首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
黄金水  相松  杨安  王永明 《地球物理学报》2021,64(10):3503-3513
金星在大小、轨道半径等方面与地球非常接近,但现今的观测显示金星在大气、表面温度、重力与地形特征等方面与地球非常不同.对固体金星而言,最显著特征是有火山活动但没有活动的板块构造运动、表面平均大约500±200 Ma的年龄显示金星发生过全球性表面快速更新、重力与地形强相关.本文在简要介绍已有工作的基础上,主要介绍我们基于这些观测特征开展的金星动力学研究,包括现今地幔的对流模式、相变对表面更新的影响、地壳厚度、岩石圈演化与表面更新等研究工作和取得的初步认识.  相似文献   

2.
金星是离地球最近的行星,许多特征与地球类似,但在地质特征方面与地球差异较大.本文简单回顾金星探测的主要科学成果,重点综述金星地质研究的主要进展,包括:金星表面的地形构造、重力场分布、内部结构等特征.在此基础上,归纳提出了金星地质认识中存在的重点问题,主要有金星表面地形的成因问题、表面年龄及表面更新问题、内部结构模型及内部散热等问题,认为这些都是未来金星探测需要考虑解决的科学问题.  相似文献   

3.
利用Megellan号探测器确定的重力场和地形模型资料,进一步分析了金星重力场特征,并利用金星地幔对流模型建立了动力学模型的大地水准面地形比,即动力学模型导纳.然后利用该动力学模型导纳,基于2~40阶大地水准面是由与动力学过程相联系的岩石圈下密度异常产生的假定,在扣除重力场和地形的动力学影响的基础上,利用球面Parker公式反演了金星地壳的厚度.结果显示:金星重力场和地形受到金星地幔动力学过程的强烈影响;金星地壳也对地形产生显著影响;金星地壳厚度变化范围主要集中在28~70 km,Ishtar高原以及Aphrodite高原西部的Ovda和Thetis区域是金星地壳最厚的区域(大于50 km),该区的高地形主要与地壳均衡相关,这与其是古老陆地残留的推测一致.在Beta,Themis,Dione,Eistla,Bell和Lada区域地壳厚度较薄,且与地形无明显相关.特别是在Aphrodite高原东部的Atla和Imdr区域,地壳厚度与周围区域地壳厚度基本一致.这种特征与这些区域的高地形主要是由热柱的动力学过程引起的假定相一致.与包含动力学影响得到的金星地壳厚度相比,扣除动力学影响后得到的金星地壳厚度能更好地反映金星地壳的演化和内部动力学过程.  相似文献   

4.
金星表层年龄和构造活动特点表明其岩石层在最近的地质历史时期经历过广泛的更新.这种全球性的表层改造与其内部热演化历史进程密切相关.如果金星存在相变形成的上、下地幔,依据现今所了解的金星物理性质和参量化的热对流理论,并且考虑金星地幔相变边界层状态对对流的控制作用,我们计算了金星热演化历史.结果表明,金星的热演化历史是一种非单调的冷却过程,在这种非单调的热演化历史进程中,金星地幔会出现大体等周期的翻转.由于参数选取的不同,翻转时金星上、下地幔的温差随时间可能出现稳定变化、逐渐加强、逐渐减弱三种不同演化模式,目前尚不能确定实际金星热演化历史究竟是哪一种模式.金星地幔相变边界层的穿透对流可能是推动其表层岩石层全球性更新的关键,导致其表层火山活动和地表构造以大致500 Ma时间间隔更新和重造.  相似文献   

5.
板块构造是指地球外壳岩石圈块体在地球表面的(水平)运动及其相互作用.自50年前板块构造理论建立以来,对板块运动的动力来源这一问题一直存在争议.早期的观点认为是"自下而上"机制,即板块运动受控于板块之下的地幔对流系统,特别是起源于核幔边界的地幔柱作用于板块底部,促使大陆裂解,并驱动板块运动.而现今较为普遍接受的观点则是"自上而下"机制,即认为板块运动的驱动力主要来源于板块自身的负浮力(即重力大于浮力),板块构造和地幔对流均受控于板块的俯冲作用,因此板块构造又被称为俯冲构造.这一观点得到了众多地质和地球物理观测的支持.进一步研究表明,个别板块增速、减速与单一地幔柱活动在百万年时间尺度具有耦合关系;多个板块内稳定克拉通地区地表隆升、沉积速率与地幔柱相关的岩浆活动在亿年时间尺度存在时空相关性;而全球范围的超大陆聚合、裂解与超级地幔柱活动在二十亿年以来的地质历史时期表现为周期性耦合关系.这些不同时空尺度的耦合现象均表明,板块构造与地幔柱构造在地球演化过程中是紧密联系、相互作用的,地幔柱构造对板块运动产生了不可忽视的影响.因此,需要将板块构造和地幔柱构造这两大地球构造体系加以联合,开展综合分析与研究,才能获得对板块构造和整个地球动力系统运行机制的全面认识.  相似文献   

6.
高精度金星重力场的获取,是金星探测的重要内容.本文利用最新的金星地形和重力模型,通过高通滤波后的残差地形(RTM)并在考虑均衡改正的情况下改进了重力的短波成分,最终提出了一个新的金星重力模型VGM2013,该模型赤道分辨率达10 km量级,大大高于现有的金星重力场模型,最终结果是金星表面重力加速度和重力扰动.研究中同时发现金星在Airy-Heiskanen均衡模型下的全球最优补偿深度为30 km,金星地壳的密度可能小于当前认为的2700~2900 kg·m-3.VGM2013模型的结果可为将来的金星探测器定轨和着陆导航提供参考,作为重力计算的先验模型.但由于该模型没有包含短波重力观测信息,不建议直接用于更小尺度的地质和地球物理解释.  相似文献   

7.
地球是一个多圈层耦合系统,从内部到表面、大气和空间的相互作用,共同塑造了地球的宜居环境. 偶极磁场的产生使地球环境逐渐演变为宜居,正如金星和火星偶极磁场的消失使这两颗行星的环境走向了另一个极端. 地球磁场起源于地核发电机过程,而地核热动力学和化学结构的变化则会导致地磁场的显著改变,导致地磁场的减弱甚至极性倒转,削弱对地...  相似文献   

8.
板块构造的启动时间及其在地球历史时期的演化过程,是地球科学的两大基本挑战.通过一个整体研究方法来分析地球历史时期的构造范式,可以解释自太古宙以来两种范式的板块构造.在这些解释中,早期的热俯冲与晚期的冷俯冲之间存在不同的变形和变质特征.汇聚板块边缘不同特征的区域变质作用记录了这两种不同范式的板块构造,这与太古宙和显生宙地幔温度的差异有关.以蓝片岩相变质作用出现为特征的现代范式板块构造出现在新元古代.这与表明古代范式的板块构造在太古宙早期已经启动的地质证据相吻合.地幔在地球演化史上的不断冷却可解释幔源熔体地球化学特征随时间的演化规律,而这个过程可能让无数小的板片数量逐渐减少并演变成更大的板片,改变洋壳、增生-碰撞造山带中岩石圈的厚度和保留程度,从而导致地球表面氧化作用,为孕育生命提供合适环境.  相似文献   

9.
地面观测到的物理场变化可表示成X=X1+X2+X3。式中,X1和X2分别为地球内部过程和外部过程决定的场分量,X3为干扰量(技术和仪器等的干扰)。7.1磁场变化与太阳系行星旋转周期的关系太阳系包括9颗大行星,根据行星形成特性分为两种主要类型:一是类地行星,除地球外,包括水星、金星、火星;二是木星类行星(巨星),包括木星、土星、天王星和海王星。表7.1列出了行星的若干特征。由表可见,地球和火星自转周期几乎一样,火星昼夜比地球昼夜长41分钟,金星和水星自转极慢,金星周期为584个地球日,水星为116个地球日。类地行星平均加权密度为5.14g/cm3,巨…  相似文献   

10.
地球内部物质组成的研究涉及对地表现象的深入解释,与地球动力学、地球热结构及宇宙演化有着密切的关系.本文综述了这方面的研究结果及近期的进展,指出两种地幔模型的主要分歧点,讨论了地幔中的主要相变及与间断面的关系,对今后研究提出四点意见.  相似文献   

11.
Geophysical arguments against plate tectonics in a hotter Earth, based on buoyancy considerations, require an alternative means of cooling the planet from its original hot state to the present situation. Such an alternative could be extensive flood volcanism in a more stagnant-lid like setting. Starting from the notion that all heat output of the Earth is through its surface, we have constructed two parametric models to evaluate the cooling characteristics of these two mechanisms: plate tectonics and basalt extrusion/flood volcanism. Our model results show that for a steadily (exponentially) cooling Earth, plate tectonics is capable of removing all the required heat at a rate of operation comparable to or even lower than its current rate of operation, contrary to earlier speculations. The extrusion mechanism may have been an important cooling agent in the early Earth, but requires global eruption rates two orders of magnitude greater than those of known Phanerozoic flood basalt provinces. This may not be a problem, since geological observations indicate that flood volcanism was both stronger and more ubiquitous in the early Earth. Because of its smaller size, Mars is capable of cooling conductively through its lithosphere at significant rates, and as a result may have cooled without an additional cooling mechanism. Venus, on the other hand, has required the operation of an additional cooling agent for probably every cooling phase of its possibly episodic history, with rates of activity comparable to those of the Earth.  相似文献   

12.
This study presents the results of numerical simulations of a model for lithospheremantle coupling in a terrestrial type planet. To first order, a geologically active terrestrial type planet may consist of a metallic core, silicate mantle and lithosphere, with the lithosphere being rheologically different from the mantle. Therefore we have developed a numerical model consisting of a thin non-Newtonian fluid hoop that is dynamically coupled to a thick Newtonian fluid cylindrical annulus. Thus the rheological dichotomy between mantle and lithosphere is built into the model. Time-dependent calculations show the existence of at least two regimes of behaviors. In one regime, the behavior of the hoop switches between periods characterized by low or high speeds, in response to changes in convective vigor and planform. This regime may apply to the planet Venus where the available evidence indicates that prior to 500 myr ago, the planet was resurfaced on a time scale of <100 myr. Since that time, large-scale tectonic activity on Venus has been sharply curtailed. In the other regime, which is more like plate tectonics on Earth, the hoop speeds rise and fall on short time scales.  相似文献   

13.
Plate tectonics describes the horizontal motions of lithospheric plates,the Earths outer shell,and interactions among them across the Earths surface.Since the establishment of the theory of plate tectonics about half a century ago,considerable debates have remained regarding the driving forces for plate motion.The early"Bottom up"view,i.e.,the convecting mantledriven mechanism,states that mantle plumes originating from the core-mantle boundary act at the base of plates,accelerating continental breakup and driving plate motion.Toward the present,however,the"Top down"idea is more widely accepted,according to which the negative buoyancy of oceanic plates is the dominant driving force for plate motion,and the subducting slabs control surface tectonics and mantle convection.In this regard,plate tectonics is also known as subduction tectonics."Top down"tectonics has received wide supports from numerous geological and geophysical observations.On the other hand,recent studies indicate that the acceleration/deceleration of individual plates over the million-year timescale may reflect the effects of mantle plumes.It is also suggested that surface uplift and subsidence within stable cratonic areas are correlated with plumerelated magmatic activities over the hundred-million-year timescale.On the global scale,the cyclical supercontinent assembly and breakup seem to be coupled with superplume activities during the past two billion years.These correlations over various spatial and temporal scales indicate the close relationship and intensive interactions between plate tectonics and plume tectonics throughout the history of the Earth and the considerable influence of plumes on plate motion.Indeed,we can acquire a comprehensive understanding of the driving forces for plate motion and operation mechanism of the Earth's dynamic system only through joint analyses and integrated studies on plate tectonics and plume tectonics.  相似文献   

14.
The gravity field and crustal thickness of Venus   总被引:1,自引:0,他引:1  
The gravity and topography of Venus obtained from observations of the Magellan mission, as well as the gravity and topography from our numerical mantle convection model, are discussed in this paper. We used the hypothesis that the geoid of degrees 2–40 is produced by sublithospheric mantle density anomalies that are associated with dynamical process within the mantle. We obtained the model dynamical admittance(the geoid topography ratio based on a convection model) by a numerical simulation of the Venusian mantle convection, and used it to correct the dynamical effect in the calculation of crustal thickness. After deducting the dynamical effect, the thickness of the Venusian crust is presented. The results show that the gravity and topography are strongly correlated with the Venusian mantle convection and the Venusian crust has a significant influence on the topography. The Venusian crustal thickness varies from 28 to 70 km. Ishtar Terra, and Ovda Regio and Thetis Regio in western Aphrodite Terra have the highest crustal thickness(larger than 50 km). The high topography of these areas is thought to be supported by crustal compensation and our results are consistent with the hypothesis that these areas are remnants of ancient continents. The crustal thickness in the Beta, Themis, Dione, Eistla, Bell, and Lada regiones is thin and shows less correlation with the topography, especially in the Atla and Imdr regiones in the eastern part of Aphrodite Terra. This is consistent with the hypothesis that these highlands are mainly supported by mantle plumes. Compared with the crustal thickness calculated with the dynamical effect, our results are more consistent with the crust evolution and internal dynamical process of Venus.  相似文献   

15.
When plate tectonics emerged and how it has evolved over Earth history are two of the most fundamental challenges in Earth Sciences. These questions are tackled using a holistic approach to analyze tectonic styles in the history of Earth, giving rise to the interpretation of two styles of plate tectonics since the Archean. In these interpretations, there are different styles of deformation and metamorphism between early times dominated by warm subduction, and later times preferring cold subduction.The two styles of plate tectonics are recorded by different properties of regional metamorphism at convergent plate boundaries,which are linked to the differences in mantle temperature between the Archean and Phanerozoic. A transition to modern plate tectonics is recorded by the signature of blueschist facies metamorphism developed in the Neoproterozoic. This is consistent with geological evidence for the operation of ancient plate tectonics since the early Archean. The temporal cooling of the mantle explains the geochemical trends of mantle-derived melts, the likely change from numerous small plates to fewer but larger plates,changes in thickness and preservation of oceanic crust and lithosphere in accretionary and collisional orogens, and led to the oxygenation of the surface environment providing the environments needed to foster life.  相似文献   

16.
Mass heterogeneities in the earth's mantle are retrieved from the gravity data and the topography of the core-mantle boundary as well as the topography of the earth's surface. A mantle circulation induced by the heterogeneities is modelled by solving the Stokes problem for incompressible Newtonian fluid. The derived models of mantle motions correlate well with the plate tectonics and point at a close relation between the surface tectonic activity and the processes in the vicinity of the core-mantle boundary.  相似文献   

17.
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.  相似文献   

18.
We present a broad-based review of the observational evidence that pertains to or otherwise implies solid-state convection to be occurring (or have occurred) in the interiors of the terrestrial planets.For the Earth, the motion of the plates is prima facie evidence of large-scale mantle convection. Provided we understand upper-mantle thermal conductivity correctly, heat flow beneath the old ocean basins may be too high to be transported conductively from the upper mantle through the base of the lithosphere and therefore convection on a second smaller scale might be operative. The horizontal scale of plate dimensions implies, due to typical cell aspect ratios observed in convection, that the motion extends to the core-mantle boundary. Improved global data coverage and viscoelastic modeling of isostatic rebound due to Pleistocene deglaciation imply a uniform mantle viscosity, and thus indicate that whole-mantle convection could exist. Additionally, there is some seismic evidence of lithospheric penetration to depths deeper than 700 km. We discuss some salient features and assumption boundedness of arguments for convection confined to the upper mantle and for convection which acts throughout the mantle since the vertical length scale has a profound effect upon the relevance of geophysical observations. The horizontal form of mantle convection may be fully three-dimensional with complex planform and, therefore, searching for correlative gravity patterns in the ocean basins may not be useful without additional geophysical constraints. Many long-wavelength gravity anomalies may arise from beneath the lithosphere and must be supported dynamically, although thermal convection is not a unique explanation. Topography is an additional geophysical constraint, but for wavelengths greater than a few hundred kilometers, a general lack of correlation exists between oceanic residual gravity and topography, except at specific locations such as Hawaii. Theoretical calculations predict a complex relationship between these two observational types. Oceanic gravity data alone shows no regular planform and there is no correlation with any small-scale convective pattern predicted by laboratory experiments.All of the observational evidence argues against Martian plate tectonics occurring now or over much of the history of this planet, but lack of plate tectonics is not an argument against interior convection. The Tharsis uplift on Mars may have resulted from convective processes in the mantle, and the present-day gravity anomaly associated with Tharsis must be supported by the finite strength of the lithosphere or by mantle convection. Stresses imparted by the present topographic load would be greater than a kilobar, in excess of long-term finite strength. Observed fracture patterns are probably a direct result of this load, and the key question concerns the level of resultant strain relief. The global topographic and geomorphic dichotomy between the northern and southern hemisphere required a solid-state flow process to create the accompanying center-of-figure to center-of-mass offset.Lunar heat flow values, in analogy with oceanic heat flow on the Earth, strongly imply a convective mechanism of heat transport in the interior which, based on seismic Q values, is limited to the lower mantle. The presence of moonquakes in this region does not preclude solid-state convective processes. Lunar conductivity profiles provide no information on convection because of the difficulty in conductivity modeling, uniqueness of models, and the uncertainty in the conductivity-temperature relationship. The excess oblateness of the lunar figure over the hydrostatic value does not require convective support; in fact, such a mechanism is unlikely.The presence of a dipole magnetic field on Mercury does not provide a constraint on mantle convection unless its existence can be inextricably linked to a molten core. The non-hydrostatic shape of the equatorial figure, required for the observed 32 resonance between Mercury's rotational and orbital periods, is most likely related to surface processes, as opposed to convection. The 3n2 resonance implies escape from a 2n resonance and, therefore, is related to the question of a molten core. Further dynamical data is needed to constrain interior models.Interpretation of limited radar imagery for the surface of Venus is enigmatic in terms of plate tectonics and therefore interior convection. Linear tensional and possibly compressional features are observed, but there are also crustal regions which appear to show large impact structures and are thus geologically old and may not have been recycled.  相似文献   

19.
The formulas that allow, within the quadratic approximation, for the contribution of the anomalous masses, distributed along the height relative to the reference ellipsoid, in the Stokes parameters are derived. It is shown that the contribution of the quadratic terms is largest and commensurate, by the order of magnitude, with the linear contribution if the anomalous masses have a dipole distribution along the height. The quadratic contribution is particularly significant for Mars, where the span of relative variations in the surface topography is by an order of magnitude larger than in the Earth. The problem is solved and the method is developed for finding the depths of compensation for the topographical harmonics of different order and degree. The most probable levels of compensation for topographic irregularities are determined by the analysis of the distribution histograms for the depths of compensation. The maps of lateral distributions of the compensating masses at the selected levels are calculated. It is shown that the observed anomalous structures generate the anomalies in the internal gravity field, which may serve as a cause for the convective motion in the mantle and core of the planet. Besides, the probable nonisostatic vertical stresses in the crust and mantle of the Earth and Mars are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号