首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The lower Triassic/Bunter sandstone and lower Jurassic/Rhät formations of the Northern Germany sedimentary basin constitute feasible reservoirs for the storage of CO2 from combustion of fossil fuels or industrial production processes. This study presents analyses of geochemical interactions between CO2, formation fluid and rock of these potential reservoirs using geochemical modelling in order to assess the short and long term impact of CO2 sequestration. Batch equilibrium modelling was performed first for assessing the consistency of fluid and mineralogy field data and for identifying potential secondary minerals under the influence of injected CO2. Inclusion of reaction kinetics in the batch models allowed an observation of reaction paths and to estimate the time frame of geochemical reactions. Finally, one-dimensional equilibrium reactive transport modelling was used in order to investigate the direction of reactions under conditions of fluid flow and mass transport and to quantify feedbacks of reactions on transport processes.Results of the simulations performed show that dawsonite may act as the main CO2 storage mineral in both formations, while the carbonates calcite and dolomite dissolve over time. Also, changes in porosity and permeability are significant in the equilibrium reactive transport simulations. The time scale of kinetically controlled reactions observed in the kinetic batch modeling, however, suggests that CO2 mineral trapping in both formations requires very long time frames, and hence other mechanisms such as structural or solubility trapping seem to be more relevant within the injection or early post-injection phase for the studied formations.  相似文献   

2.
3.
A prognosis of the geochemical effects of CO2 storage induced by the injection of CO2 into geologic reservoirs or by CO2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO2 and the overlaying formations in the case of a CO2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO2 solubilities and can influence the safety issues.This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H2O–CO2–NaCl–CaCO3 for the calculated range of dissolved calcite and CO2 is the fugacity of CO2. Hence, the largest range of dissolved calcite is calculated at high fugacities and is 210 mmol/kgw. The average deviation of the results using the databases phreeqc.dat and wateq4f.dat in combination with the code PHREEQC is lowest in comparison to the results of the specific model of Duan and Li, which represents the experimental values at best. Still, the solubility of CO2 is overestimated in the formation water using these two databases. Therefore, the model results calculate a larger retention capacity, defined as the quantity of CO2 dissolved in the formation water, than the Duan and Li model would do.  相似文献   

4.
Geological sequestration of CO2 is an option for significantly reducing emissions into the atmosphere. Various hydrocarbon companies in western Canada are currently injecting acid-gas (CO2 and H2S) into deep subsurface formations. At West Stoddart, in northeast British Columbia, acid-gas has been injected since 1998 at 1600 m depth into sandstones of the Triassic Halfway Formation, which forms a regional aquifer. A comprehensive subsurface characterization was conducted of the regional and local-scale geology, reservoir characteristics, mineralogy, in situ fluid properties, and hydrogeology. Preliminary results from geochemical and numerical multi-phase flow modelling suggest that the majority of the injected acid-gas will dissolve in the formation water and remain within a radius of a few kilometres of the injection well. The experience with the acid-gas injection at West Stoddart and other operations in the Alberta Basin has shown that the process of large-scale CO2-injection into deep aquifers is technically feasible.  相似文献   

5.
Numerical codes are applied to calculate chemical reactions following geologic carbon sequestration in deep formations and CO2 leakage in shallow formations. However, using different thermodynamic databases generates variations in the simulation results, which are referred to as the model uncertainty. The PHREEQC and The Geochemist's Workbench codes were used to simulate anorthite dissolution for storage, retention, transfer, and near-surface formation waters in the respective geological units. For each of the formation waters, a simple one-dimensional scenario was simulated using eight different thermodynamic databases. Groundwaters in shallow aquifers commonly exhibit low ionic strengths (<0.5 mol/kgw) and low temperatures, whereas storage formation waters are characterized by high ionic strength (>1.0 mol/kgw) and high temperatures. In storage formations, mineral trapping is the most efficient process for long-term CO2 storage. However, with respect to the geological formations and the time needed for anorthite dissolution, the model uncertainties associated with using different combinations of numerical codes and thermodynamic databases were largest (∼90%) for the storage formation waters at 58 °C and I = 6.5 mol/l. Conversely, in near-surface formation waters, the model uncertainty was less than 1%. Due to CO2 dissolution, the calculated pH of the formation waters decreased to a range between pH 4.0 and 5.5. In this pH range, the dissolution mechanism of anorthite switches from the slow neutral mechanism to the faster acid mechanism, causing dissolution time length variations. The calculated pH variation further increased with rising ionic strength. A detailed examination of the reasons revealed the activity coefficient calculation method of the main aquatic species to have the largest impact on the simulated model results. The calculation method of the CO2 activity coefficient had the second largest impact. Via calibration with the experimental data, a specific thermodynamic database can be chosen to represent these experimental results. However, the calibration of thermodynamic databases is not possible for all potential reactions in more complex geological systems at large ranges of temperature, ionic strength and pressure conditions. The uncertainties associated with using thermodynamic databases quantified in this study for CO2 storage systems will therefore persist independently from previously conducted calibrations of thermodynamic databases with experimental or field data. In view of these model uncertainties, the modeller is encouraged to include a routine in the simulations for quantification of the model uncertainty depending on the specific scenario or to assess the simulation results as a range of values that represent a soft outcome.  相似文献   

6.
Convective mixing of dissolved carbon dioxide (CO2) with formation brine has been shown to be a significant factor for the rate of dissolution of CO2 and thus for determining the viability of geological CO2 storage sites. In most previous convection investigations, a no-flow boundary condition was used to represent the interface between an upper region with CO2 and brine and the single-phase brine region beneath. However, due to interfacial tension between the phases, the water phase is partly mobile in the upper region and advection may occur. Based on linear stability analysis and numerical simulations, we show that advection across the interface leads to considerable destabilization of the system. In particular, the time of onset of instability is reduced by a factor of two and the rate of dissolution is enhanced by a factor of two for three of four formations we consider, and by 40 % for the fourth formation. It is found that exponential decay of the relative permeability away from the interface provides a useful approximation to the real system. In addition, the exponential decay also simplifies the linear stability analysis. Interestingly, formations with large absolute permeability and small porosity have the largest impact from the transition zone, despite the fact that the relative permeability decays quickly above the interface in these formations. This is because the length-scale of instability is smallest in these formations.  相似文献   

7.
8.
9.
Potential pathways in the subsurface may allow upwardly migrating gaseous CO2 from deep geological storage formations to be released into near surface aquifers. Consequently, the availability of adequate methods for monitoring potential CO2 releases in both deep geological formations and the shallow subsurface is a prerequisite for the deployment of Carbon Capture and Storage technology. Geoelectrical surveys are carried out for monitoring a small-scale and temporally limited CO2 injection experiment in a pristine shallow aquifer system. Additionally, the feasibility of multiphase modeling was tested in order to describe both complex non-linear multiphase flow processes and the electrical behavior of partially saturated heterogeneous porous media. The suitability of geoelectrical methods for monitoring injected CO2 and geochemically altered groundwater was proven. At the test site, geoelectrical measurements reveal significant variations in electrical conductivity in the order of 15?C30?%. However, site-specific conditions (e.g., geological settings, groundwater composition) significantly influence variations in subsurface electrical conductivity and consequently, the feasibility of geoelectrical monitoring. The monitoring results provided initial information concerning gaseous CO2 migration and accumulation processes. Geoelectrical monitoring, in combination with multiphase modeling, was identified as a useful tool for understanding gas phase migration and mass transfer processes that occur due to CO2 intrusions in shallow aquifer systems.  相似文献   

10.
Predicting the fate of the injected CO2 is crucial for the safety of carbon storage operations in deep saline aquifers: especially the evolution of the position, the spreading and the quantity of the mobile CO2 plume during and after the injection has to be understood to prevent any loss of containment. Fluid flow modelling is challenging not only given the uncertainties on subsurface formation intrinsic properties (parameter uncertainty) but also on the modelling choices/assumptions for representing and numerically implementing the processes occurring when CO2 displaces the native brine (model uncertainty). Sensitivity analysis is needed to identify the group of factors which contributes the most to the uncertainties in the predictions. In this paper, we present an approach for assessing the importance of model and parameter uncertainties regarding post-injection trapping of mobile CO2. This approach includes the representation of input parameters, the choice of relevant simulation outputs, the assessment of the mobile plume evolution with a flow simulator and the importance ranking for input parameters. A variance-based sensitivity analysis is proposed, associated with the ACOSSO-like meta-modelling technique to tackle the issues linked with the computational burden posed by the use of long-running simulations and with the different types of uncertainties to be accounted for (model and parameter). The approach is tested on a potential site for CO2 storage in the Paris basin (France) representative of a project in preliminary stage of development. The approach provides physically sound outcomes despite the challenging context of the case study. In addition, these outcomes appear very helpful for prioritizing the future characterisation efforts and monitoring requirements, and for simplifying the modelling exercise.  相似文献   

11.
Carbon dioxide (CO2) has been injected in the subsurface permeable formations as a means to cut atmospheric CO2 emissions and/or enhance oil recovery (EOR). It is important to constrain the boundaries of the CO2 plume in the target formation and/or other formations hosting the CO2 migrated from the target formation. Monitoring methods and technologies to assess the CO2 plume boundaries over time within a reservoir of interest are required. Previously introduced methods and technologies on pressure monitoring to detect the extent of the CO2 plume require at least two wells, i.e. pulser and observation wells. We introduce pressure transient technique requiring single well only. Single well pressure transient testing (drawdown/buildup/injection/falloff) is widely used to determine reservoir properties and wellbore conditions. Pressure diagnostic plots are used to identify different flow regimes and determine the reservoir/well characteristics. We propose a method to determine the plume extent for a constant rate pressure transient test at a single well outside the CO2 plume. Due to the significant contrast between mobility and storativity of the CO2 and native fluids (oil or brine), the CO2 boundary causes deviation in the pressure diagnostic response from that corresponding to previously identified heterogeneities. Using the superposition principle, we develop a relationship between the deviation time and the plume boundary. We demonstrate the applicability of the proposed method using numerically generated synthetic data corresponding to homogeneous, heterogeneous, and anisotropic cases to evaluate its potential and limitations. We discuss ways to identify and overcome the potential limitations for application of the method in the field.  相似文献   

12.
This work was motivated by considerations of potential leakage pathways for CO2 injected into deep geological formations for the purpose of carbon sequestration. Because existing wells represent a potentially important leakage pathway, a spatial analysis of wells that penetrate a deep aquifer in the Alberta Basin was performed and various statistical measures to quantify the spatial distribution of these wells were presented. The data indicate spatial clustering of wells, due to oil and gas production activities. The data also indicate that the number of wells that could be impacted by CO2 injection, as defined by the spread of an injected CO2 plume, varies from several hundred in high well-density areas to about 20 in low-density areas. These results may be applied to other mature continental sedimentary basins in North America and elsewhere, where detailed information on well location and status may not be available.  相似文献   

13.
Increasing attention is being focused on the rapid rise of CO2 levels in the atmosphere, which many believe to be the major contributing factor to global climate change. Sequestering CO2 in deep geological formations has been proposed as a long-term solution to help stabilize CO2 levels. However, before such technology can be developed and implemented, a basic understanding of H2O–CO2 systems and the chemical interactions of these fluids with the host formation must be obtained. Important issues concerning mineral stability, reaction rates, and carbonate formation are all controlled or at least significantly impacted by the kinetics of rock–water reactions in mildly acidic, CO2-saturated solutions. Basalt has recently been identified as a potentially important host formation for geological sequestration. Dissolution kinetics of the Columbia River Basalt (CRB) were measured for a range of temperatures (25–90 °C) under mildly acidic to neutral pH conditions using the single-pass flow-through test method. Under anaerobic conditions, the normalized dissolution rates for CRB decrease with increasing pH (3 ? pH ? 7) with a slope, η, of −0.15 ± 0.01. Activation energy, Ea, has been estimated at 32.0 ± 2.4 kJ mol−1. Dissolution kinetics measurements like these are essential for modeling the rate at which CO2-saturated fluids react with basalt and ultimately drive conversion rates to carbonate minerals in situ.  相似文献   

14.
Pressure buildup limits CO2 injectivity and storage capacity and pressure loss limits the brine production capacity and security, particularly for closed and semi-closed formations. In this study, we conduct a multiwell model to examine the potential advantages of combined exhaustive brine production and complete CO2 storage in deep saline formations in the Jiangling Depression, Jianghan Basin of China. Simulation results show that the simultaneous brine extraction and CO2 storage in saline formation not only effectively regulate near-wellbore and regional pressure of storage formation, but also can significantly enhance brine production capacity and CO2 injectivity as well as storage capacity, thereby achieving maximum utilization of underground space. In addition, the combination of brine production and CO2 injection can effectively mitigate the leakage risk between the geological units. With regard to the scheme of brine production and CO2 injection, constant pressure injection is much superior to constant rate injection thanks to the mutual enhancement effect. The simultaneous brine production of nine wells and CO2 injection of four wells under the constant pressure injection scheme act best in all respects of pressure regulation, brine production efficiency, CO2 injectivity and storage capacity as well as leakage risk mitigation. Several ways to further optimize the combined strategy are investigated and the results show that increasing the injection pressure and adopting fully penetrating production wells can further significantly enhance the combined efficiency; however, there is no obvious promoting effect by shortening the well spacing and changing the well placement.  相似文献   

15.
This study examined the impacts of reservoir properties on carbon dioxide (CO2) migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as spatial–temporal distributions of gas pressure, which can be reasonably monitored in practice. The injection reservoir was assumed to be located 1,400–1,500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of the domain, which extended out 8,000 m from the injection well. The CO2 migration was simulated using the latest version of the simulator, subsurface transport over multiple phases (the water–salt–CO2–energy module), developed by Pacific Northwest National Laboratory. A nonlinear parameter estimation and optimization modeling software package, Parameter ESTimation (PEST), is adopted for automated reservoir parameter estimation. The effects of data quality, data worth, and data redundancy were explored regarding the detectability of reservoir parameters using gas pressure monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy. The feasibility of using CO2 saturation data for improving reservoir characterization was also discussed.  相似文献   

16.
Over geological timescales, CO2 levels are determined by the operation of the long term carbon cycle, and it is generally thought that changes in atmospheric CO2 concentration have controlled variations in Earth's surface temperature over the Phanerozoic Eon. Here we compile independent estimates for global average surface temperature and atmospheric CO2 concentration, and compare these to the predictions of box models of the long term carbon cycle COPSE and GEOCARBSULF.We find a strong relationship between CO2 forcing and temperature from the proxy data, for times where data is available, and we find that current published models reproduce many aspects of CO2 change, but compare poorly to temperature estimates. Models are then modified in line with recent advances in understanding the tectonic controls on carbon cycle source and sink processes, with these changes constrained by modelling 87Sr/86Sr ratios. We estimate CO2 degassing rates from the lengths of subduction zones and rifts, add differential effects of erosion rates on the weathering of silicates and carbonates, and revise the relationship between global average temperature changes and the temperature change in key weathering zones.Under these modifications, models produce combined records of CO2 and temperature change that are reasonably in line with geological and geochemical proxies (e.g. central model predictions are within the proxy windows for >~75% of the time covered by data). However, whilst broad long-term changes are reconstructed, the models still do not adequately predict the timing of glacial periods. We show that the 87Sr/86Sr record is largely influenced by the weathering contributions of different lithologies, and is strongly controlled by erosion rates, rather than being a good indicator of overall silicate chemical weathering rates. We also confirm that a combination of increasing erosion rates and decreasing degassing rates over the Neogene can cause the observed cooling and Sr isotope changes without requiring an overall increase in silicate weathering rates.On the question of a source or sink dominated carbon cycle, we find that neither alone can adequately reconstruct the combination of CO2, temperature and strontium isotope dynamics over Phanerozoic time, necessitating a combination of changes to sources and sinks. Further progress in this field relies on >108 year dynamic spatial reconstructions of ancient tectonics, paleogeography and hydrology. Whilst this is a significant challenge, the latest reconstruction techniques, proxy records and modelling advances make this an achievable target.  相似文献   

17.
CO2 storage in geological formations is currently being discussed intensively as a technology with a high potential for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis or stochastic approaches based on a brute-force approach of repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a higher-order orthogonal basis of polynomials to approximate dependence on uncertain parameters (porosity, permeability, etc.) and design parameters (injection rate, depth, etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation, and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs with a minimum failure probability. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al., Comput Geosci 13:451–467, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speed-up by a factor of 100 compared with the Monte Carlo evaluation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of the predicted leakage rates toward higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios.  相似文献   

18.
Geological storage of carbon dioxide (CO2) is one of the options envisaged for mitigating the environmental consequences of anthropogenic CO2 increases in the atmosphere. The general principle is to capture carbon dioxide at the exhaust of power plants and then to inject the compressed fluid into deep geological formations. Before implementation over large scales, it is necessary to assess the efficiency of the process and its environmental consequences. The goal of this paper is to discuss some environmental mineralogy research perspectives raised by CO2 geological storage.  相似文献   

19.
Perfluorocarbon compounds (PFCs) have high chemical and thermal stability, low background levels in natural systems, and easy detectability. They are proposed as tracers for monitoring potential CO2 leakage associated with geological carbon sequestration (GCS). The fate of the PFCs in porous media, and in particular, the transport of these compounds relative to CO2 gas in geological formations, has not been thoroughly studied. We conducted column tests to study the transport of perfluoro-methylcyclo-pentane (PMCP), perfluoro-methylcyclo-hexane (PMCH), ortho-perfluoro-dimethylcyclo-hexane (ortho-PDCH), and perfluoro-trimethylcyclo-hexane (PTCH) gas tracers in a variety of porous media. The influence of water content and sediment minerals on the retardation of the tracers was tested. The transport of PFC tracers relative to 13CO2 and the conservative tracer sulfur hexafluoride (SF6) was also investigated. Results show that at high water content, the PFCs and SF6 transported together. In dry and low-water-content sediments, however, the PFCs were retarded relative to SF6 with the degree of retardation increasing with the molecular weight of the PFC. When water was present in the medium, the transport of CO2 was greatly retarded compared to SF6 and the PFC tracers. However, in dry laboratory sediments, the migration of CO2 was slightly faster than all the tracers. The type of minerals in the sediments also had a significant impact on the fate of the tracers. In order to use the PFC tracer data obtained from the ground surface or shallow subsurface in a GCS site to precisely interpret the extent and magnitude of CO2 leakage, the retardation of the tracers and the interaction of CO2 with the reservoir overlying formation water should be carefully quantified.  相似文献   

20.
Numerical simulations of CO2 migration for the period June 2008–December 2011 were performed based on a unique data set including a recently revised static geological 3D model of the reservoir formation of the Ketzin pilot site in Brandenburg, Germany. We applied the industrial standard ECLIPSE 100 and scientific TOUGH2-MP simulators for this task and implemented a workflow to allow for integration of complex model geometries from the Petrel software package into TOUGH2-MP. Definition of a near- and a far-field well area allowed us to apply suitable permeability modifiers, and thus to successfully match simulation results with pressure measurements and arrival times in observation wells. Coincidence was achieved for CO2 arrival times with deviations in the range of 5.5–15 % and pressure values in the injection well CO2 Ktzi 201/2007 and the observation well CO2 Ktzi 202/2007 with even smaller deviations. It is shown that the integration of unique operational and observation data in the workflow improves the setup of the geological model. Within such an iteration loop model uncertainties are reduced and enable advanced predictions for future reservoir behaviour with regard to pressure development and CO2 plume migration in the storage formation at the Ketzin pilot site supporting the implementation of monitoring campaigns and guiding site operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号