首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 944 毫秒
1.
We consider heterogeneous media whose properties vary in space and particularly aquifers whose hydraulic conductivity K may change by orders of magnitude in the same formation. Upscaling of conductivity in models of aquifer flow is needed in order to reduce the numerical burden, especially when modeling flow in heterogeneous aquifers of 3D random structure. Also, in many applications the interest is in average values of the dependent variables over scales larger or comparable to the conductivity length scales. Assigning values of the conductivity Kb to averaging domains, or computational blocks, is the topic of a large body of literature, the problem being of wide interest in various branches of physics and engineering. It is clear that upscaling causes loss of information and at best it can render a good approximation of the fine scale solution after averaging it over the blocks.The present article focuses on upscaling approaches dealing with random media. It is not meant to be a review paper, its main scope being to elucidate a few issues of principle and to briefly discuss open questions. We show that upscaling can be usually achieved only approximately, and the result may depend on the particular upscaling scheme adopted. The typically scarce information on the statistical structure of the fine-scale conductivity imposes a strong limitation to the upscaling problem. Also, local upscaling is not possible in nonuniform mean flows, for which the upscaled conductivity tensor is generally nonlocal and it depends on the domain geometry and the boundary conditions. These and other limitations are discussed, as well as other open topics deserving further investigation.  相似文献   

2.
3.
Although recognized as important, measures of connectivity (i.e. the existence of high-conductivity paths that increase flow and allow for early solute arrival) have not yet been incorporated into methods for upscaling hydraulic conductivities of porous media. We present and evaluate a binary upscaling formula that utilizes connectivity information. The upscaled hydraulic conductivity (K) of binary media is determined as a function of the proportions and conductivities of the two materials, the geometry of the inclusions, and the mean distance between them. The use of a phase interchange theorem renders the formula equally applicable to two-dimensional media with inclusions of low K and high K as compared with the matrix. The new upscaling formula is tested on two-dimensional binary random fields spanning a broad range of spatial correlation structures and conductivity contrasts. The computed effective conductivities are compared to what is obtained using self-consistent effective medium theory, the coated ellipsoids approximation, and to a streamline approach. It is shown that, although simple, the proposed formula performs better than available methods for binary upscaling. The use of connectivity information leads to significantly improved behavior close to the percolation threshold. The proposed upscaling formula depends exclusively on parameters that are obtainable from field investigations.  相似文献   

4.
We compare two methods for determining the upscaled water characteristics and saturation-dependent anisotropy in unsaturated hydraulic conductivity from a field-scale injection test. In both approaches an effective medium approximation is used to reduce a porous medium of M textures to an equivalent homogenous medium. The first approach is a phenomenological approach based on homogenization and assumes that moisture-based Richards’ equation can be treated like the convective–dispersive equation (CDE). The gravity term, dKz(θ)/d(θ), analogous to the vertical convective velocity in the CDE, is determined from the temporal evolution of the plume centroid along the vertical coordinate allowing calculation of an upscaled Kz(θ). As with the dispersion tensor in the CDE, the rate of change of the second spatial moment in 3D space is used to calculate the water diffusivity tensor, D(θ), from which an upscaled K(θ) is calculated. The second approach uses the combined parameter scale inverse technique (CPSIT). Parameter scaling is used first to reduce the number of parameters to be estimated by a factor M. Upscaled parameters are then optimized by inverse modeling to produce an upscaled K(θ) characterized by a pore tortuosity–connectivity tensor, L. Parameters for individual textures are finally determined from the optimized parameters by inverse scaling using scale factors determined a priori. Both methods produced upscaled K(θ) that showed evidence of saturation dependent anisotropy. Flow predictions with the STOMP simulator, parameterized with upscaled parameters, were compared with field observations. Predictions based on the homogenization method were able to capture the mean plume behavior but could not reproduce the asymmetry caused by heterogeneity and lateral spreading. The CPSIT method captured the effects of heterogeneity and anisotropy and reduced the mean squared residual by nearly 90% compared to local-scale and upscaled parameters from the homogenization method. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830.  相似文献   

5.
A series of multi-step outflow experiments was carried out to identify the unsaturated hydraulic properties of two homogeneous coarse-textured porous media (glass beads and sand). Because of the measured sharp fronts of water content decrease during these experiments the hydraulic functions are assumed to be represented by the complete van Genuchten–Mualem closed-form expressions with variable coefficients α, n, m and θr. The values of θs and Ks were measured directly. A sensitivity analysis with respect to α, n, and m shows that conditions of local identifiability are satisfied if measurements of water content at some inner points inside the column are considered. The inverse modelling technique consists of two steps: first, computation of objective function values based on water content data responses to obtain initial parameter estimations, and second, a more detailed parameter determination using a Levenberg–Marquardt scheme. In both steps a numerical model incorporating the hydraulic functions is utilized to simulate theoretical pressure head and water content distributions along the column. For both porous media unique solutions of the inverse problem could be obtained, and afterwards, the corresponding hydraulic functions were verified from additional drainage experiments.©1998 Elsevier Science Limited. All rights reserved  相似文献   

6.
7.
We present a 3D network model with particle tracking to upscale 3D Brownian motion of non-reactive tracer particles subjected to a velocity field in the network bonds, representing both local diffusion and convection. At the intersections of the bonds (nodes) various jump conditions are implemented. Within the bonds, two different velocity profiles are used. At the network scale the longitudinal dispersion of the particles is quantified through the coefficient DL, for which we evaluate a number of methods already known in the literature. Additionally, we introduce a new method for derivation of DL based on the first-arrival times distribution (FTD). To validate our particle tracking method, we simulate Taylor’s classical experiments in a single tube. Subsequently, we carry out network simulations for a wide range of the characteristic Péclet number Pe? to assess the various methods for obtaining DL. Using the new method, additional simulations have been carried out to evaluate the choice of nodal jump conditions and velocity profile, in combination with varying network heterogeneity. In general, we conclude that the presented network model with particle tracking is a robust tool to obtain the macroscopic longitudinal dispersion coefficient. The new method to determine DL from the FTD statistics works for the full range of Pe?, provided that for large Pe? a sufficiently large number of particles is used. Nodal jump conditions should include molecular diffusion and allow jumps in the upstream direction, and a parabolic velocity profile in the tubes must be implemented. Then, good agreement with experimental evidence is found for the full range of Pe?, including increased DL for increased porous medium heterogeneity.  相似文献   

8.
We consider the problem of upscaling transient real gas flow through heterogeneous bounded reservoirs. One of the commonly used methods for deriving effective permeabilities is based on stochastic averaging of nonlinear flow equations. Such an approach, however, would require rather restrictive assumptions about pressure-dependent coefficients. Instead, we use Kirchhoff transformation to linearize the governing stochastic equations prior to their averaging. The linearized problem is similar to that used in stochastic analysis of groundwater flow. We discuss the effects of temporal localization of the nonlocal averaged Darcy's law, as well as boundary effects, on the upscaled gas permeability. Extension of the results obtained by means of small perturbation analysis to highly heterogeneous porous formations is also discussed.  相似文献   

9.
In this article, the quadrupole method is implemented in order to simulate the effects of heterogeneities on one dimensional advective and diffusive transport of a passive solute in porous media. Theoretical studies of dispersion in heterogeneous stratified media can bring insight into transport artefacts linked to scale effects and apparent dispersion coefficients. The quadrupole method is an efficient method for the calculation of transient response of linear systems. It is based here on the Laplace transform technique. The analytical solutions that can be derived by this method assists understanding of upscaled parameters relevant to heterogeneous porous media.First, the method is developed for an infinite homogeneous porous medium. Then, it is adapted to a stratified medium where the fluid flow is perpendicular to the interfaces. The first heterogeneous medium studied is composed of two semi-infinite layers perpendicular to the flow direction each having different transport properties. The concentration response of the medium to a Dirac injection is evaluated. The case studied emphasises the importance in the choice of the boundary conditions.In the case of a periodic heterogeneous porous medium, the concentration response of the medium is evaluated for different numbers of unit-cells. When the number of unit cells is great enough, depending on the transport properties of each layer in the unit cell, an equivalent homogeneous behaviour is reached. An exact determination of the transport properties (equivalent dispersion coefficient) of the equivalent homogeneous porous medium is given.  相似文献   

10.
Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems.Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on mean values. It provides motivation for continued research into upscaling methods for transport that directly address advection in heterogeneous porous media.An electronic version of this article is available online at the journal's homepage at http://www.elsevier.nl/locate/advwatres or http://www.elsevier.com/locate/advwatres (see “Special section on vizualization”. The online version contains additional supporting information, graphics, and a 3D animation of simulated particle movement.©1998 Elsevier Science Limited. All rights reserved  相似文献   

11.
We present an upscaled model for the vertical migration of a CO2 plume through a vertical column filled with a periodic layered porous medium. This model may describe the vertical migration of a CO2 plume in a perfectly layered horizontal aquifer. Capillarity and buoyancy are taken into account and semi-explicit upscaled flux functions are proposed in the two following cases: (i) capillarity is the main driving force and (ii) buoyancy is the only driving force. In both cases, we show that the upscaled buoyant flux is a bell-shaped function of the saturation, as in the case of a homogeneous porous medium. In the capillary-dominant case, we show that the upscaled buoyant flux is the harmonic mean of the buoyant fluxes in each layer. The upscaled saturation is governed by the continuity of the capillary pressure at the interface between layers. In the capillary-free case, the upscaled buoyant flux and upscaled saturation are determined by the flux continuity condition at the interface. As the flux is not continuous over the entire range of saturation, the upscaled saturation is only defined where continuity is verified, i.e. in two saturation domains. As a consequence, the upscaled buoyant flux is described by a piecewise continuous function. Two analytical approximations of this flux are proposed and this capillary-free upscaled model is validated for two cases of heterogeneity. Upscaled and cell averaged saturations are in good agreement. Furthermore, the proposed analytical upscaled fluxes provide satisfactory approximations as long as the saturation set at the inlet of the column is in a range where analytical and numerical upscaled fluxes are close.  相似文献   

12.
《Advances in water resources》2007,30(6-7):1421-1431
Recent studies indicate that during in situ bioremediation of contaminated groundwater, degradation occurs primarily along transverse mixing zones. Classical reactive-transport models overpredict the amount of degradation because solute spreading and mixing are not distinguished. Efforts to correct this have focused on modifying both dispersion and reaction terms, but no consensus on the best approach has emerged. In this work, a pore-scale model was used to simulate degradation along a transverse mixing zone between two required nutrients, and a continuum model with fitted parameters was used to match degradation rates from the pore-scale model. The pore-scale model solves for the flow field, concentration field, and biomass development within pore spaces of porous medium. For the continuum model, the flow field and biomass distributions are assumed to be homogeneous, and the fitting parameters are the transverse dispersion coefficient (DT) and maximum substrate utilization rate (kS,c). Results from the pore-scale model show that degradation rates near the system inlet are limited by the reaction rate, while degradation rates downgradient are limited by transverse mixing. For the continuum model, the value of DT may be adjusted so that the degradation rate with distance matches that from the pore-scale model in the mixing-limited region. However, adjusting the value of kS only improves the fit to pore-scale results within the reaction-limited region. Comparison with field and laboratory experiments suggests that the length of the reaction rate-limited region is small compared to the length scale over which degradation occurs. This indicates that along transverse mixing zones in the field, values of kS are unimportant and only the value of DT must be accurately fit.  相似文献   

13.
Upscaling pore-scale processes into macroscopic quantities such as hydrodynamic dispersion is still not a straightforward matter for porous media with complex pore space geometries. Recently it has become possible to obtain very realistic 3D geometries for the pore system of real rocks using either numerical reconstruction or micro-CT measurements. In this work, we present a finite element–finite volume simulation method for modeling single-phase fluid flow and solute transport in experimentally obtained 3D pore geometries. Algebraic multigrid techniques and parallelization allow us to solve the Stokes and advection–diffusion equations on large meshes with several millions of elements. We apply this method in a proof-of-concept study of a digitized Fontainebleau sandstone sample. We use the calculated velocity to simulate pore-scale solute transport and diffusion. From this, we are able to calculate the a priori emergent macroscopic hydrodynamic dispersion coefficient of the porous medium for a given molecular diffusion Dm of the solute species. By performing this calculation at a range of flow rates, we can correctly predict all of the observed flow regimes from diffusion dominated to convection dominated.  相似文献   

14.
15.
The hydraulic conductivity of heterogeneous porous media depends on the distribution function and the geometry of local conductivities at the smaller scale. There are various approaches to estimate the effective conductivity Keff at the larger scale based on information about the small scale heterogeneity. A critical geometric property in this ‘upscaling’ procedure is the spatial connectivity of the small-scale conductivities. We present an approach based on the Euler-number to quantify the topological properties of heterogeneous conductivity fields, and we derive two key parameters which are used to estimate Keff. The required coefficients for the upscaling formula are obtained by regression based on numerical simulations of various heterogeneous fields. They are found to be generally valid for various different isotropic structures. The effective unsaturated conductivity function Keff (ψm) could be predicted satisfactorily. We compare our approach with an alternative based on percolation theory and critical path analysis which yield the same type of topological parameters. An advantage of using the Euler-number in comparison to percolation theory is the fact that it can be obtained from local measurements without the need to analyze the entire structure. We found that for the heterogeneous field used in this study both methods are equivalent.  相似文献   

16.
This article demonstrates that permeability upscaling, which can require complex techniques, is not necessary to significantly decrease the CPU time in reactive transport modeling. CPU time depends more on the geochemistry than the flow calculation. Flow rate upscaling is proposed as an alternate method to permeability upscaling, which is more suited to time-consuming flow resolution. To apply this method, a finite volume approach is most convenient.Considering the equality of flow as the equivalence criterion, when the coarse grid overlays the fine grid, flow rate upscaling leads, by construction, to the exact results, whereas the accuracy of permeability upscaling methods often depends on specific conditions. Some focus is put on the limitations of a common permeability upscaling technique, the simplified renormalization. In stationary flow, the gain in CPU time is the same for both flow rate upscaling and permeability upscaling. In transient flow, flow rate upscaling is slightly less time-efficient but the ratio between both CPU times decreases when the geochemistry is more complex.Working with an accurate flow rate field in the upscaled case reveals that porosity upscaling is a surprisingly tricky issue. Solution mixing is induced and residence times can be significantly affected. These changes have potentially important consequences on reactive transport modeling. They are not specific to the flow rate upscaling method; they are a general issue. Some simplified cases, assuming a homogeneous mineralogy, are examined. At this stage, a simple heuristic method is proposed, which yields reliable results under particular conditions (high heterogeneity). Porosity upscaling remains an open research field.  相似文献   

17.
Stochastic and deterministic upscaling techniques are developed that upscale saturated conductivity at the support of 0.04 m2 to representative actual infiltration (Ib) for support units (blocks) of 101–104 m2, as a function of steady state rainfall and runon to the block, under Hortonian runoff (infiltration excess overland flow). Parameters in the upscaling techniques represent the surface runoff flow pattern and the spatial probability distribution of saturated conductivity within the 101–104 m2 block. The stochastic upscaling technique represents the spatial process of infiltration and runoff using a simple process-imitating model, estimating Ib using Monte Carlo simulation. The deterministic upscaling technique aggregates these processes by a deterministic function relating rainfall and runon to Ib. The stochastic upscaling technique is shown to be capable to upscale saturated conductivity derived from ring infiltrometers to Ib values of plots (1 m2) corresponding to measured Ib values using rainfall simulators. It is shown that both upscaling techniques can be used to estimate Ib for each time step and each block in transient rainfall–runoff models, giving better estimates of cumulative runoff from a hillslope and a small catchment than model runs that do not use upscaling techniques.  相似文献   

18.
The upscaling of dispersivity in solute transport in heterogeneous aquifers is addressed with a numerical stochastic formulation. This work represents progress toward converting theory into scalable numerical models that can be compared to laboratory experiments. Traditional global assumptions of low variance, ergodicity, single correlation scale, stationarity, and the like are avoided through the use of a flexible Lagrangian numerical, not analytical, framework, which allows assumptions to be local. A method of calculating grid-block upscaled dispersivities is presented. Computational results are obtained for a heterogeneous tank experiment, with reasonable behavior.  相似文献   

19.
The relationship between the longitudinal dispersion (DL) and Peclet number (Pe) is crucial for predicting and simulating tracer through the variable‐aperture fracture. In this study, the roughness of the self‐affine fracture wall was decomposed into primary roughness (relatively large‐scale waviness) and secondary roughness (relatively small‐scale waviness) by a multiscaled wavelet analysis technique. Based on the complete dispersion mechanism (diffusion, macrodispersion, and Taylor dispersion) in the variable‐aperture fracture, three relationships (second‐order, power‐law, and linear relationships) between the DL and Pe were investigated at large and small scales, respectively. Our results showed that the primary roughness mostly controlled the Taylor dispersion mechanism, whereas the secondary roughness was a dominant factor for the macrodispersion mechanism. Increasing the Hurst exponent and removing the secondary roughness led to the decreasing range of Pe where macrodispersion mechanism dominated the solute transport. It was found that estimating the DL from the power‐law relationship based on Taylor dispersion theory resulted in considerable errors, even in the range of Pe where the Taylor dispersion mechanism dominated. The exponent of the power‐law relationship increased as the secondary roughness was removed. Analysing the linear relationship between the DL and Pe revealed that the longitudinal dispersivity αL increased linearly. However, this linear increase became weak as the Taylor dispersion mechanism dominated. In the range of Pe where the macrodispersion mechanism dominated, increasing the Hurst exponent caused the increase of αL and the secondary roughness played a significant role in enhancing the αL. As the Taylor dispersion mechanism dominated, the αL was insensitive to the influence of multiscale roughness in variable‐aperture fractures.  相似文献   

20.
Geochemical reaction rate laws are often measured using crushed minerals in well-mixed laboratory systems that are designed to eliminate mass transport limitations. Such rate laws are often used directly in reactive transport models to predict the reaction and transport of chemical species in consolidated porous media found in subsurface environments. Due to the inherent heterogeneities of porous media, such use of lab-measured rate laws may introduce errors, leading to a need to develop methods for upscaling reaction rates. In this work, we present a methodology for using pore-scale network modeling to investigate scaling effects in geochemical reaction rates. The reactive transport processes are simulated at the pore scale, accounting for heterogeneities of both physical and mineral properties. Mass balance principles are then used to calculate reaction rates at the continuum scale. To examine the scaling behavior of reaction kinetics, these continuum-scale rates from the network model are compared to the rates calculated by directly using laboratory-measured reaction rate laws and ignoring pore-scale heterogeneities. In this work, this methodology is demonstrated by upscaling anorthite and kaolinite reaction rates under simulation conditions relevant to geological CO2 sequestration. Simulation results show that under conditions with CO2 present at high concentrations, pore-scale concentrations of reactive species and reaction rates vary spatially by orders of magnitude, and the scaling effect is significant. With a much smaller CO2 concentration, the scaling effect is relatively small. These results indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. This work demonstrates the use of pore-scale network modeling as a valuable research tool for examining upscaling of geochemical kinetics. The pore-scale model allows the effects of pore-scale heterogeneities to be integrated into system behavior at multiple scales, thereby identifying important factors that contribute to the scaling effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号