首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We examine the possibility of the decay of the vacuum energy into a homogeneous distribution of a thermalized cosmic microwave background (CMB), which is characteristic of an adiabatic vacuum energy decay into photons. It is shown that observations of the primordial density fluctuation spectrum, obtained from CMB and galaxy distribution data, restrict the possible decay rate. When photon creation due to an adiabatic vacuum energy decay takes place, the standard linear temperature dependence   T ( z ) = T 0(1 + z )  is modified, where T 0 is the present CMB temperature, and can be parametrized by a modified CMB temperature dependence     . From the observed CMB and galaxy distribution data, a strong limit on the maximum value of the decay rate is obtained by placing a maximum value  βmax≃ 3.4 × 10−3  on the β parameter.  相似文献   

2.
The fluctuations of the cosmic microwave background (CMB) are investigated for a hyperbolic universe with finite volume. Four-component models with radiation, matter, vacuum energy and an extra spatially constant dark energy X -component are considered. The general solution of the Friedmann equation for the cosmic scalefactor a ( η ) is given for the four-component models in terms of the Weierstrass ℘-function. The lower parts of the angular power spectra C l of the CMB anisotropy are computed for nearly flat models with Ωtot≤0.95. It is shown that the particular compact fundamental cell that is considered in this paper leads to a suppression in C l for l ≲10 and Ωtot≲0.9.  相似文献   

3.
Electron scattering induces a polarization in the cosmic microwave background (CMB) signal measured in the direction of a galaxy cluster owing to the presence of a quadrupole component in the CMB temperature distribution. Measuring the polarization towards distant clusters provides the unique opportunity to observe the evolution of the CMB quadrupole at moderate redshifts, z ∼0.5–3. We demonstrate that for the local cluster population the polarization degree will depend on the cluster celestial position. There are two extended regions in the sky, which are opposite to each other, where the polarization is maximal, ∼0.1( τ /0.02) μK in the Rayleigh–Jeans part of the CMB spectrum ( τ being the Thomson optical depth across the cluster). This value exceeds the polarization introduced by the cluster transverse peculiar motion if v t<1300 km s−1. One can hope to detect this small signal by measuring a large number of clusters, thereby effectively removing the systematic contribution from other polarization components produced in clusters. These polarization effects, which are of the order of ( v t c )2 τ , ( v t c ) τ 2 and ( kT e m e c 2) τ 2, as well as the polarization owing to the CMB quadrupole, were previously given by Sunyaev and Zel'dovich for the Rayleigh–Jeans part of the spectrum. We fully confirm their earlier results and present exact frequency dependences for all these effects. The polarization degree is considerably higher in the Wien region.  相似文献   

4.
We derive analytic expressions for the leading-order corrections to the polarization induced in the cosmic microwave background (CMB) owing to scattering of photons off hot electrons in galaxy clusters along the line of sight. For a thermal distribution of electrons with kinetic temperature k B T e∼10 keV and bulk peculiar velocity V ∼1000 km s−1, the dominant corrections to the polarization induced by the primordial CMB quadrupole and the cluster peculiar velocity arise from electron thermal motion and are at the level of ∼10 per cent in each case, near the peak of the polarization signal. When more sensitive measurements become feasible, these effects will be significant for the determination of transverse peculiar velocities, and the value of the CMB quadrupole at the cluster redshift, via the cluster polarization route.  相似文献   

5.
Significant alignment and signed-intensity anomalies of local features of the cosmic microwave background (CMB) are detected on the three-year Wilkinson Microwave Anisotropy Probe data, through a decomposition of the signal with steerable wavelets on the sphere. In addition to identifying local features of a signal at specific scales, steerable wavelets allow one to determine their local orientation and signed intensity. First, an alignment analysis identifies two mean preferred planes in the sky, both with normal axes close to the CMB dipole axis. The first plane is defined by the directions towards which local CMB features are anomalously aligned. A mean preferred axis is also identified in this plane, located very close to the ecliptic poles axis. The second plane is defined by the directions anomalously avoided by local CMB features. This alignment anomaly provides further insight on recent results. Secondly, a signed-intensity analysis identifies three mean preferred directions in the southern Galactic hemisphere with anomalously high or low temperature of local CMB features: a cold spot essentially identified with a known cold spot, a second cold spot lying very close to the southern end of the CMB dipole axis, and a hotspot lying close to the southern end of the ecliptic poles axis. In both analyses, the anomalies are observed at wavelet scales corresponding to angular sizes around 10° on the celestial sphere, with global significance levels around 1 per cent. Further investigation reveals that the alignment and signed-intensity anomalies are only very partially related. Instrumental noise, foreground emissions and some form of other systematics are strongly rejected as possible origins of the detections. An explanation might still be envisaged in terms of a global violation of the isotropy of the Universe, inducing an intrinsic statistical anisotropy of the CMB.  相似文献   

6.
We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash . The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for   l ≳ 4000  and reaches a maximum amplitude of   l ( l + 1) Cl /2π≃ 1.6 × 10−13  on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H  ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities.  相似文献   

7.
We study the local structure of Cosmic Microwave Background (CMB) tem-perature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less "similar spots", and the temperature peaks or valleys will be less significant. The presented "sim-ilar spots" have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.  相似文献   

8.
We study the non-Gaussianity induced by the Sunyaev–Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP . This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP –2MASS cross-correlations by a factor f 2, which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.  相似文献   

9.
The quality of CMB observations has improved dramatically in the last few years, and will continue to do so in the coming decade. Over a wide range of angular scales, the uncertainty due to instrumental noise is now small compared to the cosmic variance. One may claim with some justification that we have entered the era of precision CMB cosmology. However, some caution is still warranted: The errors due to residual foreground contamination in the CMB power spectrum and cosmological parameters remain largely unquantified, and the effect of these errors on important cosmological parameters such as the optical depth τ and spectral index ns is not obvious. A major goal for current CMB analysis efforts must therefore be to develop methods that allow us to propagate such uncertainties from the raw data through to the final products. Here we review a recently proposed method that may be a first step towards that goal.  相似文献   

10.
We use the preliminary results of a new survey of radio sources made using the Ryle Telescope at 15.2 GHz, to estimate the impact of foreground sources on cm-wave cosmic microwave background (CMB) images. This is the highest frequency survey that is relevant to the issue of radio source contamination in CMB experiments. The differential source count of the 66 sources found in 63 deg2 is     , from ≈20 to ≈500 mJy. Extrapolating this to 34 GHz (where many cm-wave CMB experiments operate) gives an estimated temperature contribution of sources     in a CMB image, with a beam corresponding to multipole     . A means of source subtraction is evidently necessary, otherwise the signal-to-noise ratio in CMB images will be limited to 4 or 5, becoming worse at higher resolution. We compare the population of sources observed in this new survey to that predicted by extrapolation from lower frequency surveys, finding that source flux densities, and indeed the existence of many sources, cannot be determined by extrapolation.  相似文献   

11.
In this paper we investigate the effects of perturbations in a dark energy component with a constant equation of state on large-scale cosmic microwave background (CMB) anisotropies. The inclusion of perturbations increases the large-scale power. We investigate more speculative dark energy models with   w < −1  and find the opposite behaviour. Overall the inclusion of perturbations in the dark energy component increases the degeneracies. We generalize the parametrization of the dark energy fluctuations to allow for an arbitrary constant sound speed, and we show how constraints from CMB experiments change if this is included. Combining CMB with large-scale structure, Hubble parameter and supernovae observations we obtain   w =−1.02 ± 0.16 (1σ)  as a constraint on the equation of state, which is almost independent of the sound speed chosen. With the presented analysis we find no significant constraint on the constant speed of sound of the dark energy component.  相似文献   

12.
With the increasingly precise measurement of the cosmic microwave background (CMB), cosmology has entered an era where a model's predictions become testable to percent‐level accuracy. In particular, the CMB spectrum has so far provided impressive support for the scenario of inflation, first invented to solve outstanding problems of standard cosmology. While current data (COBE, WMAP etc.) have already constrained cosmological parameters like Ω0 to high precision, next generation instruments such as the PLANCK satellite should give access to specific characteristics of the inflationary mechanism itself. Another tantalizing idea has been discussed in this context: Given the enormous expansion of the Universe during the phase of inflation, could it be that even Planck scale physics has been stretched to observable distances and is therefore within grasp in the CMB observations? In this contribution, I discuss the possibility of carrying through the calculation of the perturbation spectrum from an ansatz for short distance physics right to its imprint in the CMB. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We report on the first observation of the Sunyaev–Zel'dovich (SZ) effect, a distortion of the Cosmic Microwave Background radiation (CMB) by hot electrons in clusters of galaxies, with the Diabolo experiment at the IRAM 30 m telescope. Diabolo is a dual-channel 0.1 K bolometer photometer dedicated to the observation of CMB anisotropies at 2.1 and 1.2 mm. A significant brightness decrement in the 2.1 mm channel is detected in the direction of three clusters (Abell 665, Abell 2163 and CL0016+16). With a 30 arcsec beam and 3 arcmin beamthrow, this is the highest angular resolution observation to date of the SZ effect. Interleaving integrations on targets and on nearby blank fields have been performed in order to check and correct for systematic effects. Gas masses can be directly inferred from these observations.  相似文献   

14.
Unfortunately, the Cosmic Microwave Background (CMB) radiation is contaminated by emission originating in the Milky Way (synchrotron, free‐free and dust emission). Since the cosmological information is statistically in nature, it is essential to remove this foreground emission and leave the CMB with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before including them in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80 % of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We use data from the Tenerife 10-, 15- and 33‐GHz beam-switching experiments along with the COBE 53- and 90‐GHz data to separate the cosmic microwave background (CMB) signal from the Galactic signal, and create two maps at high Galactic latitude. The new multi-MEM technique is used to obtain the best reconstruction of the two channels. The two maps are presented, and known features are identified within each. We find that the Galactic contribution to both the 15- and 33-GHz Tenerife data is small enough to be ignored when compared with the errors in the data and the magnitude of the CMB signal.  相似文献   

16.
The statistical properties of a map of the primary fluctuations in the cosmic microwave background (CMB) may be specified to high accuracy by a few thousand power spectra measurements, provided the fluctuations are Gaussian, yet the number of parameters relevant for the CMB is probably no more than ∼10–20. Consequently, there is a large degree of redundancy in the power spectrum data. In this paper, we show that the moped data compression technique can reduce the CMB power spectrum measurements to ∼10–20 numbers (one for each parameter), from which the cosmological parameters can be estimated virtually as accurately as from the complete power spectrum. Combined with recent advances in the speed of generation of theoretical power spectra, this offers opportunities for very fast parameter estimation from real and simulated CMB skies. The evaluation of the likelihood itself, at Planck resolution, is speeded up by factors up to ∼108, ensuring that this step will not be the dominant part of the data analysis pipeline.  相似文献   

17.
Destriping methods for constructing maps of the cosmic microwave background (CMB) anisotropies have been investigated extensively in the literature. However, their error properties have been studied in less detail. Here we present an analysis of the effects of destriping errors on CMB power spectrum estimates for Planck -like scanning strategies. Analytic formulae are derived for certain simple scanning geometries that can be rescaled to account for different detector noise. Assuming Planck -like low-frequency noise, the noise power spectrum is accurately white at high multipoles  (ℓ≳ 50)  . Destriping errors, though dominant at lower multipoles, are small in comparison to the cosmic variance. These results show that simple destriping map-making methods should be perfectly adequate for the analysis of Planck data and support the arguments given in an earlier paper in favour of applying a fast hybrid power spectrum estimator to CMB data with realistic '1/ f ' noise.  相似文献   

18.
The identification of non-Gaussian signatures in cosmic microwave background (CMB) temperature maps is one of the main cosmological challenges today. We propose and investigate alternative methods to analyse CMB maps. Using the technique of constrained randomization, we construct surrogate maps which mimic both the power spectrum and the amplitude distribution of simulated CMB maps containing non-Gaussian signals. Analysing the maps with weighted scaling indices and Minkowski functionals yields in both cases statistically significant identification of the primordial non-Gaussianities. We demonstrate that the method is very robust with respect to noise. We also show that Minkowski functionals are able to account for non-linearities at higher noise level when applied in combination with surrogates than when only applied to noise added CMB maps and phase randomized versions of them, which only reproduce the power spectrum.  相似文献   

19.
We have estimated the cosmic microwave background (CMB) variance from the three-year Wilkinson Microwave Anisotropy Probe ( WMAP ) data, finding a value which is significantly lower than the one expected from Gaussian simulations using the WMAP best-fitting cosmological model, at a significance level of 98.7 per cent. This result is even more prominent if we consider only the North ecliptic hemisphere (99.8 per cent). Different analyses have been performed in order to identify a possible origin for this anomaly. In particular, we have studied the behaviour of single-radiometer and single-year data as well as the effect of residual foregrounds and 1/f noise, finding that none of these possibilities can explain the low value of the variance. We have also tested the effect of varying the cosmological parameters, finding that the estimated CMB variance tends to favour higher values of n s than the one of the WMAP best-fitting model. In addition, we have also tested the consistency between the estimated CMB variance and the actual measured CMB power spectrum of the WMAP data, finding a strong discrepancy. A possible interpretation of this result could be a deviation from Gaussianity and/or isotropy of the CMB.  相似文献   

20.
We implement an independent component analysis (ICA) algorithm to separate signals of different origin in sky maps at several frequencies. Owing to its self-organizing capability, it works without prior assumptions on either the frequency dependence or the angular power spectrum of the various signals; rather, it learns directly from the input data how to identify the statistically independent components, on the assumption that all but, at most, one of the components have non-Gaussian distributions.
We have applied the ICA algorithm to simulated patches of the sky at the four frequencies (30, 44, 70 and 100 GHz) used by the Low Frequency Instrument of the European Space Agency's Planck satellite. Simulations include the cosmic microwave background (CMB), the synchrotron and thermal dust emissions, and extragalactic radio sources. The effects of the angular response functions of the detectors and of instrumental noise have been ignored in this first exploratory study. The ICA algorithm reconstructs the spatial distribution of each component with rms errors of about 1 per cent for the CMB, and 10 per cent for the much weaker Galactic components. Radio sources are almost completely recovered down to a flux limit corresponding to ≃0.7 σ CMB, where σ CMB is the rms level of the CMB fluctuations. The signal recovered has equal quality on all scales larger than the pixel size. In addition, we show that for the strongest components (CMB and radio sources) the frequency scaling is recovered with per cent precision. Thus, algorithms of the type presented here appear to be very promising tools for component separation. On the other hand, we have been dealing here with a highly idealized situation. Work to include instrumental noise, the effect of different resolving powers at different frequencies and a more complete and realistic characterization of astrophysical foregrounds is in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号