首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
基于接触价键的颗粒材料微观临界状态   总被引:1,自引:0,他引:1  
张洪武  秦建敏 《岩土力学》2008,29(4):865-870
用颗粒离散元法,分别对二维圆形、椭圆形颗粒体进行了双轴压缩数值模拟。微观尺度的变形是基于孔隙胞元和其中的变形来计算的,而单个孔隙胞元的变形通过周围颗粒的相对运动来计算。针对该方法提出了以接触价键(每个孔隙胞元的边数)来表征颗粒材料微观临界状态的理论。为了定义临界接触价键的极限值,分别讨论了摩擦系数较大、较小时的两种情况。文中给出了微观几何织构(包括接触价键、孔隙胞元的形状、孔隙比)随压缩变形的演变过程,比较了不同颗粒形状、颗粒间摩擦系数以及颗粒体的固结压力对颗粒体的微观力学性能的影响。计算结果表明,颗粒材料的微观临界状态并不是可以唯一表征的,而是受围压、摩擦系数,颗粒形状等参数的共同影响。  相似文献   

2.
人工胶结砂土力学特性的离散元模拟   总被引:1,自引:1,他引:0  
蒋明镜  孙渝刚 《岩土力学》2011,32(6):1849-1856
采用离散单元法(DEM)对胶结砂土力学特性进行模拟。将基于室内试验测得的理想胶结颗粒接触力学响应引入到开发的二维离散元程序(NS2D)中,模拟胶结砂土颗粒间的胶结作用。对不同胶结强度和围压的胶结砂土进行平面应变双轴压缩试验模拟,并将模拟结果与Wang和Leung[1]提供的人工胶结砂土的试验结果进行比较。最后对数值模拟中胶结试样的微观力学响应(接触力链、胶结点破坏率和位移场)进行分析。结果表明,离散元数值模拟能够有效地反映胶结砂土的主要力学特性,相比同一初始孔隙比的无胶结松散砂土,胶结砂土将具有更高的强度,应力-应变关系呈应变软化,体变为先剪缩后剪胀,且两者的差异随胶结强度的增大和围压的减小而越趋显著。此外,胶结砂土宏观力学响应(应力-应变关系和剪胀性)与其微观力学响应密切相关。  相似文献   

3.
周博  黄润秋  汪华斌  王剑锋 《岩土力学》2014,35(9):2709-2716
颗粒破碎是影响砂土宏-微观力学性质的重要因素。采用改进型的可破碎颗粒生成方法,通过设置不同强度的平行黏结键模拟不同强度的可破碎颗粒,并借用基于离散元方法(DEM)的双轴压缩试验详细研究了可破碎性土在剪切过程中颗粒破碎率/平均破碎程度、微观尺度上的能量耗散分配机制、剪切破碎带形成以及断裂键各向异性的演化过程。结果表明,颗粒破碎强烈地影响砂土在宏观尺度上的力学响应、颗粒尺度上的能量分配机制以及剪切过程中的颗粒的组织结构演化。颗粒破碎主要影响小应变阶段各能量耗散元的分配机制,而在临界状态下剪切带内的颗粒摩擦以及破碎耗能是消耗外界功的主要因素。数值结果亦表明,颗粒的破碎伴随着整个剪切过程,但破碎率的增长速度却随着剪切应变的发展逐渐降低。另外,在剪切过程中,对于低破碎性土,在临界状态下剪切破碎带基本形成,带内的原有组织结构被打乱,断裂键的各向异性也随之弱化。  相似文献   

4.
蒋明镜  孙渝刚  张伏光 《岩土力学》2013,34(7):2043-2050
采用离散元法(DEM)研究胶结岩土材料在不同加载条件下的结构破损规律。首先,基于微观力学理论,考虑胶结岩土材料颗粒间胶结特性,给出表征结构性损伤的破损参数式。该式具有微观物理意义,但不能直接用于建立宏观本构模型。其次,采用二维离散元源程序NS2D模拟等向压缩、等应力比压缩以及双轴压缩试验,分析破损参数在不同加载条件下随宏观力学变量(体积应变和剪应变)的演变规律。最后,根据模拟结果提出破损参数数学表达式,其为大主应变的函数。研究结果表明:胶结强度、应力比以及围压均在一定程度上影响了数值试样的结构破损规律。在等向压缩和等应力比压缩试验中,容易用函数式描述数值试样破损参数随体积应变或偏应变的演变规律;而在双轴压缩条件下,由于数值试样有剪胀特性,破损参数随体积应变的演变规律则不易描述。建议的破损参数数学表达式能够较好地描述数值试样在不同加载条件下结构破损规律。  相似文献   

5.
填埋场衬垫系统中,土与土工膜界面剪切强度较低,易造成失稳破坏。目前国内外学者主要采用室内试验对土与土工膜界面的宏观剪切特性进行研究,而对界面剪切特性的细观研究较少。为了从细观角度研究土与土工膜界面的剪切特性,本文采用EsyS-particle程序对土工膜与土界面直剪试验进行了离散元数值模拟分析。采用摩擦接触模型模拟砂土;采用黏结模型颗粒模拟土工膜,通过紧密排列土工膜颗粒以模拟土工膜的光滑表面。通过室内拟合试验,选取和校准材料的细观参数。分析结果表明,离散元模型能较好的模拟界面应力-应变关系;剪切带的厚度约为两倍平均土颗粒直径;剪切带中的土颗粒发生较大位移,孔隙比增大,而剪切带之外的土颗粒位移和孔隙比变化较小;随着剪切位移的增加,颗粒间接触力逐渐向左端集中,力链方向由垂直逐渐倾斜。  相似文献   

6.
秦建敏  迟璐璐 《岩土力学》2013,34(5):1508-1514
剪胀性是颗粒材料在加载过程中表现出来的重要变形特性。以孔隙胞元描述颗粒材料内部结构的最小单元,通过对单个孔隙胞元进行剪切受力分析,探讨了剪切过程中颗粒材料体积的改变对应力比和单个孔隙胞元形状的依赖关系,解释了排列密实的颗粒材料在剪切过程中先压缩后剪胀的微观机制。用离散元数值模拟得到了在双轴剪切过程中单个孔隙胞元形状以及孔隙胞元体积变形的演化过程。离散元数值结果表明,加载过程中孔隙胞元形状由初始各向同性到沿大主应力方向变大变长、体积变形先压缩后膨胀,并且体积变形在加载过程中存在局部化现象,体积变化大的孔隙胞元在较大变形时,排列成倾斜的窄带。综合孔隙胞元的受力分析和离散元数值结果表明,致密排列颗粒材料的剪胀性与微观尺度上孔隙胞元的几何结构及其内部的力链传递方式密切相关。  相似文献   

7.
为了揭示新型注浆成型螺纹桩的承载力特性及桩土接触特性,利用二维离散元(DEM)数值分析不同螺纹间距的桩-土接触特性。在既有螺纹桩-土界面的大型直剪试验方案的基础上,建立模拟试验的离散元模型。通过模拟试验的伺服加载机制,实现在接触面法向上施加恒定的压力,然后水平移动接触面底板进行剪切,得到不同螺纹数下剪切位移与剪切应力的关系曲线、孔隙比分布图和力链传力机制。离散元分析表明,存在一个最优的螺纹间距,使接触面的极限抗剪强度最大;螺纹桩桩土接触面周围土体会出现一个拱形的破坏面,该微观机制与室内试验观察一致。  相似文献   

8.
基于三维颗粒离散单元法,赋予颗粒相应的细观参数,并采用黏结发生在接触颗粒间有限范围内的模型来考虑冻土颗粒中冰的胶结作用,建立了冻结黏土三维离散元数值模型.在相同围压、不同温度和相同温度、不同围压下对冻结黏土的室内三轴试验进行数值模拟,对比了数值试验与室内测试的应力-应变曲线,两者吻合较好.数值模拟结果表明:围压增大会使得接触黏结逐渐失效,在剪切带中胶结冰的破坏区域将增大,而温度的降低则会产生相反结果,这些微观变化都将对冻结黏土的宏观力学变形产生较大影响,同时,细观参数对温度的依赖性也很明显.冻结黏土三轴试验微观变形离散元模拟思路及方法可为今后运用离散单元法研究冻土力学行为提供一定的参考.  相似文献   

9.
李博  黄茂松 《岩土力学》2016,37(4):1161-1170
为分析砂土在复杂应力条件下的剪切力学特性,采用商业离散元软件PFC3D对单粒组中密砂的空心扭剪试验进行了仿真模拟,分析了数值试样的应力-应变关系,研究了不同剪切方向下离散介质的强度、体积应变特性以及中主应力比对它们的影响,再现了力链在加载过程中的演化,并对剪切带的倾角做了深入分析。同时,从细观上看,以颗粒接触数和纯转动率变量为中心,观察了试样内部颗粒的运动状态,对比了不同剪切方向下剪切带内外颗粒接触数与纯转动位移的变化。最后,将数值试验结果与已有的室内试验结果进行了对比。此研究实现了复杂应力条件下空心扭剪试样的三维离散元模拟,加深了对空心扭剪试验过程和结果的理解和解释。  相似文献   

10.
颗粒破碎对颗粒材料宏观力学行为有重要影响。 结合Hardin的破碎经验公式,将表征破碎程度的破碎参量与Cosserat连续体的内部长度参数相关联,形成一个基于Cosserat连续体且能考虑颗粒破碎的弹塑性模型。数值算例主要考察了颗粒破碎对颗粒材料承载能力、塑性应变及局部化行为的影响,数值结果表明,颗粒破碎主要发生在剪切带内,颗粒破碎使得剪切带明显变窄且剪切带内外等效塑性应变梯度明显增大。  相似文献   

11.
The numerical simulation of rapid landslides is quite complex mainly because constitutive models capable of simulating the mechanical behaviour of granular materials in the pre‐collapse and post‐collapse regimes are still missing. The goal of this paper is to introduce a constitutive model capable of capturing the response of dry granular flows from quasi‐static to dynamic conditions, in particular when the material experiences a sort of solid‐to‐fluid phase transition. An ideal assembly of identical spheres under simple shear conditions is considered. In the constitutive model, void ratio and granular temperature have been chosen as state variables, and both shear and normal stresses are computed as the sum of two contributions: the quasi‐static one and the collisional one. The former is determined by using a perfect elasto‐plastic model including the critical state concept, while the latter is derived from the kinetic theory of granular gases. The evolution of the granular temperature, fundamentally governing the material phase transition, is obtained by imposing the kinetic fluctuating energy balance. The constitutive relationship has been integrated, under both constant pressure and constant volume conditions, and the influence of shear strain rate, initial void ratio and normal pressure on the mechanical response has been investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Liquefaction is associated with the loss of mean effective stress and increase of the pore water pressure in saturated granular materials due to their contractive tendency under cyclic shear loading. The loss of mean effective stress is linked to loss of grain contacts, bringing the granular material to a “semifluidized state” and leading to development and accumulation of large cyclic shear strains. Constitutive modeling of the cyclic stress-strain response in earthquake-induced liquefaction and post-liquefaction is complex and yet very important for stress-deformation and performance-based analysis of sand deposits. A new state internal variable named strain liquefaction factor is introduced that evolves at low mean effective stresses, and its constitutive role is to reduce the plastic shear stiffness and dilatancy while maintaining the same plastic volumetric strain rate in the semifluidized state. This new constitutive ingredient is added to an existing critical state compatible, bounding surface plasticity reference model, that is well established for constitutive modeling of cyclic response of sands in the pre-liquefaction state. The roles of the key components of the proposed formulation are examined in a series of sensitivity analyses. Their combined effects in improving the performance of the reference model are examined by simulating undrained cyclic simple shear tests on Ottawa sand, with focus on reproducing the increasing shear strain amplitude as well as its saturation in the post-liquefaction response.  相似文献   

13.
This paper explores the possibility of using well-accepted concepts—Mohr-Coulomb-like strength criterion, critical state, existence of a small strain elastic region, hyperbolic relationship for representing global plastic stress–strain behaviour, dependence of strength on state parameter and flow rules derived from the Cam-Clay Model—to represent the general multiaxial stress–strain behaviour of granular materials over the full range of void ratios and stress level (neglecting grain crushing). The result is a simple model based on bounding surface and kinematic hardening plasticity, which is based on a single set of constitutive parameters, namely two for the elastic behaviour plus eight for the plastic behaviour, which all have a clear and easily understandable physical meaning. In order to assist the convenience of the numerical implementation, the model is defined in a ‘normalized’ stress space in which the stress–strain behaviour does not undergo any strain softening and so certain potential numerical difficulties are avoided. In the first part the multiaxial formulation of the model is described in detail, using appropriate mixed invariants, which rationally combine stress history and stress. The model simulations are compared with some experimental results for tests on granular soils along stress paths lying outside the triaxial plane over a wide range of densities and mean stresses, using constitutive parameters calibrated using triaxial tests. Furthermore, the study is extended to the analysis of the effects induced by the different shapes of the yield and bounding surfaces, revealing the different role played by the size and the curvature of the bounding surface on the simulated behaviour of completely stress- and partly strain-driven tests. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
The concept that the flow of granular materials is governed by shear on certain critical planes is used to formulate an elastic–plastic model. When the elastic strains are neglected, the Double Shearing model becomes identical to the rigid-plastic model of de Josselin de Jong which he named the Double Sliding model. After a discussion of the model, the small strain formulation is used to describe general boundary-value problems. A comparison is then made between the coaxial Mohr–Coulomb yielding and the Double Shearing model on the basis of several numerical simulations. The non-coaxiality of the axes of principal plastic strain rate and principal stress in the Double Shearing model leads to essentially different behaviour for stress rotations in comparison to the coaxial model. The Double Shearing model predicts in general lower limit loads because, for a given state of stress, it allows for several possible directions of plastic flow rather than a unique direction which derives from a plastic potential.  相似文献   

15.
一类新型的散粒型土体本构理论   总被引:1,自引:0,他引:1  
岑威钧  朱岳明  王修信 《岩土力学》2007,28(9):1801-1806
详细地介绍了国际上近30才发展起来的具有独特建模思想的一类新型的散粒型土体本构建模理论--亚塑性本构理论。将该理论与经典的弹塑性理论进行比较后发现,亚塑性理论的本构表达式自动隐含了弹塑性理论中相对应的一些基本概念和假定,无需额外引入,因此增加了模型的客观性。以Gudehus-Bauer亚塑性模型为例,分析了模型在临界状态时的本构特征。此外,通过三轴试验和循环剪切试验的亚塑性数值模拟表明,亚塑性本构模型能很好地反映无黏性散粒型土体的非弹性、非线性及剪胀(剪缩)性等主要应力-应变特性。  相似文献   

16.
The critical state is significant to the mechanical behaviors of granular materials and the foundation of the constitutive relations. Using the discrete element method (DEM), the mechanical behaviors of granular materials can be investigated on both the macroscopic and microscopic levels. A series of DEM simulations under true triaxial conditions have been performed to explore the critical state and dilatancy behavior of granular materials, which show the qualitatively similar macroscopic responses as the experimental results. The critical void ratio and stress ratio under different stress paths are presented. A unique critical state line (CSL) is shown to indicate that the intermediate principal stress ratio does not influence the CSL. Within the framework of the unique critical state, the stress–dilatancy relation of DEM simulations is found to fulfill the state-dependent dilatancy equations. As a microscopic parameter to evaluate the static determinacy of the granular system, the redundancy ratio is defined and investigated. The results show that the critical state is very close to the statically determinate state. Other particle-level indexes, including the distribution of the contact forces and the anisotropies, are carefully investigated to analyze the microstructural evolution and the underlying mechanism. The microscopic analysis shows that both the contact orientations and contact forces influence the mechanical behaviors of granular materials.  相似文献   

17.
In this paper, steady-state conditions for ideal monodisperse dry granular materials are both theoretically and numerically analysed. A series of discrete element (DEM) numerical simulations have been performed on a periodic cell by imposing stress paths characterized by different Lode angles, pressures, and deviatoric strain rates. The dependence of the material response on both inertial number and loading path has been discussed in terms of void ratio, fabric, and granular temperature. DEM numerical results have been finally compared with the prediction of an already conceived model based on both kinetic and critical state theories, here suitably modified to account for three-dimensional conditions.  相似文献   

18.
Hu  Nian  Yu  Hai-Sui  Yang  Dun-Shun  Zhuang  Pei-Zhi 《Acta Geotechnica》2020,15(5):1125-1151

This paper presents a fabric tensor-based bounding surface model accounting for anisotropic behaviour (e.g. the dependency of peak strength on loading direction and non-coaxial deformation) of granular materials. This model is developed based on a well-calibrated isotropic bounding surface model. The yield surface is modified by incorporating the back stress which is proportional to a contact normal-based fabric tensor for characterising fabric anisotropy. The evolution law of the fabric tensor, which is dependent on both rates of the stress ratio and the plastic strain, rules that the material fabric tends to align with the loading direction and evolves towards a unique critical state fabric tensor under monotonic shearing. The incorporation of the evolution law leads to a rotational hardening of the yield surface. The anisotropic critical state is assumed to be independent of the initial values of void ratio and fabric tensor. The critical state fabric tensor has the same intermediate stress ratio (i.e. b value) and principal directions as the critical state stress tensor. A non-associated flow rule in the deviatoric plane is adopted, which is able to predict the non-coaxial flow naturally. The stress–strain relation and fabric evolution of model predictions show a satisfactory agreement with DEM simulation results under monotonic shearing with different loading directions. The model is also validated by comparing with laboratory test results of Leighton Buzzard sand and Toyoura sand under various loading paths. The comparison results demonstrate encouraging applicability of the model for predicting the anisotropic behaviour of granular materials.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号