献   

10.
Abstract

Hydrological modelling has faced the problem of ungauged basins for many years: how does one estimate hydrological characteristics for a river for which there are no data? Whatever the kind of model, it needs at least hydroclimatic input data and discharge data for calibration. However, the Yates model does not need any discharge data for calibration: it is a pre-calibrated model from a vegetation—climate classification map. In the specific context of West and Central Africa, where data are often of poor quality and very scarce, it is interesting to compare the performance of such a model with those of calibrated models, and with observed data. For this study, a platform including different semi-global rainfall—runoff models which allow the estimation of monthly runoff at a spatial resolution of 0.5° × 0.5° was used. The performance of the Yates model is very close to those of calibrated models, so that one can say that this simple model, based simply on a vegetation—climate classification, can be a very useful prediction tool in regions of scarce and unreliable data, such as those of interest to the International Association of Hydrological Sciences (IAHS) initiative on prediction in ungauged basins (PUB). Therefore, this model was applied to a period covering the last 30 years, and to a data set covering the first decades of the 21st century, from a climatic scenario of doubling the CO2 concentration in the atmosphere. The results show that, in West Africa, where drought conditions have now prevailed for 35 years, water resources should still be decreasing in the future, following the general decreasing trend of rainfall projected by the climatic scenarios.  相似文献   

11.
Long‐term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, such as Central America, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information—to locally observed discharge—can be used to constrain model parameter uncertainty for ungauged catchments. Given the strong influence that climatic large‐scale processes exert on streamflow variability in the Central American region, we explored the use of climate variability knowledge as process constraints to constrain the simulated discharge uncertainty for a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty, we first rejected parameter relationships that disagreed with our understanding of the system. Then, based on this reduced parameter space, we applied the climate‐based process constraints at long‐term, inter‐annual, and intra‐annual timescales. In the first step, we reduced the initial number of parameters by 52%, and then, we further reduced the number of parameters by 3% with the climate constraints. Finally, we compared the climate‐based constraints with a constraint based on global maps of low‐flow statistics. This latter constraint proved to be more restrictive than those based on climate variability (further reducing the number of parameters by 66% compared with 3%). Even so, the climate‐based constraints rejected inconsistent model simulations that were not rejected by the low‐flow statistics constraint. When taken all together, the constraints produced constrained simulation uncertainty bands, and the median simulated discharge followed the observed time series to a similar level as an optimized model. All the constraints were found useful in constraining model uncertainty for an—assumed to be—ungauged basin. This shows that our method is promising for modelling long‐term flow data for ungauged catchments on the Pacific side of Central America and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.  相似文献   

12.
Hydrological science is a branch of the earth sci-ences.To study the complexities of hydrological pro-cesses and the associated environmental problems,a systematic approach is desired.For instance,Dooge published Linear Theory of Hydrological System[1]in1973.Singh(1988)published Hydrological Systems[2],with its Chinese version[3]being translated by the Yel-low River Conservancy Commission in2000.Ge(1999)carried out systematic studies on the hydro-logical linear system theory,and produced …  相似文献   

13.
In this study, a quantitative assessment of uncertainty was made in connection with the calibration of Australian Water Balance Model (AWBM) for both gauged and ungauged catchment cases. For the gauged catchment, five different rainfall data sets, 23 different calibration data lengths and eight different optimization techniques were adopted. For the ungauged catchment case, the optimum parameter sets obtained from the nearest gauged catchment were transposed to the ungauged catchments, and two regional prediction equations were used to estimate runoff. Uncertainties were ascertained by comparing the observed and modelled runoffs by the AWBM on the basis of different combinations of methods, model parameters and input data. The main finding from this study was that the uncertainties in the AWBM modelling outputs could vary from ?1.3% to 70% owing to different input rainfall data, ?5.7% to 11% owing to different calibration data lengths and ?6% to 0.2% owing to different optimization techniques adopted in the calibration of the AWBM. The performance of the AWBM model was found to be dominated mainly by the selection of appropriate rainfall data followed by the selection of an appropriate calibration data length and optimization algorithm. Use of relatively short data length (e.g. 3 to 6 years) in the calibration was found to generate relatively poor results. Effects of different optimization techniques on the calibration were found to be minimal. The uncertainties reported here in relation to the calibration and runoff estimation by the AWBM model are relevant to the selected study catchments, which are likely to differ for other catchments. The methodology presented in this paper can be applied to other catchments in Australia and other countries using AWBM and similar rainfall–runoff models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Simple runoff models with a low number of model parameters are generally able to simulate catchment runoff reasonably well, but they rely on model calibration, which makes their use in ungauged basins challenging. In a previous study it has been shown that a limited number of streamflow measurements can be quite informative for constraining runoff models. In practice, however, instead of performing such repeated flow measurements, it might be easier to install a stream level logger. Here, a dataset of 600+ gauged basins in the USA was used to study how well models perform when only stream level data, rather than streamflow data, are available. A runoff model (the HBV model) was calibrated assuming that only stream level observations were available, and the simulations were evaluated on the full observed streamflow record. The results indicate that stream level data alone can already provide surprisingly good model simulation results in humid catchments, whereas in arid catchments some form of quantitative information (e.g. a streamflow observation or a regional average value) is needed to obtain good results. These results are encouraging for hydrological observations in data scarce regions as level observations are much easier to obtain than streamflow measurements. Based on runoff modelling, it might even be possible to derive streamflow time series from the level data obtained from loggers, satellites or community‐based approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Regionalization of model parameters by developing appropriate functional relationship between the parameters and basin characteristics is one of the potential approaches to employ hydrological models in ungauged basins. While this is a widely accepted procedure, the uniqueness of the watersheds and the equifinality of parameters bring lot of uncertainty in the simulations in ungauged basins. This study proposes a method of regionalization based on the probability distribution function of model parameters, which accounts the variability in the catchment characteristics. It is envisaged that the probability distribution function represents the characteristics of the model parameter, and when regionalized the earlier concerns can be addressed appropriately. The method employs probability distribution of parameters, derived from gauged basins, to regionalize by regressing them against the catchment attributes. These regional functions are used to develop the parameter characteristics in ungauged basins based on the catchment attributes. The proposed method is illustrated using soil water assessment tool model for an ungauged basin prediction. For this numerical exercise, eight different watersheds spanning across different climatic settings in the USA are considered. While all the basins considered in this study were gauged, one of them was assumed to be ungauged (pseudo-ungauged) in order to evaluate the effectiveness of the proposed methodology in ungauged basin simulation. The process was repeated by considering representative basins from different climatic and landuse scenarios as pseudo-ungauged. The results of the study indicated that the ensemble simulations in the ungauged basins were closely matching with the observed streamflow. The simulation efficiency varied between 57 and 61 % in ungauged basins. The regional function was able to generate the parameter characteristics that were closely matching with the original probability distribution derived from observed streamflow data.  相似文献   

16.
Hydrologic models are simplified representations of natural hydrologic systems. Since these models rely on assumptions and simplifications to capture some aspects of hydrological processes, calibration of parameters is unavoidable. However, utilizing the philosophy of a recent modelling framework proposed by Bahremand (2016), we show how calibration of most model parameters can be avoided by allocating or presetting these parameters utilizing knowledge gained from sensitivity analyses, field observations and a priori specifications as a part of a parameter allocation procedure. This paper details the simulation of daily river flow of the Shemshak-Roudak watershed performed using the Python version of the WetSpa model. The WetSpa-Python model is a distributed model of hydrological processes applied at the watershed scale. The model was applied to the Shemshak-Roudak watershed of Iran with parameter allocation. Model calibration involved only two parameters. Straightforward methods were proposed for allocating model parameters, including three baseflow-related parameters and the determination of maximum active groundwater storage using a mass curve technique. Also, the Budyko curve was used to constrain a correction factor for potential evapotranspiration. The WetSpa-Python model was extended to include the influence of snowmelt. A failure to include snow in the hydrological processes of the WetSpa-Python model creates a significant discrepancy between the observed and simulated hydrographs during the spring. The results of daily simulations for 12 years (2002–2014) are in good agreement with observations of discharge (Kling-Gupta Efficiency = 0.84). These results demonstrate that it is feasible to simulate hydrographs with limited calibration given a knowledge of hydrological processes and an understanding of relationships between catchment characteristics and model parameters.  相似文献   

17.
Calibration and validation of hydrological models is a challenge, particularly in remote regions that are minimally gauged. This paper develops a novel methodology for large‐scale (>1000 km2) hydrological model calibration and validation using stable water isotopes founded on the rigorous constraints imposed by the need to conserve both water mass and stable isotopes simultaneously. The isoWATFLOOD model is applied to five basins within the Fort Simpson, Northwest Territories region of northern Canada to simulate stream discharge and oxygen‐18 signals over a 3‐year period. The isotopic variation of river discharge, runoff components, and evaporative fractionation are successfully simulated on both a seasonal and continual basis over the watershed domain to demonstrate the application of isotope tracers to regional hydrologic calibration. The intended application of this research is to remote, large‐scale basins, showing promise for improving predictions in minimally gauged basins and climate change research where traditional, rigorous approaches to constraining parameter uncertainty may be impractical. This coupled isotope‐hydrological (i.e. iso‐hydrological) approach to modelling reduces the number of possible parameterizations, resulting in potentially more physically‐based hydrological predictions. isoWATFLOOD provides a tool for water resource managers and utilities to use operationally for water use, allocation, and runoff generation estimations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The primary purpose of this study is to develop regional models of the lower part of flow duration curves (LPFDCs) to synthesize low‐flow characteristics at ungauged sites in southern Taiwan. Because of the close relationship between low streamflow regimes and hydrogeological features, the model development first involved delimiting homogeneous hydrogeological regions by using two‐step cluster analysis. Each homogeneous region was then discriminated by an equation developed on the basis of its hydrogeological features, which was then used to determine which of three sets of regional LPFDC models would be appropriate for a particular ungauged site. Each of the three sets of regional LPFDC models were developed using both conventional multivariate statistical regression and fuzzy regression. Thirty‐four stream‐gauged watersheds located in southern Taiwan provide the data set. The study results reveal that the regional LPFDC models developed in this study could be applied reasonably at ungauged sites. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

The complexity of distributed hydrological models has led to improvements in calibration methodologies in recent years. There are various manual, automatic and hybrid methods of calibration. Most use a single objective function to calculate estimation errors. The use of multi-objective calibration improves results, since different aspects of the hydrograph may be considered simultaneously. However, the uncertainty of estimates from a hydrological model can only be taken into account by using a probabilistic approach. This paper presents a calibration method of probabilistic nature, based on the determination of probability functions that best characterize different parameters of the model. The method was applied to the Real-time Interactive Basin Simulator (RIBS) distributed hydrological model using the Manzanares River basin in Spain as a case study. The proposed method allows us to consider the uncertainty in the model estimates by obtaining the probability distributions of flows in the flood hydrograph.

Citation Mediero, L., Garrote, L. & Martín-Carrasco, F. J. (2011) Probabilistic calibration of a distributed hydrological model for flood forecasting. Hydrol. Sci. J. 56(7), 1129–1149.  相似文献   

20.
This paper proposes a new orientation to address the problem of hydrological model calibration in ungauged basin. Satellite radar altimetric observations of river water level at basin outlet are used to calibrate the model, as a surrogate of streamflow data. To shift the calibration objective, the hydrological model is coupled with a hydraulic model describing the relation between streamflow and water stage. The methodology is illustrated by a case study in the Upper Mississippi Basin using TOPEX/Poseidon (T/P) satellite data. The generalized likelihood uncertainty estimation (GLUE) is employed for model calibration and uncertainty analysis. We found that even without any streamflow information for regulating model behavior, the calibrated hydrological model can make fairly reasonable streamflow estimation. In order to illustrate the degree of additional uncertainty associated with shifting calibration objective and identifying its sources, the posterior distributions of hydrological parameters derived from calibration based on T/P data, streamflow data and T/P data with fixed hydraulic parameters are compared. The results show that the main source is the model parameter uncertainty. And the contribution of remote sensing data uncertainty is minor. Furthermore, the influence of removing high error satellite observations on streamflow estimation is also examined. Under the precondition of sufficient temporal coverage of calibration data, such data screening can eliminate some unrealistic parameter sets from the behavioral group. The study contributes to improve streamflow estimation in ungauged basin and evaluate the value of remote sensing in hydrological modeling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号