首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
降雨过程中降雨强度的变化会影响土体渗透率及饱和过程, 从而改变土体的力学性质, 影响泥石流起动模式及破坏规模。为探究不同降雨模式对震后泥石流起动机制的影响, 自制了小比例模型槽, 结合可控雨型的降雨模拟系统, 进行了人工降雨诱发泥石流的室内模型试验; 基于不同降雨模式下泥石流的起动过程分析, 对坡体内部含水率和孔隙水压力的变化规律进行了研究。研究结果表明: 递增型降雨模式下泥石流发生突然, 呈整体滑坡转化为泥石流起动模式, 坡体破坏规模最大; 递减型降雨模式下表现为后退式溃散失稳起动模式; 均匀型降雨模式下则表现为溯源侵蚀起动模式; 中峰型降雨模式下以局部滑坡转化为泥石流起动模式; Ⅴ型降雨模式下则由坡面侵蚀加剧转化为泥石流启动模式, 破坏规模最小。研究结果可以为九寨沟地区泥石流的预报预警提供参考。   相似文献   

2.
In recent years, the increasing frequency of debris flow demands enhanced effectiveness and efficiency of warning systems. Effective warning systems are essential not only from an economic point of view but are also considered as a frontline approach to alleviate hazards. Currently, the key issues are the imbalance between the limited lifespan of equipment, the relatively long period between the recurrences of such hazards, and the wide range of critical rainfall that trigger these disasters. This paper attempts to provide a stepwise multi-parameter debris flow warning system after taking into account the shortcomings observed in other warning systems. The whole system is divided into five stages. Different warning levels can be issued based on the critical rainfall thresholds. Monitoring starts when early warning is issued and it continues with debris flow near warning, triggering warning, movement warning and hazard warning stages. For early warning, historical archives of earthquake and drought are used to choose a debris flow-susceptible site for further monitoring. Secondly, weather forecasts provide an alert of possible near warning. Hazardous precipitation, model calculation and debris flow initiation tests, pore pressure sensors and water content sensors are combined to check the critical rainfall and to publically announce a triggering warning. In the final two stages, equipment such as rainfall gauges, flow stage sensors, vibration sensors, low sound sensors and infrasound meters are used to assess movement processes and issue hazard warnings. In addition to these warnings, community-based knowledge and information is also obtained and discussed in detail. The proposed stepwise, multi-parameter debris flow monitoring and warning system has been applied in Aizi valley China which continuously monitors the debris flow activities.  相似文献   

3.
Rainfall is an important factor to trigger the debris flow.Numerical simulation on the responses of slopes and the initiation of debris flow under rainfall was processed by using the software FLAC2D based on the soil parameters in Weijia Gully,Beichuan County,Sichuan Province,China.The effects of the slope angle,rainfall intensity,soil parameters on the developments of the stress and pore pressure and deformation of the slope were studied.It indicates that large displacements of the slope are mainly located near the slope toe.With the increase of the rainfall intensity the stability of the slope decreases and so the debris-flow is easy to occur.  相似文献   

4.
《山地科学学报》2020,17(8):1860-1873
At present,most researches on the critical rainfall threshold of debris flow initiation use a linear model obtained through regression.With relatively weak fault tolerance,this method not only ignores nonlinear effects but also is susceptible to singular noise samples,which makes it difficult to characterize the true quantization relationship of the rainfall threshold.Besides,the early warning threshold determined by statistical parameters is susceptible to negative samples(samples where no debris flow has occurred),which leads to uncertainty in the reliability of the early warning results by the regression curve.To overcome the above limitations,this study develops a data-driven multiobjective evolutionary optimization method that combines an artificial neural network(ANN) and a multiobjective evolutionary optimization implemented by particle swarm optimization(PSO).Firstly,the Pareto optimality method is used to represent the nonlinear and conflicting critical thresholds for the rainfall intensity I and the rainfall duration D.An ANN is used to construct a dual-target(dual-task) predictive surrogate model,and then a PSO-based multiobjective evolutionary optimization algorithm is applied to train the ANN and stochastically search the trained ANN for obtaining the Pareto front of the I-D surrogate prediction model,which is intended to overcome the limitations of the existing linear regression-based threshold methods.Finally,a double early warning curve model that can effectively control the false alarm rate and negative alarm rate of hazard warnings are proposed based on the decision space and target space maps.This study provides theoretical guidance for the early warning and forecasting of debris flows and has strong applicability.  相似文献   

5.
Due to the special condition of provenance and disaster environment after "5·12" Earthquake, the probability and conditions of the occurrence of gully debris flow change greatly after the event, which make it difficult to prevent disaster effectively. In this study the hydrological model of ground water table in loose sediment is established. According to infinite slope theory, the safety factor of deposits is defined as the ratio of resistance force to driving force. The starting condition of post-earthquake gully debris flow is clearly studied by analyzing the effects of rainfall intensity, seismic strength, slope gradient and mechanical properties on the balance of accumulation body. Then the formulas of rainfall and aftershock threshold for starting of gully debris flow are proposed, and an example is given to illustrate the effect of rainfall, aftershocks and their coupling action on a debris flow. The result shows the critical rainfall intensity decreases as the lateral seismic acceleration and channel gradient increases, while the critical intensity linearly increases as the friction angle increases.  相似文献   

6.
Slope debris flows in the Wenchuan Earthquake area   总被引:1,自引:0,他引:1  
Avalanches and landslides, induced by the Wenchuan Earthquake on May 12, 2008, resulted in a lot of disaggregated, solid material on slopes that could be readily mobilized as source material for debris flows. Rainstorms triggered numerous slope debris flows with great damage to highways and rivers over the subsequent two years. Slope debris flows (as opposed to channelized debris flows) are defined as phenomena in which high-concentration mixtures of debris and water flow down slopes for short distances to highways and river banks. Based on field investigations and measurements of 19 slope debris flows, their main characteristics and potential mitigation strategies were studied. High rainfall intensity is the main triggering factor. Critical rainfall intensities for simultaneous occurrence of single, several and numerous slope debris flow events were 20 mm/day, 30mm/day, and 90 mm/day, respectively. Field investigations also revealed that slope debris flows consist of high concentrations of cobbles, boulders and gravel. They are two-phase debris flows. The liquid phase plays the role of lubrication instead of transporting medium. Solid particles collide with each other and consume a lot of energy. The velocities of slope debris flows are very low, and their transport distances are only several tens of meters. Slope debris flows may be controlled by construction of drainage systems and by reforestation.  相似文献   

7.
The initiation mechanism of debris flow is regarded as the key step in understanding the debris-flow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particle accumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.  相似文献   

8.
《山地科学学报》2020,17(1):156-172
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.  相似文献   

9.
Discrete element modeling of debris avalanche impact on retaining walls   总被引:2,自引:0,他引:2  
In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.  相似文献   

10.
Debris flows often occur in landslide deposits during heavy rainstorms. Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions. A physical model based on an infinitely long, uniform and void-rich sediment layer was applied to analyze the triggering of debris-flow introduced in landslide deposits. To determine the initiation condition for rainfall-induced debris flows, we conducted a surface water runoff and saturated-unsaturated seepage numerical program to model rainfall infiltration and runoff on a slope. This program was combined with physical modeling and stability analysis to make certain the initiation condition for rainfall-introduced debris flows. Taking the landslide deposits at Wenjiagou gully as an example, the initiation conditions for debris flow were computed. The results show that increase height of surface-water runoff and the decrease of saturated sediment shear strength of are the main reasons for triggering debris-flows under heavy rainfall conditions. The debris-flow triggering is affected by the depth of surface-water runoff, the slope saturation and shear strength of the sediment.  相似文献   

11.
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.  相似文献   

12.
On 23 July 2009, a catastrophic debris flows were triggered by heavy rainfall in Xiangshui gully, Kangding county, southwestern China. This debris flow originating shortly after a rainstorm with an intensity of 28 mm per hour transported a total volume of more than 480×103 m3 debris, depositing the poorly sorted sediment including boulders up to 2-3 m in diameter both onto an existing debris fans and into the river. Our primary objective for this study was to analyze the characteristics of the triggering ra...  相似文献   

13.
基于洪峰模数的山洪灾害雨量预警指标研究   总被引:1,自引:0,他引:1  
山洪灾害预警是防御山洪的重要非工程措施,雨量预警指标是山洪灾害预警的关键。目前的雨量预警指标计算方法对水文气象资料条件以及模型建模率定都有很高的要求,并不适用于基层防汛人员。因此,本文基于全国山洪灾害调查评价成果数据,提出了一种运用洪峰模数计算雨量预警指标的简便、易用的方法。该方法以小流域洪水计算推理公式为基础,将公式中流量与流域面积的比值用洪峰模数表示,得到基于洪峰模数的临界雨量估算公式,并考虑流域土壤含水量等因素,分析临界雨量变化阈值,最终得到雨量预警指标。本文以云南省绥江县双河小流域为例,计算结果显示不同时段(1 h、3 h、6 h)净雨量和预警时段呈线性关系。降雨损失计算中洼地蓄水和植被截留在不同时段相同,土壤下渗在不同的时段不相同。在此基础上,计算不同土壤含水量条件下,不同时段的雨量预警指标。最后,对临界流量、降雨损失和预警指标进行了合理性分析,结果显示预警指标和调查评价结果及实测降雨都比较接近,计算的预警指标合理。本研究为基层山洪灾害预警提供了一种快速、便捷的预警指标计算方法,为预警指标计算提供技术支持。  相似文献   

14.
Debris flows in Jiangjia Ravine in Yunnan province,China are not only triggered by intense storms but also by short-duration and low-intensity rainfalls.This reflects the significance of antecedent rainfall.This paper tries to find the debris flowtriggering threshold by considering antecedent rainfall through a case study in Jiangjia Ravine.From 23 debris flow events,the I-D(Intensity-Duration) threshold was found,which is very close to the line of 95th percentile regression line of rainfall events,representing that 95% of rainfalls can potentially induce debris flows and reflects the limitation of I-D threshold application in this area.Taking into account the effect of antecedent rainfall,the debris flowtriggering threshold for rainfall quantity and intensity is statistically and empirically derived.The relationships can be used in debris flow warning system as key thresholds.Coupling with the rainfall characteristics in this area,new thresholds are proposed as triggering and warning thresholds.  相似文献   

15.
Purple soil is highly susceptible for overland flow and surface erosion, therefore understanding surface runoff and soil erosion processes in the purple soil region are important to mitigate flooding and erosion hazards. Slope angle is an important parameter that affects the magnitude of runoff and thus surface erosion in hilly landscapes or bare land area. However, the effect of slope on runoff generation remains unclear in many different soils including Chinese purple soil. The aim of this study was to investigate the relationship between different slope gradients and surface runoff for bare-fallow purple soil, using 5 m × 1.5 m experimental plots under natural rainfall conditions. Four experimental plots(10°, 16°, 20° and 26°) were established in theYanting Agro-ecological Experimental Station of Chinese Academy of Science in central Sichuan Basin. The plot was equipped with water storage tank to monitor water level change. Field monitoring from July 1 to October 31, 2012 observed 42 rainfall events which produced surface runoff from the experimental plots. These water level changes were converted to runoff. The representative eight rainfall events were selected for further analysis, the relationship between slope and runoff coefficient were determined using ANOVA, F-test, and z-score analysis. The results indicated a strong correlation between rainfall and runoff in cumulative amount basis. The mean value of the measured runoff coefficient for four experimental plots was around 0.1. However, no statistically significant relationship was found between slope and runoff coefficient. We reviewed the relationship between slope and runoff in many previous studiesand calculated z-score to compare with our experimental results. The results of z-score analysis indicated that both positive and negative effects of slope on runoff coefficient were obtained, however a moderate gradient(16°-20° in this study) could be a threshold of runoff generation for many different soils including the Chinese purple soil.  相似文献   

16.
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.  相似文献   

17.
We investigate experimentally the depositions of two contiguous debris flows flowing into a main river reach.The aim of the present experimental research is to analyze the geometry and the mutual interactions of debris flow deposits conveyed by these tributaries in the main channel.A set of 19 experiments has been conducted considering three values of the confluence angle,two slopes of the tributary,and three different triggering conditions(debris flows occurring simultaneously in the tributaries,or occurring first either in the upstream or in the downstream tributary).The flow rate along the main channel was always kept constant.During each experiment the two tributaries had the same slope and confluence angle.The analysis of the data collected during the experimental tests indicates that the volume of the debris fan is mainly controlled by the slope angle,as expected,while the shape of the debris deposit is strongly influenced by the confluence angle.Moreover,in the case of multiple debris flows,the deposit shape is sensitive to the triggering conditions.Critical index for damming formation available in literature has been considered and applied to the present case,and,on the basis of the collected data,considerations about possible extension of such indexes to the case of multiple confluences are finally proposed.  相似文献   

18.
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.  相似文献   

19.
Debris flow in metropolitan area — 2011 Seoul debris flow   总被引:4,自引:2,他引:2  
A large number of debris flows occurred simultaneously at around 8:30 to 8:50 a.m. on July 27, 2011, at the center of Seoul, Korea. This area is located in the southern part of Seoul and is a densely populated district. As a result of the debris flow event, 16 people were killed, 30 houses were buried, and 116 houses were damaged around Umyeon Mountain, a relatively small mountain with a height of 312.6 m. Since the debris flow event, field investigations on the initiation and transportation zones of debris flows have been carried out. Rainfall data were collected from the automatic weather stations (AWSs) which are operated by the Korea Meteorological Administration (KMA). Video files recorded by residents were also acquired and used to analyze the flow characteristics of the debris flow. Field investigation shows that about 40 debris flows occurred around Umyeon Mountain and most of the debris flows were initiated by small slope failures. The effects of the precipitation that triggered the debris flows were analyzed as well. A landslide hazard map which considers slope gradient and aspect, strength of soil, hazard record, rainfall conditions, and vegetation, was constructed and compared with the initiation zones of debris flows.  相似文献   

20.
Characteristic rainfall for warning of debris flows   总被引:4,自引:2,他引:2  
A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-flow occurrence probability shows a rapid increase,and can be used as a warning rainfall threshold for debris flows.Investigation of recorded debris flows and 24-hour rainfall data at Jiangjia basin,Yunnan Province,in southwestern China,demonstrates the existence of such a characteristic rainfa...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号