首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《山地科学学报》2020,17(8):1974-1988
In an era of climate change,the availability of empirical data on alpine summit vegetation in the Himalaya is still scarce.Here we report the assessment of alpine summit flora in Gulmarg Wildlife Sanctuary,Kashmir Himalaya.We employed a globally standardized Multi-Summit Approach and four spatially isolated summits spanning an elevation gradient of 210 m(between 3530-3740 m a.s.l.) from natural treeline to nival zone were studied.Sampling of the summits was carried out in the year 2018 to collect floristic data together with records of soil temperature.A total of 142 vascular plant species were recorded in the sampled summits.Majority of the species were of herbaceous growth form and with perennial life span.Based on Raunkiaer's life form,hemicryptophytes were the most dominant followed by therophytes and phanerophytes.The summit flora showed the predominance of narrow-endemic species,with broad-and non-endemics declining with elevation.A significant relationship between growth form,Raunkiaer's life form,and the degree of endemism with elevation was observed.Both species diversity and soil temperature showed a monotonic decrease with increasing elevation.Interestingly,soil temperature clearly determined the magnitude of species diversity on the summits.Furthermore,based on floristic composition,the lowest summit had the highest dissimilarity with the rest of the summits.The present study employed globally standardized protocol to scientifically assess the patterns of plant diversity on the alpine mountain summits of Kashmir Himalaya,which in turn has wide implications towards long-term monitoring of climate change impact on alpine biodiversity in the rapidly warming Himalaya.  相似文献   

2.
Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA),this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Basin,which is situated in the easternmost end of the Tianshan Mountains,Xinjiang Uygur Autonomous Region,China.For the zonal vegetation,community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors.The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude,soil pH and soil salt content.With increasing elevation,the soil pH and total salt content decrease but the contents of soil organic matter,soil water,total nitrogen and total phosphorus increase gradually.In the CCA ordination diagrams,the sample plots and main species can be divided into five types according to their adaptations to the environmental factors.Type I is composed of desert vegetation distributed on the low mountains,hills,plains and deserts below an elevation of 1900 m;type II is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m,and includes steppe desert,desert steppe and wetland meadow;type III is very simply composed of only salinized meadow;type IV is distributed above an elevation of 2300 m,containing mountain steppe,meadow steppe,subalpine meadow and alpine meadow;type V only contains salinized meadow.The results show that with increasing elevation,species combination changes from the xerophytic shrubs,semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.  相似文献   

3.
The objective of this study was to explore vegetation adaptability in a changing afro-alpine moorland terrestrial ecosystem on Mt. Rwenzori and to determine whether there were any links with response of vegetation to glacier recession. We analyzed the composition and distribution of plant species in relation to soils, geomorphic processes, and landscape positions in the Alpine zone. To accomplish this objective, archival data sources and published reports for this ecosystem were reviewed. A field trip was conducted in 2010 to study in detail seven vegetation sampling plots that were systematically selected using GIS maps and a nested-quadrat sampling design framework along an altitudinal gradient in the lower and upper alpine zones. Using these sampling plots, 105 vegetation and 13 soil samples were assessed in the alpine zone. Soil samples were taken for laboratory testing and analysis. The results show statistically significant differences in p H, OM, N, P, Ca, Mg, and K pools between soils samples drawn from the lower and upper alpine sites(p 0.0033). Furthermore, we observed a significant vegetation formation with numerous structural forms, but there was a limited diversity of species. The mostsignificant forms included Alchemilla carpets, Bogs, Dendrosenecio woodland, and Scree slopes. The lower alpine area(3500–3900 masl) had a more diverse plant species than other areas, especially Alchemilla argyrophylla and Dendrosenecio adnivalis species that were evident due to well-drained deeper soils. The Alchemilla subnivalis were evident at a higher altitude of above 4000 masl. Shifts in the Astareceae(e.g. Senecio species) were particularly prominent even on recently deglaciated areas. The spatial variations of species distribution, structure, and composition suggest there are serious implications in terms of ecosystem adaptability, resilience, and stability that require further evaluation.  相似文献   

4.
At a global scale, tree growth in alpine treeline ecotones is limited by low temperatures. At a local scale, however, tree growth at its upper limit depends on multiple interactions of influencing factors and mechanisms. The aim of our research was to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors in a near-natural Himalayan treeline ecotone. Soil samples of different soil horizons, litter, decomposition layers, and foliage samples of standing biomass were collected in four altitudinal zones along three slopes, and were analysed for exchangeable cations and nutrient concentrations, respectively. Additionally, soil and air temperature, soil moisture, precipitation, and tree physiognomy patterns were evaluated. Both soil nutrients and foliar macronutrient concentrations of nitrogen (N), magnesium (Mg), potassium (K), and foliar phosphorus (P) decrease significantly with elevation. Foliar manganese (Mn) concentrations, by contrast, are extraordinarily high at high elevation sites. Potential constraining factors on tree growth were identified using multivariate statistical approaches. We propose that tree growth, treeline position and vegetation composition are affected by nutrient limitation, which in turn, is governed by low soil temperatures and influenced by soil moisture conditions.  相似文献   

5.
Introduction High mountain ecosystems are comparatively thrilling and sensitive at least at the upper elevation levels, and are determined by abiotic climate related ecological factors. Therefore, the ecosystems at the low temperature limits of plant life are generally considered to be particularly sensitive to climate changes (Koerner 1999). As temperature is a key factor for high mountain plants (Koerner and Larcher 1988, Gottfried et al. 1998), an upward migration of species must be conse…  相似文献   

6.
The study intended to describe the alpine vegetation of a protected area of the northwestern Himalaya and identify the important environmental variables responsible for species distribution. We placed random plots covering different habitats and altitude to record species composition and environmental variables. Vegetation was classified using hierarchical cluster analysis and vegetation-environment relationships were evaluated with Canonical Correspondence Analysis. Four communities, each in alpine shrub and meadows were delineated and well justified in the ordination plots. Indicator species for the different communities were identified. Maximum species richness and diversity were found in community IV among shrub communities and community II among the meadows. Studied environmental variables explained 61.5% variation in shrub vegetation and 59.8% variation in meadows. Soil variables explained higher variability (∼35%) than spatial variables (∼21%) in both shrubs and meadows. Altitude, among the spatial variables and carbon/nitrogen ratio and nitrogen among the soil variables explained maximum variation. About 40% variations left unexplained. Latitude and species diversity among the other variables had significant correlation with ordination axes. Study showed that altitude and C/N ratio played a significant role in species composition. Extensive sampling efforts and inclusion of other non-studied variables are also suggested for better understanding.  相似文献   

7.
The high alpine and subalpine vegetation of Dinaric Alps is very diverse.These are conditional on genuine patterns of development of the geological substrate,climate,soil and terrain on the mountain world,which are interconnected and spatially,and ecologically away.Also,today high mountain vegetation is extremely important indicator of global changes.In this area are many refugia of glacial biodiversity.Very illustrative example for understanding the specific forms of ecological diversity is high alpine vegetation in the area of the Balkan Peninsula.Vegetation of alpine belt of Western Balkans and Bosnia and Herzegovina is differed by extremely high level of biological and ecological diversity.Climatogenous vegetation are alpine and sub-alpine pastures above of timberline,then extra zonal forms of vegetation-glaciers,rock creeps,breaches of rocks,alpine springs,marsh,and tall greenery.This vegetation is dominant determinant of alpine ecosystems that creates their unique physiognomy and also enables prime production of biomass.It is different with extraordinary floral richness,especially in a number of endemic species and glacier relicts that are included in a large number of phytocoenoses,many of which are of endemic.In syntaxonomic sense,alpine vegetation is differentiated into 10 classes:Elyno-Seslerietea,Juncetea trifidi,Salicetea herbaceae,Thalspietea rotundifolii,Asplenietea trichomanis,and Scheuchzerio-Caricetea fuscae,Montio-Cardaminetea,Loiseleurio-Vaccinietea,Mulgedio-Aconitetea and Molinio-Arrhenatheretea.These classes are differentiated into 20 vegetation orders,38 alliances and 190 associations and sub-associations.In total,that is 60 % of communities of total vegetation diversity of Bosnia and Herzegovina,and 12.5% of classes of highest syntaxonomic categories in vegetation diversity of Europe.  相似文献   

8.
The ecotone, the spatial transition zone between two vegetation communities, is claimed to have more species than the adjoining communities. However, empirical studies do not always confirm higher richness at the ecotone. The ecotone position and structure are dynamic over time and space and it is driven by the changes in climate, land use or their interaction. In this context, we assessed the forest- grassland ecotone of temperate mountains in central Nepal by i) comparing species composition and richness across the ecotone, ii) analyzing if the forestgrassland ecotone is shifting towards the grassland center by colonizing them with trees, and iii) discussing the consequence of changed disturbance regime in the dynamics of this ecotone and the surrounding grasslands. We analyzed vegetation data sampled from belt transects laid across the forest- grassland ecotone in semi-natural grassland patches. Vegetation data consisting of species richness and composition, and size structure and regeneration of the two most dominant tree species, namely Rhododendron arboreum and Abies spectabilis, from the transects, were used to analyze the trend of the forest-grassland ecotone. Forest and grasslands were different in terms of floristic composition and diversity. Vascular plant speciesrichness linearly increased while moving from forest interior to grassland center. Spatial pattern of tree size structure and regeneration infers that forest boundary is advancing towards the grasslands at the expense of the grassland area, and tree establishment in the grasslands is part of a suceessional process. Temporally, tree establishment in grasslands started following the gradual decline in disturbance. We argue that local processes in terms of changed land use may best explain the phenomenon of ecotone shift and consequent forest expansion in these grasslands. We underpin the need for further research on the mechanism, rate and spatial extent of ecotone shift by using advaneed tools to understand the process indepth.  相似文献   

9.
Several abiotic and biotic factors were investigated as possible predictors of local species richness in two sub-alpine grasslands of Jenna and Belles Mountains in Northern Greece.For species richness modelling a hierarchical modelling framework based on generalized additive models was adopted.The two sub-alpine grasslands differed in aspect,altitude and soil parent material(volcanic origin,mostly trachyte,and andesite(TA) for Jenna and metamorphic rocks,mostly gneiss(G) for Belles).12 fenced squared plots,16 m2 each,were used per grassland,where soil properties,herbage production,species presence and cover of grasses,legumes and forbs were estimated.Mean herbage production was significantly affected by slope and altitude,soil K content and floristic composition as expressed by an ordination axis.Soil p H,floristic composition and average herbage production were significant predictors of forbs and total species richness.For the former,soil N content and for the latter the occurrence of Agrostis capillaris,were also included as significant terms in the predictive model.Thepredictors for grasses species richness were N content,having a positive effect,and average herbage production.In all cases higher species richness was predicted for intermediate values of average herbage production.Differential responses were found between forbs and grasses.The predictors of their species richness were different while for the case of the common predictor(N) the responses of the two groups were also different(grasses species numbers increase and forbs species numbers decreased with increasing N).Maximum species richness of grasses was observed at relatively low production levels while forbs species richness maximized at relatively high production levels.  相似文献   

10.
We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones: (1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and (2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarsescale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetationgeoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.  相似文献   

11.
Due to the Tibetan Plateau's unique high altitude and low temperature climate conditions,the region's alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.  相似文献   

12.
Safeguarding plants as seeds in ex situ collections is a cost effective element in an integrated plant conservation approach. The European Alps are a regional centre of plant diversity. Six institutions have established a regional network covering the European Alps which will conserve at least 500 priority plant species and which will improve the conservation status of plant species in grassland communities in the subalpine, alpine and nival altitudinal belts. Targeted research will expand the knowledge of the ecology of target species. Public engagement activities will raise the awareness for the importance of specific conservation actions in the European Alps.  相似文献   

13.
Mountains are an excellent system for evaluating ecological and biogeographical patterns. The obvious variations of the environmental factors along the altitude create different zones with adapted plant assemblages. However, few studies make use of plant functional type(PFT) for describing the variation of vegetation along altitudinal gradients. A PFT is a group of taxa with similar traits which respond similarly to the environmental gradients. In this study, we used PFTs as indicators describing five vegetation zones in the western Alborz Mt, Iran from 2000 – 4500 m. The plant trait data presented here covers six plant traits including growth form, stemleaf ratio, spinescence, hairiness, leaf consistency and plant height of 297 species. We considered altitude and soil factors to test the importance of environmental variables. We applied a multivariate analysis of three table ordination, i.e. environmental, species, and traits data to identify the PFTs. We further applied fourth-corner statistic to quantify trait-environment relationships. A constrained hierarchical clustering was used to detect five altitudinal zones and two zones of low and high nitrogen concentration. With regard to altitude wediscuss the distribution of species, traits and PFTs. Growth form, plant height and stem-leaf ratio were significantly related to altitude and nitrogen. We identified 19 PFTs from which 18 were significantly associated to one or more altitudinal zones. While the lower altitudinal zones contain a variety of PFTs higher altitudes contain less PFTs with the highest altitude containing only one single PFT, tiny rosette plants with soft mesomorphic leaves. We identified grazing and climatic harshness as well as rockiness as the most important drivers of the distribution of plant functional traits and types across the studied gradient.  相似文献   

14.
Forest vegetation of a protected area(Binsar Wildlife Sanctuary) in Kumaun region(west Himalaya) was analysed for structure,composition and representativeness across three different altitudinal belts,lower(1,600-1,800 m a.s.l.),middle(1,900-2,100 m a.s.l.) and upper(2,200-2,400 m a.s.l.) during 2009-2011 using standard phytosociological methods.Four aspects(east,west,north and south) in each altitudinal belt were chosen for sampling to depict maximum representation of vegetation in the sanctuary.Population structure and regeneration behaviour was analysed seasonally for two years to show the establishment and growth of tree species.A total of 147 plant species were recorded from the entire region of which 27 tree species were selected for detailed study.Highest number was recorded at upper(18 species),and lowest at lower altitudinal belt(15 species).The relative proportion of species richness showed higher contribution of tree layer at each altitudinal belt.The population structure,based on the number of individuals,revealed a greater proportion of seedling layer at each altitudinal belt.The relative proportion of seedlings increases significantly along altitudinal belts(p<0.05) while opposite trends were observed in sapling and tree layers.The density of sapling and seedling species varied non-significantly across seasons(p>0.05).The density values decreased in summer and increased during rainy season.As far as the regeneration status is concerned,middle and upper altitudinal belts showed maximum number of species with fair regeneration as compared to lower altitudinal belt.Overall density diameter distribution of tree species showed highest species density and richness in the smallest girth class and decreased in the succeeding girth classes.This study suggests that patterns of regeneration behaviour would determine future structural and compositional changes in the forest communities.It is suggested that the compositional changes vis-à-vis role of ‘New’ and ‘Not regenerating’ species need priority attention while initiating conservation activities in the sanctuary.This study calls for exploring other less explored Wildlife Sanctuaries in the Himalaya and across the world,to achieve overall biodiversity status in these protected areas and thus to justify their role in conserving biodiversity in the region.  相似文献   

15.
Soil fauna have been receiving more and more attention because they play an important role in nutrient cycling. However, there is a lack of information on soil arthropods in the forest-steppe ecotone in the mountainous region of northern Hebei, which makes it difficult to meet the need of protecting biodiversity in this area. Soil arthropod communities were investigated in the forest-steppe ecotone in northern Hebei province to provide basic information on changes in mountain soil fertility, which could promote the development of soil arthropod communities in mountain ecotones. From the preliminary identification, a total of 7994 individual soil arthropods were collected, which belonged to 25 groups, 6 classes and 24 orders. Acarina, Hymenoptera and Collembola were the dominant groups in the ecotone. The number of Acarina was higher than Collembola, and this phenomenon was obviously different from other areas in the same climate zone. The increased abundance of rare groups in the Forest zone with the richer vegetation, higher arthropod abundance and more substantial litter depth, could be interpreted as a reaction to the suitable soil environment and food supply. And these rare groups were sensitive to environmental changes, which could be regarded as biotic indicators for evaluating soil quality. The analysis of community diversity showed that the abundance index (d), the Shannon-Wiener index (H′), the evenness index (J) and the density-group index (DG) were significantly higher in the forest zone, lower in the forest-steppe zone, and lowest in the meadow-steppe zone. Seasonal variations in community composition correlated with changes in average air temperature and precipitation in this ecotone. Groups and individuals of soil arthropod communities in the three zones were present in greater numbers in the middle of the rainy season than in the early or late periods of the rainy season as a whole. At the same time, seasonal changes in soil arthropod communities from different plots were also influenced by habitat condition.  相似文献   

16.
Soil types, humus types and vegetation as well as their hypsometric variation were analysed in terms of sequences in the northern part of the high mountains of the Pirin National Park at altitudes between looo and 2400 m a.s.1. The study area is characterised by a large variety of natural parameters like petrology (mainly marble and granite), morphology (different slope deposits, exposition) and the orographic climate gradient. Statistical analyses using these parameters provided a basis for the soil group classification of the sites. Based on a Digital Terrain Model (DTM) and a geological map of the Pirin National Park, the results of these statistical analyses were used to generate a "map of potential soil groups" (regionalisation using GIS). Six potential soil groups could be determined. The resulting map exhibits a confidence level of 68 % on 74.4 % of the covered area. Rendzic Leptosols, in combination with Folic Histosols and Histi-lithic Leptosols occur in the alpine and subalpine regions on calcareous substrates. With decreasing altitude they are replaced by a mosaic of Rendzic Leptosols, Phaeozems and an increasing occurrence of Cambic Umbrisols. Umbrisols found on silicatic substrates in the alpine region are replaced by Cambic Umbrisols with decreasing altitude as well. Hence, pedogenesis is characterised by increasing browning and depth of the soil profiles with decreasing altitude. The pH-level is slightly acidic to neutral in lower zones and on calcareous rocky bases. Acidification increases in the subalpine zone. Soil pH decreases down to 4 on silicate subtrates. Typical humic values in mineral topsoils are 10 to 12 %, and in organic layers of the soils above 2000 m a.s.1, they are even more. The C:N ratio closely ranges around 20 (median).  相似文献   

17.
Understanding the factors that drive variation in species distribution is a central theme of ecological research. Although several studies focused on alpine vegetation, few efforts have been made to identify the environmental factors that are responsible for the variations in species composition and richness of alpine shrublands using numericalmethods. In the present study, we investigated vegetation and associated environmental variables from 45 sample plots in the middle Qilian Mountains of the northwestern China to classify different community types and to elucidate the speciesenvironment relationships. We also estimated the relative contributions of topography and site conditions to spatial distribution patterns of the shrub communities using the variation partitioning. The results showed that four shrub community types were identified and striking differences in floristic composition were found among them. Species composition greatly depended on elevation, slope,shrub cover, soil p H and organic carbon. The important determinants of species richness were soil bulk density and slope. No significant differences in species richness were detected among the community types. Topography and site conditions had almost equal effects on compositional variation. Nonetheless,a large amount of the variation in species composition remained unexplained.  相似文献   

18.
The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.  相似文献   

19.
Relationships between topography,soil properties and the distribution of plant communities on two different rocky hillsides are examined in two subtropical karst forests in the Maolan National Natural Reserve,southwestern China.Surveys of two 1-ha permanent plots at each forest,and measurements of four topographic and thirteen edaphic factors on the slopes were performed.Twoway Indicator Species Analysis(TWINSPAN) and Detrended Canonical Correspondence Analysis(DCCA) were used for the classification of plant communities and for vegetation ordination with environmental variables.One hundred 10m×10m quadrats in each plot were classified into four plant community types.A clear altitudinal gradient suggested that elevation was important in community differentiation.The topography and soil explained 51.06% and 54.69% of the variability of the distribution of plant species in the two forest plots,respectively,indicating both topographic factors(eg.elevation,slope and rock-bareness rate) and edaphic factors(e.g.total P,K and exchangeable Ca) were the important drivers of the distribution of woody plant species in subtropical karst forest.However,our results suggested that topographical factors were more important than edaphic ones in affecting local plant distribution on steep slopes with extensive rock outcrops,while edaphic factors were more influential on gentle slope and relatively thick soil over rock in subtropical karst forest.Understanding relationships between vegetation and environmental factors in karst forest ecosystems would enable us to apply these findings in vegetation management strategies and restoration of forest communities.  相似文献   

20.
In recent decades,overgrazing and the warming and drying climate have resulted in significant degradation of alpine grasslands in the source region of the Yellow River.However,research into the relationships between vegetation and soil properties has mainly focused on an overall degradation stage,and few studies have investigated which soil properties can impact vegetation change at different stages of degradation.Vegetation and soil properties were observed in the field and measured in the laboratory for different predefined stages of degradation for alpine grassland in Maduo County in the source region of the Yellow River.Results show that:1)the aboveground and belowground biomass,soil organic carbon,total nitrogen,nitrate,and ammonia content did not decrease significantly from the intact to moderate degradation stage,but decreased significantly at severe and very severe stages of degradation;2)dominant plant species shifted from gramineaes and sedges to forbs;3)the species richness and Pielou evenness indices decreased significantly at the very severe degradation stage,the Shannon-Wiener diversity index increased at the slight and moderate degradation,but decreased at the severe and very severe degradation stages;4)soil bulk density was the strongest soil driver for changes in the plant biomass and community diversity at the intact,slight and moderate degradation stages,whereas soil organic carbon and nitrate nitrogen content were the main driving factors for changes in plant biomass and diversity at the severe and very severe degradation stages.Our results suggest that there may be different interactions between soil properties and plants before and after moderate stages of degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号